CN113215538A - 一种高居里点硅衬底铁电薄膜材料及其制备与应用 - Google Patents

一种高居里点硅衬底铁电薄膜材料及其制备与应用 Download PDF

Info

Publication number
CN113215538A
CN113215538A CN202110295109.2A CN202110295109A CN113215538A CN 113215538 A CN113215538 A CN 113215538A CN 202110295109 A CN202110295109 A CN 202110295109A CN 113215538 A CN113215538 A CN 113215538A
Authority
CN
China
Prior art keywords
thin film
film material
substrate
temperature
silicon substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110295109.2A
Other languages
English (en)
Inventor
王飞飞
王佳盛
黎梓浩
赵祥永
王涛
唐艳学
段志华
石旺舟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Normal University
University of Shanghai for Science and Technology
Original Assignee
Shanghai Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Normal University filed Critical Shanghai Normal University
Priority to CN202110295109.2A priority Critical patent/CN113215538A/zh
Publication of CN113215538A publication Critical patent/CN113215538A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/472Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on lead titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62218Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic films, e.g. by using temporary supports
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3267MnO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3296Lead oxides, plumbates or oxide forming salts thereof, e.g. silver plumbate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Physical Vapour Deposition (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及一种高居里点硅衬底铁电薄膜材料及其制备与应用,所述铁电薄膜材料包括Pt/Ti/SiO2/Si衬底以及自内向外依次沉积在衬底表面的导电缓冲层和薄膜层,所述导电缓冲层为镧锶钴氧,薄膜层为锰掺杂铌铟酸铅‑铌镁酸铅‑钛酸铅(简写为Mn‑PIN‑PMN‑PT),化学组成为zMn‑(1‑x‑y)Pb(In1/2Nb1/2)O3‑yPb(Mg1/3Nb2/3)O3‑xPbTiO3,其中,x=0.20~0.40,y=0.20~0.50,z=0.003~0.01。与现有技术相比,本发明制备的薄膜具有优良的铁电、压电、热释电性能,适用于新型的压电、热释电集成器件。

