CN112608151A - 一种超薄铌酸钾钠基柔性压电薄膜材料及其制备方法 - Google Patents

一种超薄铌酸钾钠基柔性压电薄膜材料及其制备方法 Download PDF

Info

Publication number
CN112608151A
CN112608151A CN202010533408.0A CN202010533408A CN112608151A CN 112608151 A CN112608151 A CN 112608151A CN 202010533408 A CN202010533408 A CN 202010533408A CN 112608151 A CN112608151 A CN 112608151A
Authority
CN
China
Prior art keywords
knn
film
target material
powder
putting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010533408.0A
Other languages
English (en)
Inventor
龚文
谭祥虎
姚方周
吴超峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Foshan Southern China Institute For New Materials
Original Assignee
Foshan Southern China Institute For New Materials
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Foshan Southern China Institute For New Materials filed Critical Foshan Southern China Institute For New Materials
Priority to CN202010533408.0A priority Critical patent/CN112608151A/zh
Publication of CN112608151A publication Critical patent/CN112608151A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/025Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明提出一种超薄铌酸钾钠基柔性压电薄膜材料及其制备方法,化学分子式为:(1‑x)(K0.48Na0.48Li0.02) Nb0.8Ta0.2O3xLn(Zr1‑y Ti y )O3 (KNN‑LT),其中Ln为Ca,Ba及Sr中的一种或多种;xy为摩尔数,0<x<0.1,0≤y≤1。采用激光分子束外延法(Laser Molecular Beam Epitaxy,LMBE),利用水溶性的Sr3Al2O6作为牺牲层制备超薄柔性压电薄膜。制备的KNN‑LT靶材性能优良且稳定,可满足正常使用需求。制备的柔性薄膜表面平整、组分精确、柔性好、厚度薄可接近临界厚度及制备合格率高。

