CN111423231A - 一种三元系弛豫铁电薄膜材料及其制备方法和应用 - Google Patents

一种三元系弛豫铁电薄膜材料及其制备方法和应用 Download PDF

Info

Publication number
CN111423231A
CN111423231A CN202010242269.6A CN202010242269A CN111423231A CN 111423231 A CN111423231 A CN 111423231A CN 202010242269 A CN202010242269 A CN 202010242269A CN 111423231 A CN111423231 A CN 111423231A
Authority
CN
China
Prior art keywords
temperature
film material
deposition
single crystal
pmn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010242269.6A
Other languages
English (en)
Inventor
王飞飞
黎梓浩
王宇纯
赵祥永
王涛
唐艳学
段志华
石旺舟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Normal University
University of Shanghai for Science and Technology
Original Assignee
Shanghai Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Normal University filed Critical Shanghai Normal University
Priority to CN202010242269.6A priority Critical patent/CN111423231A/zh
Publication of CN111423231A publication Critical patent/CN111423231A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • C04B35/497Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates based on solid solutions with lead oxides
    • C04B35/499Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates based on solid solutions with lead oxides containing also titanates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/02Microstructural systems; Auxiliary parts of microstructural devices or systems containing distinct electrical or optical devices of particular relevance for their function, e.g. microelectro-mechanical systems [MEMS]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明涉及一种三元系弛豫铁电薄膜材料及其制备和应用,材料的化学组成为(1‑x‑y)Pb(In1/2Nb1/2)O3‑yPb(Mg1/3Nb2/3)O3‑xPbTiO3‑zMn,其中x=0.20~0.40,y=0.18~0.60,z=0.003~0.03,包括以下步骤:(a)将MnO2、In2O3、Nb2O5、MgO、PbO和TiO2混合,后依次进行球磨、烘干、过筛、预烧、造粒、压片和烧结,得到Mn‑PIN‑PMN‑PT陶瓷靶材;(b)将SrTiO3单晶依次置于丙酮、乙醇和去离子水中进行超声洗涤,后干燥,得到衬底;(c)以激光溅射的方式,将SrRuO3陶瓷靶在衬底上进行沉积处理,后进行退火处理,得到底电极;(d)以激光溅射的方式,将Mn‑PIN‑PMN‑PT陶瓷靶材在底电极有上进行沉积处理,后进行退火处理,得到薄膜材料。与现有技术相比,本发明的薄膜具有纯钙钛矿结构,且具有优异的铁电和压电性能,以及较高的居里温度和三方‑四方相变温度。

Description

一种三元系弛豫铁电薄膜材料及其制备方法和应用
技术领域
本发明涉及电介质薄膜材料领域,具体涉及一种三元系弛豫铁电薄膜材料及其制备方法和应用。
背景技术
压电微机械电子系统(MEMS)是在传统微机械电子系统中加入压电元件制备得到的。与传统微机械电子系统相比,压电微机械电子系统增加了传感、驱动和传导功能,且尺寸从微米到几毫米不等,在压力传感器,喷墨打印和能量收集中具有重要的应用。与传统块体压电器件相比,压电微机械电子系统具有高驱动力、低激励电压、高速度、高效率和低功耗的优点,如何进一步提高压电微机械电子系统的传感和驱动性能是该领域内关注的热点课题,其中,提高核心压电元件的性能是最有效的方法之一。