Description

一种高居里点硅衬底铁电薄膜材料及其制备与应用
技术领域
本发明属于铁电薄膜材料领域,具体涉及一种高居里点硅衬底铁电薄膜材料及其制备与应用。
背景技术
以Pb(Mg1/3Nb2/3)O3-PbTiO3(PMNT)为代表的二元弛豫铁电薄膜材料因具备优异的介电、压电、电光及热释电性能,被广泛应用于铁电存储器、压电换能器、压电传感器及红外探测器等。与传统的铁电单晶、陶瓷相比,薄膜具有灵敏元薄、比热小、易与微电子技术集成等特点,被视为未来压电与热释电微纳传感器和执行器的核心元件。
研究发现,在红外探测器阵列等应用中,二元PMNT存在居里温度较低(铁电三方至四方相变温度仅为70-80℃)、损耗较大的问题。为解决这一问题,国际上先后有相关研究报道,发现了以PIN-PMN-PT和Mn掺杂PIN-PMN-PT为代表的第二、第三代弛豫铁电单晶,它们兼有高热释电系数及宽的温度使用范围的优点,在保持其优越铁电、热释电性能的同时,介电损耗显著降低,居里温度较PMNT 提高了约100℃,而且其压电性能也与二元PMNT相近。
专利CN111423231A公开了一种三元系弛豫铁电薄膜材料及其制备和应用,材料的化学组成为zMn-(1-x-y)Pb(In1/2Nb1/2)O3-yPb(Mg1/3Nb2/3)O3-xPbTiO3,其中x =0.20~0.40,y=0.18~0.60,z=0.003~0.03,包括以下步骤:(a)将MnO2、In2O3、 Nb2O5、MgO、PbO和TiO2混合,后依次进行球磨、烘干、过筛、预烧、造粒、压片和烧结,得到Mn-PIN-PMN-PT陶瓷靶材;(b)将SrTiO3单晶依次置于丙酮、乙醇和去离子水中进行超声洗涤,后干燥,得到衬底;(c)以激光溅射的方式,将 SrRuO3陶瓷靶在衬底上进行沉积处理,后进行退火处理,得到底电极;(d)以激光溅射的方式,将Mn-PIN-PMN-PT陶瓷靶材在底电极有上进行沉积处理,后进行退火处理,得到薄膜材料。该专利是在单晶衬底上生长的薄膜,本发明是在Pt/Ti/SiO2/Si衬底上生长薄膜,生长的衬底材料不同,Pt/Ti/SiO2/Si衬底上生长出高居里点铁电薄膜与目前的半导体工艺兼容,适合利用半导体的微纳加工工艺来制备新型铁电、压电、热释电传感器及微机械系统,在规模化产业应用上更具优势。
发明内容
本发明的第一个目的就是提供一种高居里点硅衬底铁电薄膜材料。
本发明的第二个目的就是提供一种高居里点硅衬底铁电薄膜材料的制备方法。
本发明的第三个目的就是提供一种高居里点硅衬底铁电薄膜材料的应用。
本发明的目的通过以下技术方案实现:
一种高居里点硅衬底铁电薄膜材料,所述铁电薄膜材料包括Pt/Ti/SiO2/Si衬底以及自内向外依次沉积在Pt/Ti/SiO2/Si衬底表面的导电缓冲层和薄膜层,所述导电缓冲层为镧锶钴氧(简写为LSCO,具体组成为La0.6Sr0.4CoO3)所述薄膜层为锰掺杂铌铟酸铅-铌镁酸铅-钛酸铅(简写为Mn-PIN-PMN-PT),化学组成为 zMn-(1-x-y)Pb(In1/2Nb1/2)O3-yPb(Mg1/3Nb2/3)O3-xPbTiO3,其中,x=0.20~0.40,y= 0.20~0.50,z=0.003~0.01。题目中的硅衬底是指Pt/Ti/SiO2/Si衬底,该薄膜材料具有优异的铁电、压电、热释电性能以及较高的居里温度(可达到181℃)和三方-四方相变温度,将大大促进新型铁电、压电、热释电微机械系统的开发与应用。