Description

一种超薄铌酸钾钠基柔性压电薄膜材料及其制备方法
技术领域
本发明涉及无铅压电陶瓷技术领域,尤其涉及一种超薄铌酸钾钠基柔性压电薄膜材料及其制备方法。
背景技术
柔性压电薄膜因为其优异的性能被广泛用于柔性传感器、存储器、储能设备、植入式生物医疗电子、可卷曲电子显示屏等领域。但是随着纳米技术及生物探测技术的快速发展,对压电薄膜在厚度以及性能上的要求越来越高。目前,柔性压电薄膜的主要制备方法有脉冲沉积法、磁控溅射法、溶胶凝胶等方法,但是上述方法在厚度和性能上很难再有突破。西安交大刘明教授等人利用激光分子束外延法(Laser Molecular Beam Epitaxy,LMBE)制备了性能优良的自支撑的单晶胞层厚度的SrTiO3薄膜,目前鲜有报道将此技术应用到制备性能优良的超薄压电薄膜。因此,可尝试用LMBE法制备超薄压电薄膜。
锆钛酸铅(PZT)因为其具有良好的压电性能、机电耦合特性、高居里温度点等众多优异性能,其被广泛应用于压电薄膜,然而随着人类对生态环境的逐渐重视,由于铅对环境具有危害性而被各个国家限制使用,因此急需找寻一种性能相近的环境友好型材料作为替代。掺杂改良后的铌酸钾钠(KNN)基陶瓷由于具有与PZT相比拟的物理性能,被认为是最有可能取代PZT材料的候选材料之一。因此,本专利用固相反应法制备了KNN基陶瓷,以此为靶材,利用LMBE法制备超薄压电薄膜。
发明内容
技术问题:铅基材料污染环境以及超薄压电薄膜制备过程中合格率不高。
为了解决上述技术问题,本发明所采取的技术方案如下:
一种超薄铌酸钾钠基柔性压电薄膜材料,其化学分子式为:(1-x)(K0.48Na0.48Li0.02)Nb0.8Ta0.2O3-xLn(Zr1-y Ti y )O3 (KNN-LT),其中Ln为Ca,Ba及Sr中的一种或多种;xy 为摩尔数,0<x<0.1,0≤y≤1。
本发明还提供一种超薄铌酸钾钠基柔性压电薄膜材料的制备方法,该方法包括Sr3Al2O6靶材制备、KNN-LT靶材制备以及KNN-NBT薄膜制备。
A. Sr3Al2O6靶材制备:利用传统固相反应法制备Sr3Al2O6靶材,包括以下步骤:
(1)根据Sr3Al2O6化学分子式计算出SrCO3和Al2O3等高纯(>99%)原料的重量,根据计算结果精确依次称取各高纯原料。
(2)将步骤(1)称好的原料加入到尼龙球磨罐,并加入直径3~6mm的氧化锆球和无水乙醇,其中原料、氧化锆球及无水乙醇的质量比为1:2:1。将装有原料、氧化锆球及无水乙醇的球磨罐放入球磨机,球磨6~8h得到浆料,将浆料快速烘干得到混合均匀的粉体。
(3)将步骤(2)得到的粉体放入带盖的氧化铝坩埚中,以3~5oC/min的升温速率升温到900~950oC,保温3~6h,得到反应充分的粉体。
(4)将步骤(3)得到的粉体重复步骤(2),得到较细的粉体,
粉体中加入5~10%(质量分数)的浓度为5%(质量分数)的聚乙烯醇,在玛瑙研钵中研磨至过80目筛网;在200~300MPa压力下压制层圆形坯体,在马弗炉中以1oC/min的升温速率升温到500~550oC排胶。
(5)将排胶片放入带盖的氧化铝坩埚中,以3~5oC/min的升温速率升温到1300~1400oC,保温8~12h,得到Sr3Al2O6靶材。
B.KNN-LT靶材制备:利用传统固相反应法制备KNN-LT靶材,包括以下步骤:
(1)根据KNN-LT化学分子式计算出K2CO3, Na2CO3, Nb2O5, Ta2O5,, Li2CO3, SrCO3或BaCO3或CaCO3,TiO2, ZrO2等高纯(>99%)原料的重量,根据计算结果精确依次称取各高纯原料。为了防止Li,Na,K等的挥发导致化学组分的偏离,称取原料时需要将K2CO3, Na2CO3,Li2CO3过量5~10%的摩尔数。
(2)混料过程与Sr3Al2O6靶材制备的步骤(2)相同。