目前,应用于驱动和能量收集领域的微机械电子系统主要采用传统的PZT基材料作为压电材料。最近以PMN-PT为代表的二元弛豫铁电材料,由于其具有出色的铁电、介电、热电、光电和压电性能,被广泛应用于红外探测器、压电驱动器和医用超声换能器等领域,并显著提升了相关器件的性能。然而,二元弛豫铁电单晶PMN-PT的居里温度(TC=130℃-160℃)和三方-四方相变温度(TR-T=60℃-90℃)均较低,该不足严重制约了所制备器件的温度稳定性,限制了此类器件在较宽温度范围内的应用,因此一系列具有较高居里温度的弛豫铁电材料被开发出来,例如Pb(Yb1/2Nb1/2)O3-PbTiO3(PYNT)、BiScO3-PbTiO3(BSPT)等。其中,三元弛豫铁电单晶Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3(PIN-PMN-PT)兼具高三方-四方相变温度(TR-T>100℃)、居里温度(TC>180℃)和优越的压电性能(d33~2800pC/N)。
此外,Mn离子掺杂可进一步抑制畴壁运动并降低电导率和介电损耗。目前围绕Mn掺杂PIN-PMN-PT三元系弛豫铁电薄膜的研究未见报道,这一单晶体系的薄膜化将大大促进新型压电微机械系统的开发与应用,因此制备高质量,具有优异铁电性能的Mn掺杂PIN-PMN-PT具有重要价值。
发明内容
本发明的目的就是为了解决上述问题而提供一种三元系弛豫铁电薄膜材料及其制备方法和应用,薄膜材料具有纯钙钛矿结构取向生长,且具有优异的铁电和压电性能,以及较高的居里温度和三方-四方相变温度,在保持二元PMN-PT优越性能的同时,显著提升相变温度。
本发明的目的通过以下技术方案实现:
一种三元系弛豫铁电薄膜材料,所述薄膜材料为锰掺杂铌铟酸铅-铌镁酸铅-钛酸铅,化学组成为(1-x-y)Pb(In1/2Nb1/2)O3-yPb(Mg1/3Nb2/3)O3-xPbTiO3-zMn,其中,x=0.20~0.40,y=0.18~0.60,z=0.003~0.03,当x取0.4时,y不取0.6。
一种三元系弛豫铁电薄膜材料的制备方法,所述制备方法包括以下步骤:
(a)将MnO2、In2O3、Nb2O5、MgO、PbO和TiO2混合,后依次进行球磨、烘干、过筛、预烧、造粒、压片和烧结,得到锰掺杂铌铟酸铅-铌镁酸铅-钛酸铅陶瓷靶材(记为Mn-PIN-PMN-PT);
(b)将SrTiO3(记为STO)单晶依次置于丙酮、乙醇和去离子水中进行超声洗涤,后置于氮气氛围中进行干燥,得到衬底;
(c)以激光溅射的方式,将SrRuO3(记为SRO)陶瓷靶在步骤(b)得到的衬底上进行第一次沉积处理,后进行第一次退火处理,得到缓冲层,该缓冲层同时作为底电极材料;
(d)以激光溅射的方式,将步骤(a)得到的锰掺杂铌铟酸铅-铌镁酸铅-钛酸铅陶瓷靶材在步骤(c)得到的底电极上进行第二次沉积处理,后进行第二次退火处理,得到锰掺杂铌铟酸铅-铌镁酸铅-钛酸铅三元系弛豫铁电薄膜材料。
优选地,步骤(a)中,MnO2、In2O3、Nb2O5、MgO、PbO和TiO2的摩尔比为0.005:0.09:0.21:0.12:1:0.28,其中,PbO和MgO还需取过量,且过量摩尔数分别为10%PbO和5%MgO,用于补偿在高温下烧结陶瓷靶和沉积薄膜过程中Pb和Mg的挥发。
优选地,步骤(b)中,所述的SrTiO3单晶通过X射线衍射仪测定面外取向为(100)面方向或(110)面方向。
一种上述三元系弛豫铁电薄膜材料的应用,该薄膜材料具有优异的铁电和压电性能,以及较高的居里温度和三方-四方相变温度,在驱动和能量收集领域的微机械电子系统中有巨大的应用价值。
本发明首先采用传统固相反应法制备Mn-PIN-PMN-PT陶瓷靶材;接着使用脉冲激光沉积技术,基于SrTiO3单晶制备SrRuO3导电缓冲层;最后制备Mn-PIN-PMN-PT弛豫铁电薄膜。其中,SrTiO3衬底是成熟度很高的商用单晶衬底,便于批量化的制备;并且与要制备的薄膜材料具有相似的结构和晶胞参数,利于择优取向生长;SrRuO3是晶格与薄膜材料相匹配的底电极材料,导电性好,并且在此种材料的基础上制备得到的薄膜疲劳性好。与现有技术相比,本发明具有以下有益效果:
1、衬底与底电极材料与铁电薄膜均具有良好的晶格匹配,可获得具有纯钙钛矿结构取向生长的高质量薄膜;
2、所制备的薄膜具有优异的铁电和压电性能,以及较高的居里温度和三方-四方相变温度,在保持二元PMN-PT优越性能的同时,能够显著提升相变温度;
3、参数易调节,薄膜与靶材成分一致性好;
4、制备周期短,沉积速率高,重复性好。
附图说明
图1为在具有SRO底电极的STO单晶衬底上,沉积温度分别为(a)550℃、(b)580℃、(c)600℃、(d)620℃的环境中生长的Mn-PIN-PMN-PT弛豫铁电薄膜、具有SRO底电极的STO单晶衬底和STO单晶衬底的X射线衍射比较图;