优选地,x=0.28,y=0.36,z=0.005。
所述导电缓冲层由LSCO陶瓷靶沉积得到。
一种如上述所述的硅衬底铁电薄膜材料的制备方法,所述制备方法包括以下步骤:
(a)将MnO2、In2O3、Nb2O5、MgO、PbO和TiO2混合,后依次进行球磨、烘干、过筛、预烧、造粒、压片和烧结,得到锰掺杂铌铟酸铅-铌镁酸铅-钛酸铅陶瓷靶材;
(b)将Pt/Ti/SiO2/Si衬底依次置于丙酮、乙醇和去离子水中进行超声洗涤,后置于氮气氛围中进行干燥;
(c)以激光溅射的方式,使用LSCO陶瓷靶在步骤(b)得到的Pt/Ti/SiO2/Si衬底上进行第一次脉冲激光沉积处理,后进行第一次退火处理,得到导电缓冲层;
(d)以激光溅射的方式,将步骤(a)得到的锰掺杂铌铟酸铅-铌镁酸铅-钛酸铅陶瓷靶材在步骤(c)得到的导电缓冲层上进行第二次脉冲激光沉积处理,后进行第二次退火处理,得到高居里点硅衬底铁电薄膜材料。
步骤(a)中,当制得的铁电薄膜材料中x=0.28,y=0.36,z=0.005时,MnO2、In2O3、Nb2O5、MgO、PbO和TiO2的摩尔比分别为0.005:0.09:0.21:0.12:1:0.28,其中,PbO和MgO还需取过量,且过量摩尔数分别为10%PbO和5%MgO,用于补偿在高温下烧结陶瓷靶和沉积薄膜过程中Pb和Mg的挥发,其他组成下的薄膜材料的原料据此比例进行称量。
步骤(a)中,MnO2的纯度大于97.5%,In2O3的纯度大于99%,Nb2O5的纯度大于99.99%,MgO的纯度大于98.5%,PbO的纯度大于99%,TiO2的纯度大于 98%。
步骤(a)中,球磨的时间为6h,球磨的转速为300r/min。
步骤(a)中,烘干的温度为50℃,烘干的时间为24h,在氮气气氛下烘干。
步骤(a)中,过筛采用目数为40目的筛网。
步骤(a)中,预烧的温度为1100℃,预烧的时间为2h。
步骤(a)中,造粒具体过程为:将预烧后的中间体球磨成粉料,等粉料干燥后,加入浓度为5wt%的聚乙烯醇作为黏结剂,制作成流动性好的颗粒。
步骤(a)中,压片的压力为3MPa。
步骤(a)中,烧结的温度为1245℃,烧结的时间为2h。
步骤(b)中,超声的功率为1500W,每次超声的时间为20min,干燥的温度为 30℃,干燥的时间为20min。
步骤(c)中,第一次脉冲激光沉积的参数为:反应腔体的真空度为5×10-4Pa,第一次脉冲激光沉积时Pt/Ti/SiO2/Si衬底的温度为500℃,反应腔体的氧分压为20 Pa,激光能量为300mJ,激光频率为5Hz,溅射时间为30min。
步骤(c)中,第一次退火处理的温度与第一次脉冲激光沉积的温度一致,氧分压为5×104Pa,第一次退火处理的时间为30min。
步骤(d)中,第二次脉冲激光沉积的参数为:反应腔体的真空度为5×10-4Pa,第二次脉冲激光沉积时Pt/Ti/SiO2/Si衬底的温度为480~550℃,反应腔体的氧分压为20Pa,激光能量为300mJ,激光频率为5Hz,溅射时间为90min。
步骤(d)中,第二次脉冲激光沉积时Pt/Ti/SiO2/Si衬底的温度优选为530℃。
步骤(d)中,第二次退火处理的温度与第二次脉冲激光沉积的温度一致,氧分压为5×104Pa,第二次退火处理的时间为30min。
一种如上述所述的硅衬底铁电薄膜材料在压电与热释电集成器件中的应用。