(3)将步骤(2)得到的粉体放入带盖的氧化铝坩埚中,以3~5oC/min的升温速率升温到800~850oC,保温3~6h,得到反应充分的粉体。
(4)造粒,成型及排胶过程与Sr3Al2O6靶材制备的步骤(4)相同。
(5)将排胶片放入带盖的氧化铝坩埚中,以3~5oC/min的升温速率升温到1050~1150oC,保温3~6h,得到KNN-LT靶材。
C. 制备KNN-LT柔性薄膜,采用激光分子束外延法(Laser Molecular BeamEpitaxy,LMBE)制KNN-LT柔性薄膜备,包括以下步骤:
(1)将SrTiO3基片依次浸入在丙酮,去离子水,乙醇中超声清洗,然后用N2气吹干,将基本在氧压为5×10-6torr,温度为900-1000oC的环境中预处理20~30min,将预处理的基片放入沉积室的基片托上。
(2)将Sr3Al2O6靶材放入沉积室的靶材托上,将真空室抽真空,将衬底加热到700-750oC;通入氧气,使氧分压在1×10-6torr。待温度和氧分压稳定后,将激光能量调节到1.2~1.3J/cm2开始生长薄膜。
(3)Sr3Al2O6薄膜生长到10-20nm后,停止生长,关闭气路和真空泵,取出Sr3Al2O6靶材,将KNN-LT靶材放入沉积室的靶材托上,
(4)将真空室抽真空,将衬底加热到700-750oC;通入氧气,使氧分压在1×10-5torr。温度和氧分压稳定后,将激光能量调节到1.2~1.3J/cm2开始生长单层膜。
(5)KNN-LT单层薄膜生长完成后,关闭气路和真空泵,取出薄膜,将上述薄膜附着在聚二甲基硅烷(PDMS)表面。将上述样品放入室温的水中将Sr3Al2O6溶解,从而将KNN-LT单层薄膜与SrTiO3(001)基片分离开。将KNN-LT附着的PDMS转移到目标柔性基片上,在70oC的水中溶解PDMS,从而获得超薄柔性薄膜。
有益效果:本发明使用环境友好型无铅原料,制备的KNN-LT靶材压电性能优良且稳定,可满足正常使用需求。使用Sr3Al2O6作为牺牲层、用LMBE法制备的柔性薄膜表面平整、组分精确、柔性好、厚度薄可接近临界厚度及制备合格率高。
附图说明
图1为KNN-LT-1薄膜从SrTiO3基底转移到目标基础底工艺图。
图2为KNN-LT-1薄膜的XRD图。
图3为KNN-LT-1薄膜的介电温谱图。
图4为KNN-LT-1薄膜的电滞回线。
具体实施方式
实施例一
一种超薄铌酸钾钠基柔性压电薄膜材料,其化学式为:0.96(K0.48Na0.48Li0.02)Nb0.8Ta0.2O3-0.04 Ca(Zr0.06 Ti0.94)O3 (KNN-LT-1)。用Sr3Al2O6做牺牲层、用LMBE制备,具体过程如下:
A. Sr3Al2O6靶材制备:利用传统固相反应法制备Sr3Al2O6靶材,包括以下步骤:
(1)根据Sr3Al2O6化学分子式计算出SrCO3和Al2O3等高纯(>99%)原料的重量,根据计算结果精确依次称取各高纯原料。
(2)将步骤(1)称好的原料加入到尼龙球磨罐,并加入直径3~6mm的氧化锆球和无水乙醇,其中原料、氧化锆球及无水乙醇的质量比为1:2:1。将装有原料、氧化锆球及无水乙醇的球磨罐放入球磨机,球磨6h得到浆料,将浆料快速烘干得到混合均匀的粉体。
(3)将步骤(2)得到的粉体放入带盖的氧化铝坩埚中,以3~5oC/min的升温速率升温到950oC,保温4h,得到反应充分的粉体。
(4)将步骤(3)得到的粉体重复步骤(2),得到较细的粉体,
粉体中加入7%(质量分数)的浓度为5%(质量分数)的聚乙烯醇,在玛瑙研钵中研磨至过80目筛网;在200MPa压力下压制层圆形坯体,在马弗炉中以1oC/min的升温速率升温到550oC排胶。
(5)将排胶片放入带盖的氧化铝坩埚中,以5oC/min的升温速率升温到1350oC,保温10h,得到Sr3Al2O6靶材。