图2为在沉积温度分别为(a)550℃、(b)580℃、(c)600℃、(d)620℃的环境中生长的Mn-PIN-PMN-PT弛豫铁电薄膜材料的表面SEM图;
图3为在沉积温度分别为(e)550℃、(f)580℃、(g)600℃、(h)620℃的环境中生长的Mn-PIN-PMN-PT弛豫铁电薄膜材料的横截面SEM图;
图4为在沉积温度分别为(a)550℃、(b)580℃、(c)600℃、(d)620℃的环境中生长的Mn-PIN-PMN-PT弛豫铁电薄膜的电滞回线比较图;
图5为在沉积温度分别为(a)550℃、(b)580℃、(c)600℃、(d)620℃生长的Mn-PIN-PMN-PT弛豫铁电薄膜的介电常数和介电损耗随频率的变化比较图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
实施例1
一种三元系弛豫铁电薄膜材料,组成为锰掺杂铌铟酸铅-铌镁酸铅-钛酸铅,化学组成为(1-x-y)Pb(In1/2Nb1/2)O3-yPb(Mg1/3Nb2/3)O3-xPbTiO3-zMn,(1-x-y)Pb(In1/2Nb1/2)O3-yPb(Mg1/3Nb2/3)O3-xPbTiO3作为一个整体与锰单质的摩尔比为1:0.005,其中,按摩尔百分比计,铌铟酸铅的含量为36mol%,铌镁酸铅的含量为36mol%,钛酸铅的含量为28mol%,采用包含以下步骤的制备方法制备得到:
(1)制备Mn-PIN-PMN-PT陶瓷靶材:将纯度为97.5%的MnO2和纯度大于99.99%的In2O3、纯度大于99.99%的Nb2O5、纯度大于98.5%的MgO、纯度大于99.99%的PbO、纯度大于98%的TiO2粉末按照配方称量,通过球磨、烘干、过筛、预烧、造粒、压片等步骤,压制成直径为20mm、厚度为3mm的块体,最后在1250℃下烧结2h成陶瓷靶,其中,球磨的时间为8h,球磨的转速为300r/min,烘干的温度为50℃,烘干的时间为24h,预烧的温度为1100℃,预烧的时间为2h,压片的压力为4MPa,过筛采用筛网,目数为40目,造粒具体步骤为:将预烧后的中间体球磨成粉料,等粉料干燥后,加入浓度为5wt%的聚乙烯醇作为黏结剂,制作成流动性较好的颗粒,MnO2、In2O3、Nb2O5、MgO、PbO和TiO2的摩尔比为0.005:0.09:0.21:0.12:1:0.28,其中,PbO和MgO还需取过量,且过量摩尔数分别为10%PbO和5%MgO。
(2)单晶SrTiO3的清洗:
A将SrTiO3单晶(SrTiO3单晶的面外取向为(100)面方向或(110)面方向)置入丙酮中,以1500W的功率超声清洗20min;
B将SrTiO3单晶置入乙醇中,以1500W的功率超声清洗20min;
C将SrTiO3单晶置入去离子水中,以1500W的功率超声清洗20min;
D使用纯度>99.999%高纯氮气在30℃下将SrTiO3单晶吹干20min。
(3)制备SrRuO3导电缓冲层(也作为底电极材料):
A将清洗吹干的SrTiO3单晶衬底使用小铁片或银胶固定在样品托盘上,同时将SrRuO3陶瓷靶安装在靶材位;
B调节靶材和衬底之间的距离为55mm,开启机械泵开始对沉积腔体进行抽真空,待腔体内压强小于1Pa时,开启分子泵对腔体抽真空至1×10-4Pa;
C开启温控装置,按照5℃/min的恒定速率将单晶衬底温度升至780℃;
D待温度稳定后,开启气体流量计,设置氧气压强为8Pa,启动阀控功能,打开氧气通道,通过调节抽气量(闸板阀)来控制氧气压强;
E开启准分子激光器,设置激光器参数和溅射时间(设置激光能量为300mJ,频率为5Hz,溅射时间为20min),先进行30min预溅射,然后在SrTiO3单晶衬底上沉积导电缓冲层SrRuO3
F溅射结束后,依次关闭分子泵和机械泵,向腔体内通入半个大气压的高纯氧气,保持780℃的沉积温度,进行原位退火半小时;
G缓慢降温,待温度降至室温后取出;
(4)制备Mn-PIN-PMN-PT弛豫铁电薄膜:
A将制备SrRuO3底电极的SrTiO3单晶衬底使用小铁片或银浆固定在样品托盘上,同时将Mn-PIN-PMN-PT陶瓷靶材安装在靶材位;
B调节靶材和衬底之间的距离为55mm,开启机械泵开始对沉积腔体进行抽真空,待腔体内压强小于1Pa时,开启分子泵对腔体抽真空至1×10-4Pa;
C开启温控装置,按照5℃/min的恒定速率对基底升温,使衬底保持不同的沉积温度(550℃、580℃、600℃、620℃);
D开启气体流量计,设置氧气压强为15Pa,启动阀控功能,打开氧气通道,通过调节抽气量(闸板阀)来控制氧气压强;
E开启准分子激光器,设置激光器参数和溅射时间(设置激光能量为250mJ,频率为2Hz,溅射时间为90min),先进行30min预溅射,然后在制备SrRuO3底电极的SrTiO3单晶衬底上沉积Mn-PIN-PMN-PT弛豫铁电薄膜;
F溅射结束后,依次关闭分子泵和机械泵,向腔体内通入半个大气压的高纯氧气,保持相应的沉积温度,进行原位退火半小时;
G缓慢降温,待温度降至室温后取出,得到Mn-PIN-PMN-PT三元系弛豫铁电薄膜材料。