本发明围绕Mn-PIN-PMN-PT薄膜的制备展开。为使得与压电及热释电MEMS 工艺兼容,本发明提出在Pt/Ti/SiO2/Si衬底上生长铁电性能优异、结晶质量佳的 Mn-PIN-PMN-PT铁电薄膜。考虑到Mn-PIN-PMN-PT铁电薄膜与衬底晶格失配、热失配的问题,直接在Pt/Ti/SiO2/Si上生长出高质量Mn-PIN-PMN-PT薄膜非常困难,因此在Mn-PIN-PMN-PT薄膜和Pt/Ti/SiO2/Si衬底之间引入与薄膜晶格匹配的 LSCO导电缓冲层(LSCO的晶格常数为0.384nm,Mn-PIM-PMN-PT晶格常数为 0.404nm,失配率仅有5%),解决Mn-PIN-PMN-PT铁电薄膜和Pt/Ti/SiO2/Si衬底之间晶格失配的问题,减少界面缺陷和表面态,补偿界面氧空位,消除焦绿石相,同时有助于薄膜的择优取向或外延生长,减少漏电流和抑制器件的疲劳,从而得到性能优异的Mn-PIN-PMN-PT铁电薄膜。
本发明的具体过程是:首先采用传统固相反应法制备Mn-PIN-PMN-PT陶瓷靶材;然后准备Pt/Ti/SiO2/Si衬底;接着使用脉冲激光沉积技术,基于Pt/Ti/SiO2/Si 衬底上制备LSCO导电缓冲层;最后制备Mn-PIN-PMN-PT铁电薄膜。其中, Pt/Ti/SiO2/Si衬底是成熟度很高的商用衬底,便于批量化的制备;LSCO是晶格与薄膜材料相匹配的底电极材料,导电性好。本发明制备Mn-PIN-PMN-PT铁电薄膜的方法优点是能在Pt/Ti/SiO2/Si衬底上制备纯钙钛矿结构的Mn-PIN-PMN-PT薄膜,不仅可与半导体集成工艺相兼容,而且制备的薄膜具有优良的铁电、压电、热释电性能,适且于新型的压电、热释电集成器件。
与现有技术相比,本发明具有以下效果:
1、首次在与MEMS工艺相兼容的Pt/Ti/SiO2/Si衬底上生长出高质量的Mn-PIN-PMN-PT铁电薄膜,对压电、热释电集成器件设计与制备具有重要价值。
2、LSCO导电缓冲层与Mn-PIN-PMN-PT铁电薄膜具有良好的晶格匹配,可获得具有纯钙钛矿结构且择优取向生长的高质量薄膜。
3、所制备的薄膜具有优异的铁电、压电及热释电性能,较高的居里温度,在保持二元PMNT优越性能的同时,能够显著提升相变温度。
4、制备周期短,沉积速率高,重复性好。
附图说明
图1为在具有LSCO导电缓冲层的Pt/Ti/SiO2/Si衬底上,沉积温度分别为480 ℃、500℃、530℃、550℃的温度下生长的Mn-PIN-PMN-PT弛豫铁电薄膜的X 射线衍射图;
图2为在沉积温度分别为(a)480℃、(b)500℃、(c)530℃、(d)550℃的温度下生长的Mn-PIN-PMN-PT弛豫铁电薄膜材料的表面SEM;
图3为在沉积温度分别为(a)480℃、(b)500℃、(c)530℃、(d)550℃的温度下生长的Mn-PIN-PMN-PT弛豫铁电薄膜材料的横截面SEM;
图4为在沉积温度分别为(a)480℃、(b)500℃、(c)530℃、(d)550℃的温度下生长的Mn-PIN-PMN-PT弛豫铁电薄膜的电滞回线;
图5为在沉积温度分别为(a)480℃、(b)500℃、(c)530℃、(d)550℃的温度下生长的Mn-PIN-PMN-PT弛豫铁电薄膜的介电常数和介电损耗随频率的变化;
图6为沉积温度为530℃的温度下生长的Mn-PIN-PMN-PT弛豫铁电薄膜的介电常数在1kHz下随温度的变化。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
实施例
一种高居里点硅衬底Mn-PIN-PMN-PT铁电薄膜材料,包括Pt/Ti/SiO2/Si衬底以及自内向外依次沉积在Pt/Ti/SiO2/Si衬底表面的导电缓冲层和薄膜层,导电缓冲层为镧锶钴氧,具体组成为La0.6Sr0.4CoO3,薄膜层为锰掺杂铌铟酸铅-铌镁酸铅- 钛酸铅(简写为Mn-PIN-PMN-PT),化学组成为 zMn-(1-x-y)Pb(In1/2Nb1/2)O3-yPb(Mg1/3Nb2/3)O3-xPbTiO3,其中,x=0.20~0.40,y= 0.20~0.50,z=0.003~0.01。本实施例中,(1-x-y)Pb(In1/2Nb1/2)O3-yPb(Mg1/3Nb2/3)O3-xPbTiO3作为一个整体与锰单质的摩尔比为1:0.005,其中,按摩尔百分比计,铌铟酸铅的含量为36mol%,铌镁酸铅的含量为36mol%,钛酸铅的含量为28mol%,采用包含以下步骤的制备方法制备得到:
(1)制备Mn-PIN-PMN-PT陶瓷靶材:将纯度大于97.5%的MnO2、纯度大于99%的In2O3、纯度大于99.99%的Nb2O5、纯度大于98.5%的MgO、纯度大于99%的 PbO和纯度大于98%的TiO2粉末按照配方称量,通过球磨、烘干、过筛、预烧、造粒、压片等步骤,压制成直径为25mm、厚度为3mm的块体,最后在1245℃下烧结2h成陶瓷靶。其中,球磨的时间为6h,球磨的转速为300r/min,烘干的温度为50℃,烘干的时间为24h,预烧的温度为850℃,预烧的时间为2h,压片的压力为3MPa,过筛采用筛网,目数为40目,造粒具体步骤为:将预烧后的中间体球磨成粉料,等粉料干燥后,加入浓度为5wt%的聚乙烯醇作为黏结剂,制作成流动性好的颗粒,MnO2、In2O3、Nb2O5、MgO、PbO和TiO2的摩尔比为 0.005:0.09:0.21:0.12:1:0.28,其中,PbO和MgO另外按摩尔数过量10mol%PbO和 5mol%MgO。
(2)Pt/Ti/SiO2/Si衬底的清洗:
A将Pt/Ti/SiO2/Si衬底置入丙酮中,以1500W的功率超声清洗20min;
B将Pt/Ti/SiO2/Si衬底置入乙醇中,以1500W的功率超声清洗20min;
C将Pt/Ti/SiO2/Si衬底置入去离子水中,以1500W的功率超声清洗20min;
D使用纯度>99.999%高纯氮气在30℃下将Pt/Ti/SiO2/Si衬底吹干20min;
E使用银浆及铁片固定清洗后的衬底,并迅速放入到真空腔内。
(3)制备LSCO导电缓冲层(也作为底电极材料):
A将清洗吹干的Pt/Ti/SiO2/Si衬底固定在样品托盘上,同时将LSCO陶瓷靶安装在靶材位;
B调节靶材和衬底之间的距离为55mm,开启机械泵开始对沉积腔体进行抽真空,待腔体内压强小于1Pa时,开启分子泵对腔体抽真空至5×10-4Pa;
C开启温控装置,按照5℃/min的恒定速率将单晶衬底温度升至500℃;
D待温度稳定后,开启气体流量计,设置氧气压强为20Pa,启动阀控功能,打开氧气通道,通过调节抽气量(闸板阀)来控制氧气压强;
E开启准分子激光器,设置激光器参数和溅射时间(设置激光能量为300mJ,频率为5Hz,溅射时间为30min),先进行5min预溅射,然后在Pt/Ti/SiO2/Si衬底上沉积导电缓冲层LSCO;
F溅射结束后,依次关闭分子泵和机械泵,向腔体内通入半个大气压的高纯氧气,保持500℃的沉积温度,进行原位退火半小时;
G缓慢降温,待温度降至室温后取出,得到LSCO缓冲层;
(4)制备Mn-PIN-PMN-PT弛豫铁电薄膜:
A将制备LSCO缓冲层的Pt/Ti/SiO2/Si衬底固定在样品托盘上,同时将Mn-PIN-PMN-PT陶瓷靶材安装在靶材位;
B调节靶材和衬底之间的距离为55mm,开启机械泵开始对沉积腔体进行抽真空,待腔体内压强小于1Pa时,开启分子泵对腔体抽真空至5×10-4Pa;
C开启温控装置,按照5℃/min的恒定速率对基底升温,使衬底保持不同的沉积温度(480℃、500℃、530℃、550℃);
D开启气体流量计,设置氧气压强为20Pa,启动阀控功能,打开氧气通道,通过调节抽气量(闸板阀)来控制氧气压强;
E开启准分子激光器,设置激光器参数和溅射时间(设置激光能量为300mJ,频率为5Hz,溅射时间为90min),先进行5min预溅射,然后在沉积有LSCO的 Pt/Ti/SiO2/Si衬底上沉积Mn-PIN-PMN-PT弛豫铁电薄膜;
F溅射结束后,依次关闭分子泵和机械泵,向腔体内通入半个大气压的高纯氧气,保持相应的沉积温度,进行原位退火半小时;