B.KNN-LT-1靶材制备:利用传统固相反应法制备KNN-LT-1靶材,包括以下步骤:
(1)根据KNN-LT-1化学分子式计算出K2CO3, Na2CO3, Nb2O5, Ta2O5,, Li2CO3, CaCO3,TiO2, ZrO2等高纯(>99%)原料的重量,根据计算结果精确依次称取各高纯原料。为了防止Li,Na,K等的挥发导致化学组分的偏离,称取原料时需要将K2CO3, Na2CO3, Li2CO3过量7%的摩尔数。
(2)混料过程与Sr3Al2O6靶材制备的步骤(2)相同。
(3)将步骤(2)得到的粉体放入带盖的氧化铝坩埚中,以5oC/min的升温速率升温到850oC,保温4,得到反应充分的粉体。
(4)造粒,成型及排胶过程与Sr3Al2O6靶材制备的步骤(4)相同。
(5)将排胶片放入带盖的氧化铝坩埚中,以5oC/min的升温速率升温到1150oC,保温3h,得到KNN-LT-1靶材。
C. 制备KNN-LT-1柔性薄膜,采用激光分子束外延法(Laser Molecular BeamEpitaxy,LMBE)制KNN-LT-1柔性薄膜备,包括以下步骤:
(1)将SrTiO3基片依次浸入在丙酮,去离子水,乙醇中超声清洗,然后用N2气吹干,将基本在氧压为5×10-6torr,温度为900oC的环境中预处理20min,将预处理的基片放入沉积室的基片托上。
(2)将Sr3Al2O6靶材放入沉积室的靶材托上,将真空室抽真空,将衬底加热到750oC;通入氧气,使氧分压在1×10-6torr。待温度和氧分压稳定后,将激光能量调节到1.3J/cm2开始生长薄膜。
(3)Sr3Al2O6薄膜生长到20nm后,停止生长,关闭气路和真空泵,取出Sr3Al2O6靶材,将KNN-LT-1靶材放入沉积室的靶材托上,
(4)将真空室抽真空,将衬底加热到750oC;通入氧气,使氧分压在1×10-5torr。温度和氧分压稳定后,将激光能量调节到0.4J/cm2开始生长单层膜。
(5)KNN-LT-1单层薄膜生长完成后,关闭气路和真空泵,取出薄膜,将上述薄膜附着在聚二甲基硅氧烷(PDMS)表面。将上述样品放入室温的水中将Sr3Al2O6溶解,从而将KNN-LT-1单层薄膜与SrTiO3(001)基片分离开。将KNN-LT-1附着的PDMS转移到目标柔性基片上,在70oC的水中溶解PDMS,从而获得超薄柔性薄膜,如图1所示。
实施例二
一种超薄铌酸钾钠基柔性压电薄膜材料,其化学式为: 0.95(K0.48Na0.48Li0.02)Nb0.8Ta0.2O3-0.05(Ca0.5 Sr0.5)TiO3,制备方法与实施例一相同。
实施例三
一种超薄铌酸钾钠基柔性压电薄膜材料,其化学式为:0.94(K0.48Na0.48Li0.02)Nb0.8Ta0.2O3-0.06(Ca0.5 Ba0.5)ZrO3,制备方法与实施例二相同。
本发明制备的超薄铌酸钾钠基柔性压电薄膜性能稳定,成分均匀,厚度可控。图2展示了实施例一制备的KNN-LT-1薄膜的XRD,从图中可以看出,薄膜为结晶度良好的KNN基压电薄膜,对实施例二和实施例三做了相同的实验,结果与实施例一相似,这里不再叙述。图3展示了实施例一制备的KNN-LT-1薄膜的介电温谱图,居里温度点Tc大约为400oC左右,介电常数为600左右,对实施例二和实施例三做了相同的实验,结果与实施例一相似,这里不再叙述。图4展示了实施例一制备的KNN-LT-1薄膜的电滞回线,从图中可以看出KNN-LT-1薄膜具有良好的铁电性能,剩余极化强度Pr为20µC/cm2,矫顽场Ec为60kV/cm,对实施例二和实施例三做了相同的实验,结果与实施例一相似,这里不再叙述。对实施例一进行测试,其压电常数大约为130pm/V,在对实施例二和实施例三做了相同的实验,结果与实施例一相似,这里不再叙述。