对在具有SRO导电缓冲层的STO单晶衬底上,不同沉积温度下沉积得到的Mn-PIN-PMN-PT三元系弛豫铁电薄膜材料、具有SRO导电缓冲层的STO单晶衬底和STO单晶衬底分别进行X射线衍射,具体如图1所示,可看到,所有的薄膜材料均显示出纯钙钛矿结构,无焦绿石相。此外,观察到Mn-PIN-PMN-PT,SRO和STO的衍射峰仅沿(h00)方向的,这表明SRO导电缓冲层沿(h00)的优先取向有效地促进了Mn-PIN-PMN-PT的生长,这归因于Mn-PIN-PMN-PT薄膜材料与SRO/STO衬底之间的晶胞参数非常接近(Mn-PIN-PMN-PT为0.393nm,SRO为0.393nm以及STO为0.3905nm)。Mn-PIN-PMN-PT薄膜材料与衬底之间良好的晶格匹配以及低界面能使焦绿石相得到显着抑制。
在不同沉积温度下沉积得到的Mn-PIN-PMN-PT三元系弛豫铁电薄膜材料的表面和横截面SEM图分别如图2、3所示,其中,图2为表面SEM图,图3为横截面SEM图,可看到,沉积温度为550℃时,薄膜材料表现出致密性较差,且具有不均匀的晶粒尺寸和裂纹的特性。随着沉积温度的升高,薄膜材料的表面变得平坦并且晶粒逐渐减小。当沉积温度为620℃时,薄膜材料的表面非常致密,具有约120nm的均匀粒径,并且没有观察到裂纹。从横截面图谱(即图3)中可以观察到每层之间存在明显的界面。导电缓冲层SRO和Mn-PIN-PMN-PT薄膜材料的厚度分别为83nm和315nm。另外,当沉积温度为620℃时,Mn-PIN-PMN-PT薄膜材料的截面结构致密,具柱状生长。
在不同沉积温度下沉积得到的Mn-PIN-PMN-PT三元系弛豫铁电薄膜材料的电滞回线比较具体如图4所示,测试频率1kHz。可看到,在不同温度下沉积得到的Mn-PIN-PMN-PT薄膜材料显示出典型的P-E回线,电滞回线饱和,表明薄膜材料具有优异的铁电性能,SRO底电极的引入可以吸收Mn-PIN-PMN-PT薄膜材料的氧空位,减少空间电荷的积累,从而减弱形成空间电荷效应的内置电场,提高薄膜材料极化反转的能力。
在不同沉积温度下沉积得到的Mn-PIN-PMN-PT三元系弛豫铁电薄膜材料的介电常数和介电损耗随频率的变化具体如图5所示,可看到,在1kHz下,当沉积温度为620℃时,介电常数达到1563。Mn-PIN-PMN-PT薄膜材料的介电性能呈现出弛豫行为,在100Hz-100kHz的测量频率中,随着频率的增加,由于空间电荷响应的抑制,薄膜材料的介电常数逐渐降低,而介电损耗逐渐升高。
实施例2
一种三元系弛豫铁电薄膜材料,组成为锰掺杂铌铟酸铅-铌镁酸铅-钛酸铅,化学组成为(1-x-y)Pb(In1/2Nb1/2)O3-yPb(Mg1/3Nb2/3)O3-xPbTiO3-zMn,其中,(1-x-y)Pb(In1/ 2Nb1/2)O3-yPb(Mg1/3Nb2/3)O3-xPbTiO3作为一个整体与锰单质的摩尔比为1:0.003,其中,按摩尔百分比计,铌铟酸铅的含量为20mol%,铌镁酸铅的含量为60mol%,钛酸铅的含量为20mol%,即x=0.20,y=0.60,z=0.003,采用包含以下步骤的制备方法制备得到:
(1)制备Mn-PIN-PMN-PT陶瓷靶材:将纯度为97.5%的MnO2和纯度大于99.99%的In2O3、纯度大于99.99%的Nb2O5、纯度大于98.5%的MgO、纯度大于99.99%的PbO、纯度大于98%的TiO2粉末按照配方称量,通过球磨、烘干、过筛、预烧、造粒、压片等步骤,压制成直径为20mm、厚度为3mm的块体,最后在1250℃下烧结2h成陶瓷靶,其中,球磨的时间为8h,球磨的转速为300r/min,烘干的温度为50℃,烘干的时间为24h,预烧的温度为1100℃,预烧的时间为2h,压片的压力为4MPa,过筛采用筛网,目数为40目,造粒具体步骤为:将预烧后的中间体球磨成粉料,等粉料干燥后,加入浓度为5wt%的聚乙烯醇作为黏结剂,制作成流动性较好的颗粒,MnO2、In2O3、Nb2O5、MgO、PbO和TiO2的摩尔比为0.003:0.05:0.25:0.20:1:0.20,其中,PbO和MgO还需取过量,且过量摩尔数分别为10%PbO和5%MgO。
(2)单晶SrTiO3的清洗:
A将SrTiO3单晶(SrTiO3单晶的面外取向为(100)面方向或(110)面方向)置入丙酮中,以1500W的功率超声清洗20min;
B将SrTiO3单晶置入乙醇中,以1500W的功率超声清洗20min;
C将SrTiO3单晶置入去离子水中,以1500W的功率超声清洗20min;
D使用纯度>99.999%高纯氮气在30℃下将SrTiO3单晶吹干20min。
(3)制备SrRuO3导电缓冲层(也作为底电极材料):
A将清洗吹干的SrTiO3单晶衬底使用小铁片或银胶固定在样品托盘上,同时将SrRuO3陶瓷靶安装在靶材位;
B调节靶材和衬底之间的距离为55mm,开启机械泵开始对沉积腔体进行抽真空,待腔体内压强小于1Pa时,开启分子泵对腔体抽真空至0.5×10-4Pa;
C开启温控装置,按照5℃/min的恒定速率将单晶衬底温度升至780℃;
D待温度稳定后,开启气体流量计,设置氧气压强为8Pa,启动阀控功能,打开氧气通道,通过调节抽气量(闸板阀)来控制氧气压强;