G缓慢降温,待温度降至室温后取出,得到Mn-PIN-PMN-PT硅衬底弛豫铁电薄膜材料。
不同沉积温度下沉积得到的Mn-PIN-PMN-PT硅衬底弛豫铁电薄膜材料的 XRD如图1所示(图1中的Pt指Pt/Ti/SiO2/Si衬底,没有标明单独的LSCO是因为在衬底上溅射的LSCO较薄,测得其XRD会包含衬底特征,故标示LSCO/Pt),对比可看到,所有的薄膜均显示出纯钙钛矿结构,无焦绿石相。此外,观察到 Mn-PIN-PMN-PT和LSCO的衍射峰沿(100)和(110)方向,表明LSCO导电缓冲层有效地促进了Mn-PIN-PMN-PT的生长,这是由于LSCO和Mn-PIN-PMN-PT晶格失配度较小,且都为钙钛矿结构,因而Mn-PIN-PMN-PT容易沿着LSCO的生长方向继续生长(受界面能和表面能的影响,沿着相同方向生长所需要的能量最少),有效解决了Mn-PIN-PMN-PT铁电薄膜和Pt/Ti/SiO2/Si衬底之间晶格失配的问题,改善了Mn-PIN-PMN-PT铁电薄膜在硅衬底上的结晶质量,使得焦绿石相得到抑制。
在不同沉积温度下沉积得到的Mn-PIN-PMN-PT薄膜材料的表面SEM图如图 2所示,由a图可看到当沉积温度为480℃时,500nm下的薄膜材料致密性较差,且具有不均匀的晶粒尺寸。随着沉积温度的升高,薄膜材料的表面变得平坦并且晶粒逐渐减小,当沉积温度为530℃时,c图显示薄膜材料的表面非常致密,粒径均匀。
在不同沉积温度下沉积得到的Mn-PIN-PMN-PT薄膜材料的横截面SEM如图 3所示(图中以Mn-PIMNT表示Mn-PIN-PMN-PT薄膜材料,Pt指Pt/Ti/SiO2/Si衬底),从中可以观察到薄膜层、导电缓冲层与硅衬底之间存在明显的界面。480℃、 500℃、530℃和550℃不同沉积温度下得到的导电缓冲层(即LSCO)厚度均较为接近,约73nm;四个沉积温度下的Mn-PIN-PMN-PT薄膜厚度都约为390nm。
在不同沉积温度下沉积得到的Mn-PIN-PMN-PT薄膜材料的电滞回线如图4所示,测试频率为1kHz。从图4可以看到,在不同温度下沉积得到的Mn-PIN-PMN-PT 薄膜材料均显示出典型的铁电电滞回线,而随着沉积温度的升高,剩余极化强度(Pr) 位于11.4μC/cm2到35.6μC/cm2之间。沉积温度为480℃时,薄膜剩余极化强度为12.3μC/cm2,矫顽场为3.8V/mm;沉积温度为500℃时,薄膜剩余极化强度为 27.5μC/cm2,矫顽场为5.8V/mm;沉积温度为550℃时,薄膜剩余极化强度为11.4 μC/cm2,矫顽场为3.1V/mm;相较而言,当沉积温度为530℃时,薄膜表现出更优异的铁电性能,其剩余极化强度为35.6μC/cm2,矫顽场为5.1kV/mm。这是由于引入LSCO导电缓冲层可以吸收Mn-PIN-PMN-PT铁电薄膜的氧空位,减少空间电荷的积累,从而削弱空间电荷效应形成的内置电场,达到提高极化反转的能力。
在100Hz-100kHz的频率测试条件下,不同沉积温度下沉积得到的 Mn-PIN-PMN-PT薄膜材料的介电常数和介电损耗随频率的变化如图5所示(其中,左边画有方向向左的箭头的曲线代表介电常数,右边画有方向向右的箭头的代表介电损耗,其中500℃和530℃的两条介电损耗曲线基本重合)。在1kHz下,沉积温度为530℃和550℃这两个条件下得到的薄膜材料表现出优异的介电性能,介电常数较大,介电损耗较小,表明在该温度条件下,Mn-PIMNT可以很好地结晶。不同沉积温度下,介电谱之间的差异与薄膜的微观结构(如晶粒尺寸)和晶格畸变密切相关。1kHz下,沉积温度为530℃得到的薄膜材料的介电常数为3978,介电损耗为0.06,沉积温度为550℃得到的薄膜材料的介电常数为3532,介电损耗为0.08。在100Hz-100kHz的频率下,可以看到随着频率的增加,由于空间电荷响应被抑制,薄膜材料的介电常数逐渐降低,介电损耗逐渐升高。