Claims (2)

1.一种超薄铌酸钾钠基柔性压电薄膜材料,其特征在于:其化学分子式为:(1-x)(K0.48Na0.48Li0.02) Nb0.8Ta0.2O3-xLn(Zr1-y Ti y ) O3 (KNN-LT),其中Ln为Ca,Ba及Sr中的一种或多种;xy 为摩尔数,0<x<0.1,0≤y≤1。
2.根据权利要求1所述的超薄铌酸钾钠基柔性压电薄膜材料的制备方法,其特征在于:该方法包括Sr3Al2O6靶材制备、KNN-LT靶材制备以及KNN-NBT薄膜制备;
A. Sr3Al2O6靶材制备:利用传统固相反应法制备Sr3Al2O6靶材,包括以下步骤:
(1)根据Sr3Al2O6化学分子式计算出SrCO3和Al2O3等高纯(>99%)原料的重量,根据计算结果精确依次称取各高纯原料;
(2)将步骤(1)称好的原料加入到尼龙球磨罐,并加入直径3~6mm的氧化锆球和无水乙醇,其中原料、氧化锆球及无水乙醇的质量比为1:2:1,将装有原料、氧化锆球及无水乙醇的球磨罐放入球磨机,球磨6~8h得到浆料,将浆料快速烘干得到混合均匀的粉体;
(3)将步骤(2)得到的粉体放入带盖的氧化铝坩埚中,以3~5oC/min的升温速率升温到900~950oC,保温3~6h,得到反应充分的粉体;
(4)将步骤(3)得到的粉体重复步骤(2),得到较细的粉体,
粉体中加入5~10%(质量分数)的浓度为5%(质量分数)的聚乙烯醇,在玛瑙研钵中研磨至过80目筛网;在200~300MPa压力下压制层圆形坯体,在马弗炉中以1oC/min的升温速率升温到500~550 oC排胶;
(5)将排胶片放入带盖的氧化铝坩埚中,以3~5oC/min的升温速率升温到1300~1400oC,保温8~12h,得到Sr3Al2O6靶材;
B.KNN-LT靶材制备:利用传统固相反应法制备KNN-LT靶材,包括以下步骤:
(1)根据KNN-LT化学分子式计算出K2CO3, Na2CO3, Nb2O5, Ta2O5,, Li2CO3, SrCO3或BaCO3或CaCO3,TiO2, ZrO2等高纯(>99%)原料的重量,根据计算结果精确依次称取各高纯原料,为了防止Li,Na,K等的挥发导致化学组分的偏离,称取原料时需要将K2CO3, Na2CO3,Li2CO3过量5~10%的摩尔数;
(2)混料过程与Sr3Al2O6靶材制备的步骤(2)相同;
(3)将步骤(2)得到的粉体放入带盖的氧化铝坩埚中,以3~5oC/min的升温速率升温到800~850oC,保温3~6h,得到反应充分的粉体;
(4)造粒,成型及排胶过程与Sr3Al2O6靶材制备的步骤(4)相同;
(5)将排胶片放入带盖的氧化铝坩埚中,以3~5oC/min的升温速率升温到1050~1150oC,保温3~6h,得到KNN-LT靶材;
C. 制备KNN-LT柔性薄膜,采用激光分子束外延法(Laser Molecular Beam Epitaxy,LMBE)制KNN-LT柔性薄膜备,包括以下步骤:
(1)将SrTiO3基片依次浸入在丙酮,去离子水,乙醇中超声清洗,然后用N2气吹干,将基本在氧压为5×10-6torr,温度为900~1000oC的环境中预处理20~30min,将预处理的基片放入沉积室的基片托上;
(2)将Sr3Al2O6靶材放入沉积室的靶材托上,将真空室抽真空,将衬底加热到700-750oC;通入氧气,使氧分压在1×10-6torr,待温度和氧分压稳定后,将激光能量调节到0.3~0.4J/cm2开始生长薄膜;
(3)Sr3Al2O6薄膜生长到10~20nm后,停止生长,关闭气路和真空泵,取出Sr3Al2O6靶材,将KNN-LT靶材放入沉积室的靶材托上;
(4)将真空室抽真空,将衬底加热到700~750oC;通入氧气,使氧分压在1×10-5torr;
温度和氧分压稳定后,将激光能量调节到1.2~1.3J/cm2开始生长单层膜;
(5)KNN-LT单层薄膜生长完成后,关闭气路和真空泵,取出薄膜,将上述薄膜附着在聚二甲基硅氧烷(PDMS)表面,将上述样品放入室温的水中将Sr3Al2O6溶解,从而将KNN-LT单层薄膜与SrTiO3(001)基片分离开,将KNN-LT附着的PDMS转移到目标柔性基片上,在70oC的水中溶解PDMS,从而获得超薄柔性薄膜。
CN202010533408.0A 2020-06-12 2020-06-12 一种超薄铌酸钾钠基柔性压电薄膜材料及其制备方法 Pending CN112608151A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010533408.0A CN112608151A (zh) 2020-06-12 2020-06-12 一种超薄铌酸钾钠基柔性压电薄膜材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010533408.0A CN112608151A (zh) 2020-06-12 2020-06-12 一种超薄铌酸钾钠基柔性压电薄膜材料及其制备方法

Publications (1)

Publication Number Publication Date
CN112608151A true CN112608151A (zh) 2021-04-06

Family

ID=75224355

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010533408.0A Pending CN112608151A (zh) 2020-06-12 2020-06-12 一种超薄铌酸钾钠基柔性压电薄膜材料及其制备方法

Country Status (1)