E开启准分子激光器,设置激光器参数和溅射时间(设置激光能量为300mJ,频率为5Hz,溅射时间为20min),先进行30min预溅射,然后在SrTiO3单晶衬底上沉积导电缓冲层SrRuO3
F溅射结束后,依次关闭分子泵和机械泵,向腔体内通入5×104Pa的高纯氧气,保持780℃的沉积温度,进行原位退火0.5小时;
G缓慢降温,待温度降至室温后取出;
(4)制备Mn-PIN-PMN-PT弛豫铁电薄膜:
A将制备SrRuO3底电极的SrTiO3单晶衬底使用小铁片或银浆固定在样品托盘上,同时将Mn-PIN-PMN-PT陶瓷靶材安装在靶材位;
B调节靶材和衬底之间的距离为55mm,开启机械泵开始对沉积腔体进行抽真空,待腔体内压强小于1Pa时,开启分子泵对腔体抽真空至1×10-4Pa;
C开启温控装置,按照5℃/min的恒定速率对基底升温,使衬底保持不同的沉积温度(550℃、580℃、600℃、620℃);
D开启气体流量计,设置氧气压强为20Pa,启动阀控功能,打开氧气通道,通过调节抽气量(闸板阀)来控制氧气压强;
E开启准分子激光器,设置激光器参数和溅射时间(设置激光能量为250mJ,频率为2Hz,溅射时间为90min),先进行30min预溅射,然后在制备SrRuO3底电极的SrTiO3单晶衬底上沉积Mn-PIN-PMN-PT弛豫铁电薄膜;
F溅射结束后,依次关闭分子泵和机械泵,向腔体内通入5×104Pa的高纯氧气,保持相应的沉积温度,进行原位退火0.5小时;
G缓慢降温,待温度降至室温后取出,得到Mn-PIN-PMN-PT三元系弛豫铁电薄膜材料。
所得到的Mn-PIN-PMN-PT三元系弛豫铁电薄膜材料显示出纯钙钛矿结构,无焦绿石相,介电性能呈现出弛豫行为,具有优异的铁电性能。
实施例3
一种三元系弛豫铁电薄膜材料,组成为锰掺杂铌铟酸铅-铌镁酸铅-钛酸铅,化学组成为(1-x-y)Pb(In1/2Nb1/2)O3-yPb(Mg1/3Nb2/3)O3-xPbTiO3-zMn,其中,(1-x-y)Pb(In1/ 2Nb1/2)O3-yPb(Mg1/3Nb2/3)O3-xPbTiO3作为一个整体与锰单质的摩尔比为1:0.03,其中,按摩尔百分比计,铌铟酸铅的含量为42mol%,铌镁酸铅的含量为18mol%,钛酸铅的含量为40mol%,即x=0.40,y=0.18,z=0.03,采用包含以下步骤的制备方法制备得到:
(1)制备Mn-PIN-PMN-PT陶瓷靶材:将纯度为97.5%的MnO2和纯度大于99.99%的In2O3、纯度大于99.99%的Nb2O5、纯度大于98.5%的MgO、纯度大于99.99%的PbO、纯度大于98%的TiO2粉末按照配方称量,通过球磨、烘干、过筛、预烧、造粒、压片等步骤,压制成直径为20mm、厚度为3mm的块体,最后在1100℃下烧结2h成陶瓷靶,其中,球磨的时间为8h,球磨的转速为300r/min,烘干的温度为50℃,烘干的时间为24h,预烧的温度为1100℃,预烧的时间为2h,压片的压力为4MPa,过筛采用筛网,目数为40目,造粒具体步骤为:将预烧后的中间体球磨成粉料,等粉料干燥后,加入浓度为5wt%的聚乙烯醇作为黏结剂,制作成流动性较好的颗粒,MnO2、In2O3、Nb2O5、MgO、PbO和TiO2的摩尔比为0.03:0.105:0.165:0.06:1:0.40,其中,PbO和MgO还需取过量,且过量摩尔数分别为10%PbO和5%MgO。
(2)单晶SrTiO3的清洗:
A将SrTiO3单晶(SrTiO3单晶的面外取向为(100)面方向或(110)面方向)置入丙酮中,以1500W的功率超声清洗20min;
B将SrTiO3单晶置入乙醇中,以1500W的功率超声清洗20min;
C将SrTiO3单晶置入去离子水中,以1500W的功率超声清洗20min;
D使用纯度>99.999%高纯氮气在30℃下将SrTiO3单晶吹干20min。
(3)制备SrRuO3导电缓冲层(也作为底电极材料):
A将清洗吹干的SrTiO3单晶衬底使用小铁片或银胶固定在样品托盘上,同时将SrRuO3陶瓷靶安装在靶材位;
B调节靶材和衬底之间的距离为55mm,开启机械泵开始对沉积腔体进行抽真空,待腔体内压强小于1Pa时,开启分子泵对腔体抽真空至0.5×10-4Pa;
C开启温控装置,按照5℃/min的恒定速率将单晶衬底温度升至780℃;
D待温度稳定后,开启气体流量计,设置氧气压强为8Pa,启动阀控功能,打开氧气通道,通过调节抽气量(闸板阀)来控制氧气压强;
E开启准分子激光器,设置激光器参数和溅射时间(设置激光能量为30 0mJ,频率为5Hz,溅射时间为20min),然后在SrTiO3单晶衬底上沉积导电缓冲层SrRuO3
F溅射结束后,依次关闭分子泵和机械泵,向腔体内通入5×104Pa的高纯氧气,保持780℃的沉积温度,进行原位退火0.5小时;
G缓慢降温,待温度降至室温后取出;
(4)制备Mn-PIN-PMN-PT弛豫铁电薄膜:
A将制备SrRuO3底电极的SrTiO3单晶衬底使用小铁片或银浆固定在样品托盘上,同时将Mn-PIN-PMN-PT陶瓷靶材安装在靶材位;
B调节靶材和衬底之间的距离为55mm,开启机械泵开始对沉积腔体进行抽真空,待腔体内压强小于1Pa时,开启分子泵对腔体抽真空至1×10-4Pa;