在1kHz的频率测试条件下,沉积温度为530℃,氧压为20Pa下制备的 Mn-PIN-PMN-PT薄膜介电常数随温度的变化如图6所示,从图中我们可得知该薄膜的居里温度达181℃,可适用温度范围大幅提高。
利用动态法测试(测试温度为27℃)发现,沉积温度为530℃,氧压为20Pa 下制备的Mn-PIN-PMN-PT薄膜的热释电系数达到6.7×10-4C/m2·K。
综上可得,所制备的Mn-PIN-PMN-PT铁电薄膜材料显示出纯钙钛矿结构,无焦绿石相,具有优异的电性能。
通过以上对不同沉积温度下薄膜材料的制备和性能的分析,可得出优化方案为:采用脉冲激光沉积技术在制备有LSCO导电缓冲层的Pt/Ti/SiO2/Si衬底上,控制衬底温度为530℃,氧气压强为20Pa的沉积条件下,制备Mn-PIN-PMN-PT 薄膜材料。Mn-PIN-PMN-PT薄膜材料的性能参数如下:在测量频率为1kHz、电场为40kV/mm下,Mn-PIN-PMN-PT薄膜材料的剩余极化强度(Pr)为35.6μC/cm2,矫顽场(Ec)为5.1kV/mm,介电常数为3978,居里温度为181℃,热释电系数为 6.7×10-4C/m2·K,可用于制备高性能的压电与热释电薄膜传感器。
上述的对实施例的描述是为便于该技术领域的普通技术人员能理解和使用发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。

Claims (10)

1.一种高居里点硅衬底铁电薄膜材料,其特征在于,所述铁电薄膜材料包括Pt/Ti/SiO2/Si衬底以及自内向外依次沉积在衬底表面的导电缓冲层和薄膜层,所述导电缓冲层为镧锶钴氧,所述薄膜层为锰掺杂铌铟酸铅-铌镁酸铅-钛酸铅,化学组成为zMn-(1-x-y)Pb(In1/2Nb1/2)O3-yPb(Mg1/3Nb2/3)O3-xPbTiO3,其中,x=0.20~0.40,y=0.20~0.50,z=0.003~0.01。
2.一种如权利要求1所述的一种高居里点硅衬底铁电薄膜材料的制备方法,其特征在于,所述制备方法包括以下步骤:
(a)将MnO2、In2O3、Nb2O5、MgO、PbO和TiO2混合,后依次进行球磨、烘干、过筛、预烧、造粒、压片和烧结,得到锰掺杂铌铟酸铅-铌镁酸铅-钛酸铅陶瓷靶材;
(b)将Pt/Ti/SiO2/Si衬底依次置于丙酮、乙醇和去离子水中进行超声洗涤,后置于氮气氛围中进行干燥;
(c)以激光溅射的方式,使用LSCO陶瓷靶在步骤(b)得到的Pt/Ti/SiO2/Si衬底上进行第一次脉冲激光沉积处理,后进行第一次退火处理,得到导电缓冲层;
(d)以激光溅射的方式,将步骤(a)得到的锰掺杂铌铟酸铅-铌镁酸铅-钛酸铅陶瓷靶材在步骤(c)得到的导电缓冲层上进行第二次脉冲激光沉积处理,后进行第二次退火处理,得到硅衬底铁电薄膜材料。
3.根据权利要求2所述的一种高居里点硅衬底铁电薄膜材料的制备方法,其特征在于,步骤(a)中,球磨的时间为6h,球磨的转速为300r/min;
烘干的温度为50℃,烘干的时间为24h,在氮气气氛下烘干;
过筛采用目数为40目的筛网;
预烧的温度为1100℃,预烧的时间为2h。
4.根据权利要求2所述的一种高居里点硅衬底铁电薄膜材料的制备方法,其特征在于,步骤(a)中,造粒具体过程为:将预烧后的中间体球磨成粉料,等粉料干燥后,加入浓度为5wt%的聚乙烯醇作为黏结剂,制作成流动性好的颗粒;
压片的压力为3MPa;
烧结的温度为1245℃,烧结的时间为2h。
5.根据权利要求2所述的一种高居里点硅衬底铁电薄膜材料的制备方法,其特征在于,步骤(b)中,超声的功率为1500W,每次超声的时间为20min,干燥的温度为30℃,干燥的时间为20min。