Country Link
CN (1) CN112608151A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116396076A (zh) * 2023-04-04 2023-07-07 基迈克材料科技(苏州)有限公司 一种导电铌酸锂靶材的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1968910A (zh) * 2005-04-28 2007-05-23 株式会社村田制作所 压电陶瓷组合物和压电陶瓷电子部件
CN111137847A (zh) * 2019-12-25 2020-05-12 西安交通大学 一种屈曲微纳结构可调控的柔性功能氧化物薄膜制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1968910A (zh) * 2005-04-28 2007-05-23 株式会社村田制作所 压电陶瓷组合物和压电陶瓷电子部件
CN111137847A (zh) * 2019-12-25 2020-05-12 西安交通大学 一种屈曲微纳结构可调控的柔性功能氧化物薄膜制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LI YUANHANG 等: "Fabrication and characterization of (K,Na)NbO3-based lead free piezoelectric thin film", 《CHINESE JOURNAL OF LOW TEMPERATURE PHYSICS》 *
冯端 主编: "《固体物理学大辞典》", 28 February 1995, 高等教育出版社 *
李远勋 等主编: "《功能材料的制备与性能表征》", 30 September 2018, 西南交通大学出版社 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116396076A (zh) * 2023-04-04 2023-07-07 基迈克材料科技(苏州)有限公司 一种导电铌酸锂靶材的制备方法
CN116396076B (zh) * 2023-04-04 2024-04-26 基迈克材料科技(苏州)有限公司 一种导电铌酸锂靶材的制备方法

Similar Documents

Publication Publication Date Title
EP2255397B1 (en) Piezoelectric material
Sayer et al. Ceramic thin films: fabrication and applications
US8529785B2 (en) Metal oxide
US8269402B2 (en) BNT-BKT-BT piezoelectric composition, element and methods of manufacturing
US7744773B2 (en) Freestanding films with electric field-enhanced piezoelectric coefficients
KR102308852B1 (ko) BaTiO3 씨드층을 포함한 다결정 BiScO3-PbTiO3 압전 소재 및 이의 제조 방법
KR101738983B1 (ko) 압전 세라믹 소결체, 압전 세라믹 소결체의 제조 방법 및 전자기기
US20080152530A1 (en) Method of preparing ferroelectric powders and ceramics
CN111423231A (zh) 一种三元系弛豫铁电薄膜材料及其制备方法和应用
CN112062551A (zh) 一种高退极化温度、高压电性能的铁酸铋基压电陶瓷材料及其制备方法
JP7035522B2 (ja) 配向セラミックスおよびその製造方法、圧電素子
CN107840655B (zh) 准同型相界的钛酸铋钾基无铅弛豫铁电陶瓷的制备方法
CN109553413B (zh) 一种织构化压电陶瓷及其制备方法和用途
CN111908917A (zh) 一种锆酸铋钠锶掺杂铌酸钾钠基压电陶瓷材料及其制备方法
CN112608151A (zh) 一种超薄铌酸钾钠基柔性压电薄膜材料及其制备方法
Malič et al. Review of methods for powder-based processing
CN102731107A (zh) 一种掺Mn的钛酸铋钠-钛酸钡薄膜的制备方法
JP2015201624A (ja) 圧電組成物および圧電素子
WO2017203211A1 (en) Temperature stable lead-free piezoelectric/electrostrictive materials with enhanced fatigue resistance
CN102775142A (zh) 一种无铅电致伸缩陶瓷材料及其制备方法
CN110981480A (zh) 一种高Tr-t和Tc的铅基&lt;001&gt;C织构压电陶瓷材料及其制备方法
Cho et al. Microstructure, ferroelectric and piezoelectric properties of Bi4Ti3O12 platelet incorporated 0.36 BiScO3-0.64 PbTiO3 thick films for high temperature piezoelectric device applications
Liu et al. Piezoelectric properties of 3-1 type porous PMN-PZT ceramics doped with strodium
CN109402737B (zh) 低温制备锆钛酸铅单晶的方法
CN110078508B (zh) 一种锰掺杂铌铟锌酸铅-钛酸铅压电陶瓷、制备方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210406