C开启温控装置,按照5℃/min的恒定速率对基底升温,使衬底保持不同的沉积温度(550℃、580℃、600℃、620℃);
D开启气体流量计,设置氧气压强为10Pa,启动阀控功能,打开氧气通道,通过调节抽气量(闸板阀)来控制氧气压强;
E开启准分子激光器,设置激光器参数和溅射时间(设置激光能量为250mJ,频率为2Hz,溅射时间为90min),然后在制备SrRuO3底电极的SrTiO3单晶衬底上沉积Mn-PIN-PMN-PT弛豫铁电薄膜;
F溅射结束后,依次关闭分子泵和机械泵,向腔体内通入5×104Pa的高纯氧气,保持相应的沉积温度,进行原位退火0.5小时;
G缓慢降温,待温度降至室温后取出,得到Mn-PIN-PMN-PT三元系弛豫铁电薄膜材料。
所得到的Mn-PIN-PMN-PT三元系弛豫铁电薄膜材料显示出纯钙钛矿结构,无焦绿石相,介电性能呈现出弛豫行为,具有优异的铁电性能。
通过以上对薄膜材料的制备方法和薄膜性能的分析,可得出优化方案为:采用脉冲激光沉积技术在制备有SrRuO3导电缓冲层的SrTiO3单晶衬底上,控制衬底温度为620℃,氧气压强为15Pa的沉积条件下,制备Mn-PIN-PMN-PT薄膜材料。Mn-PIN-PMN-PT薄膜材料的性能参数如下:在测量频率为1kHz、电场为50kV/mm下,Mn-PIN-PMN-PT薄膜材料的剩余极化强度(Pr)为34.5μC/cm2,矫顽场(Ec)为4.8kV/mm,在1kHz的频率下,Mn-PIN-PMN-PT薄膜的介电常数为1563。
上述的对实施例的描述是为便于该技术领域的普通技术人员能理解和使用发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。

Claims (10)

1.一种三元系弛豫铁电薄膜材料,其特征在于,所述三元系弛豫铁电薄膜材料为锰掺杂铌铟酸铅-铌镁酸铅-钛酸铅,化学组成为(1-x-y)Pb(In1/2Nb1/2)O3-yPb(Mg1/3Nb2/3)O3-xPbTiO3-zMn,其中,x=0.20~0.40,y=0.18~0.60,z=0.003~0.03。
2.一种如权利要求1所述的三元系弛豫铁电薄膜材料的制备方法,其特征在于,所述制备方法包括以下步骤:
(a)将MnO2、In2O3、Nb2O5、MgO、PbO和TiO2混合,后依次进行球磨、烘干、过筛、预烧、造粒、压片和烧结,得到锰掺杂铌铟酸铅-铌镁酸铅-钛酸铅陶瓷靶材;
(b)将SrTiO3单晶依次置于丙酮、乙醇和去离子水中进行超声洗涤,后置于氮气氛围中进行干燥,得到衬底;
(c)以激光溅射的方式,将SrRuO3陶瓷靶在步骤(b)得到的衬底上进行第一次沉积处理,后进行第一次退火处理,得到底电极;
(d)以激光溅射的方式,将步骤(a)得到的锰掺杂铌铟酸铅-铌镁酸铅-钛酸铅陶瓷靶材在步骤(c)得到的底电极上进行第二次沉积处理,后进行第二次退火处理,得到锰掺杂铌铟酸铅-铌镁酸铅-钛酸铅三元系弛豫铁电薄膜材料。
3.根据权利要求2所述的一种三元系弛豫铁电薄膜材料的制备方法,其特征在于,步骤(a)中,球磨的时间为8h,球磨的转速为300r/min,烘干的温度为50℃,烘干的时间为24h,预烧的温度为1100℃,预烧的时间为2h,压片的压力为4MPa,烧结的温度为1250℃,烧结的时间为2h。
4.根据权利要求2所述的一种三元系弛豫铁电薄膜材料的制备方法,其特征在于,步骤(b)中,超声的功率为1500W,每次超声的时间为20min,干燥的温度为30℃,干燥的时间为20min。
5.根据权利要求2所述的一种三元系弛豫铁电薄膜材料的制备方法,其特征在于,步骤(b)中,所述的SrTiO3单晶的面外取向为(100)面方向或(110)面方向。
6.根据权利要求2所述的一种三元系弛豫铁电薄膜材料的制备方法,其特征在于,步骤(c)中,第一次沉积处理的参数为:反应腔体的真空度为0.5×10-4Pa,第一次沉积时衬底的温度为780℃,反应腔体的氧分压为8Pa,激光能量为300mJ,激光频率为5Hz,溅射时间为20min。
7.根据权利要求2所述的一种三元系弛豫铁电薄膜材料的制备方法,其特征在于,步骤(c)中,第一次退火处理的温度与第一次沉积的温度一致,氧分压为5×104Pa,第一次退火处理的时间为0.5h。
8.根据权利要求2所述的一种三元系弛豫铁电薄膜材料的制备方法,其特征在于,步骤(d)中,第二次沉积处理的参数为:反应腔体的真空度为1×10-4Pa,第二次沉积时衬底的温度为550~620℃,反应腔体的氧分压为15Pa,激光能量为250mJ,激光频率为2Hz,溅射时间为90min。
9.根据权利要求2所述的一种三元系弛豫铁电薄膜材料的制备方法,其特征在于,步骤(d)中,第二次退火处理的温度与第二次沉积的温度一致,氧分压为5×104Pa,第二次退火处理的时间为0.5h。
10.一种如权利要求1所述的三元系弛豫铁电薄膜材料在微机械电子系统中的应用。
CN202010242269.6A 2020-03-31 2020-03-31 一种三元系弛豫铁电薄膜材料及其制备方法和应用 Pending CN111423231A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010242269.6A CN111423231A (zh) 2020-03-31 2020-03-31 一种三元系弛豫铁电薄膜材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010242269.6A CN111423231A (zh) 2020-03-31 2020-03-31 一种三元系弛豫铁电薄膜材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN111423231A true CN111423231A (zh) 2020-07-17

Family

ID=71550008

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010242269.6A Pending CN111423231A (zh) 2020-03-31 2020-03-31 一种三元系弛豫铁电薄膜材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN111423231A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112062561A (zh) * 2020-09-17 2020-12-11 广西大学 一种pnnzt基多相共存弛豫铁电外延薄膜的制备方法
CN113215538A (zh) * 2021-03-19 2021-08-06 上海师范大学 一种高居里点硅衬底铁电薄膜材料及其制备与应用
CN113774485A (zh) * 2021-08-25 2021-12-10 上海师范大学 铌铟酸铅-铌镁酸铅-钛酸铅铁电薄膜材料及制备与应用
CN115308939A (zh) * 2022-10-12 2022-11-08 光奥科技(武汉)有限公司 一种采用新型弛豫铁电单晶的声光偏转器及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1714428A (zh) * 2002-12-17 2005-12-28 伊布勒光子学公司 利用沉积法制备铁电单晶膜结构的方法
CN101892522A (zh) * 2010-07-30 2010-11-24 中国科学院上海硅酸盐研究所 利用氧等离子体辅助脉冲激光沉积法制备钛铌镁酸铅薄膜
CN101956166A (zh) * 2010-10-13 2011-01-26 上海师范大学 一种铌镁酸铅-钛酸铅铁电薄膜的制备方法
CN101985775A (zh) * 2010-11-29 2011-03-16 中国科学院上海硅酸盐研究所 一种三元系弛豫铁电单晶材料及其制备方法
CN104326745A (zh) * 2014-10-11 2015-02-04 中国科学院上海硅酸盐研究所 一种在宽温区内具有高压电性能和温度稳定性的压电材料及其应用
US20150372219A1 (en) * 2013-03-25 2015-12-24 Kabushiki Kaisha Toshiba Piezoelectric transducer, ultrasonic probe, and piezoelectric transducer manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1714428A (zh) * 2002-12-17 2005-12-28 伊布勒光子学公司 利用沉积法制备铁电单晶膜结构的方法
CN101892522A (zh) * 2010-07-30 2010-11-24 中国科学院上海硅酸盐研究所 利用氧等离子体辅助脉冲激光沉积法制备钛铌镁酸铅薄膜
CN101956166A (zh) * 2010-10-13 2011-01-26 上海师范大学 一种铌镁酸铅-钛酸铅铁电薄膜的制备方法
CN101985775A (zh) * 2010-11-29 2011-03-16 中国科学院上海硅酸盐研究所 一种三元系弛豫铁电单晶材料及其制备方法
US20150372219A1 (en) * 2013-03-25 2015-12-24 Kabushiki Kaisha Toshiba Piezoelectric transducer, ultrasonic probe, and piezoelectric transducer manufacturing method
CN104326745A (zh) * 2014-10-11 2015-02-04 中国科学院上海硅酸盐研究所 一种在宽温区内具有高压电性能和温度稳定性的压电材料及其应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SOO-BIN KANG等: "Dielectric properties of Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 film by aerosol deposition for energy storage applications", 《CERAMICS INTERNATIONAL》 *
YAMING ZHOU等: "Domain switching and polarization fatigue in rhombohedral PIN‐PMN‐PT and Mn‐doped PIN‐PMN‐PT single crystals", 《J AM CERAM SOC.》 *
焦珊: "弛豫铁电薄膜的脉冲激光方法制备及电性能研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112062561A (zh) * 2020-09-17 2020-12-11 广西大学 一种pnnzt基多相共存弛豫铁电外延薄膜的制备方法
CN113215538A (zh) * 2021-03-19 2021-08-06 上海师范大学 一种高居里点硅衬底铁电薄膜材料及其制备与应用
CN113774485A (zh) * 2021-08-25 2021-12-10 上海师范大学 铌铟酸铅-铌镁酸铅-钛酸铅铁电薄膜材料及制备与应用
CN115308939A (zh) * 2022-10-12 2022-11-08 光奥科技(武汉)有限公司 一种采用新型弛豫铁电单晶的声光偏转器及其制备方法
CN115308939B (zh) * 2022-10-12 2023-02-14 光奥科技(武汉)有限公司 一种采用弛豫铁电单晶的声光偏转器及其制备方法

Similar Documents

Publication Publication Date Title
CN111423231A (zh) 一种三元系弛豫铁电薄膜材料及其制备方法和应用
He et al. Advances in lead-free pyroelectric materials: a comprehensive review
CN111302797B (zh) 一种铌酸钾钠基无铅压电陶瓷及其制备方法
CN104291817B (zh) 高居里温度的pzt压电陶瓷材料及其制备方法
EP2255397A1 (en) Piezoelectric material
CN107253858B (zh) 具有超高压电响应的无铅压电陶瓷材料及制备方法
CN109734447B (zh) 具有优异温度稳定性的无铅织构化陶瓷及其制备方法
CN106220169B (zh) 改性铌镍酸铅-锆钛酸铅压电陶瓷及其制备方法
Chang et al. The effects of sintering temperature on the properties of (Na0. 5K0. 5) NbO3–CaTiO3 based lead-free ceramics
CN102924082A (zh) 锰掺杂铌镍-锆钛酸铅压电陶瓷及其制备方法
CN100365776C (zh) 可与读出电路集成的锆钛酸铅铁电薄膜材料的制备方法
CN112062551A (zh) 一种高退极化温度、高压电性能的铁酸铋基压电陶瓷材料及其制备方法
US10950781B2 (en) Method of manufacturing piezoelectric thin film and piezoelectric sensor manufactured using piezoelectric thin film
CN104944942B (zh) 压电组合物和压电元件
CN102731107A (zh) 一种掺Mn的钛酸铋钠-钛酸钡薄膜的制备方法
JP4998652B2 (ja) 強誘電体薄膜、強誘電体薄膜の製造方法、圧電体素子の製造方法
JP6323305B2 (ja) 圧電組成物および圧電素子
US7527690B2 (en) Ferroelectric ceramic compound, a ferroelectric ceramic single crystal, and preparation processes thereof
CN111620690A (zh) 一种利用构建离子对获得大应变小滞后的钛酸铋钠基陶瓷及其制备方法
CN104817320B (zh) 压电组合物和压电元件
Jin et al. Piezoelectric materials for high performance energy harvesting devices
Li et al. A new Pb (Lu1/2Nb1/2) O3–PbZrO3–PbTiO3 ternary solid solution with morphotropic region and high Curie temperature
CN113215538A (zh) 一种高居里点硅衬底铁电薄膜材料及其制备与应用
CN112608151A (zh) 一种超薄铌酸钾钠基柔性压电薄膜材料及其制备方法
JP6299502B2 (ja) 圧電組成物および圧電素子

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200717