6.根据权利要求2所述的一种高居里点硅衬底铁电薄膜材料的制备方法,其特征在于,步骤(c)中,第一次脉冲激光沉积的参数为:反应腔体的真空度为5×10-4Pa,第一次脉冲激光沉积时Pt/Ti/SiO2/Si衬底的温度为500℃,反应腔体的氧分压为20Pa,激光能量为300mJ,激光频率为5Hz,溅射时间为30min。
7.根据权利要求2所述的一种高居里点硅衬底铁电薄膜材料的制备方法,其特征在于,步骤(c)中,第一次退火处理的温度与第一次脉冲激光沉积的温度一致,氧分压为5×104Pa,第一次退火处理的时间为30min。
8.根据权利要求2所述的一种高居里点硅衬底铁电薄膜材料的制备方法,其特征在于,步骤(d)中,第二次脉冲激光沉积的参数为:反应腔体的真空度为5×10-4Pa,第二次脉冲激光沉积时Pt/Ti/SiO2/Si衬底的温度为480~550℃,反应腔体的氧分压为20Pa,激光能量为300mJ,激光频率为5Hz,溅射时间为90min。
9.根据权利要求2所述的一种高居里点硅衬底铁电薄膜材料的制备方法,其特征在于,步骤(d)中,第二次退火处理的温度与第二次脉冲激光沉积的温度一致,氧分压为5×104Pa,第二次退火处理的时间为30min。
10.一种如权利要求1所述的一种高居里点硅衬底铁电薄膜材料在压电与热释电集电器件中的应用。
CN202110295109.2A 2021-03-19 2021-03-19 一种高居里点硅衬底铁电薄膜材料及其制备与应用 Pending CN113215538A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110295109.2A CN113215538A (zh) 2021-03-19 2021-03-19 一种高居里点硅衬底铁电薄膜材料及其制备与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110295109.2A CN113215538A (zh) 2021-03-19 2021-03-19 一种高居里点硅衬底铁电薄膜材料及其制备与应用

Publications (1)

Publication Number Publication Date
CN113215538A true CN113215538A (zh) 2021-08-06

Family

ID=77083984

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110295109.2A Pending CN113215538A (zh) 2021-03-19 2021-03-19 一种高居里点硅衬底铁电薄膜材料及其制备与应用

Country Status (1)

Country Link
CN (1) CN113215538A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101892522A (zh) * 2010-07-30 2010-11-24 中国科学院上海硅酸盐研究所 利用氧等离子体辅助脉冲激光沉积法制备钛铌镁酸铅薄膜
CN104480530A (zh) * 2014-12-31 2015-04-01 西安交通大学 弛豫型铁电单晶原料的制备方法
WO2015145296A1 (en) * 2014-03-27 2015-10-01 Koninklijke Philips N.V. Ultrasound probes and systems having pin-pmn-pt, a dematching layer, and improved thermally conductive backing materials
CN108269912A (zh) * 2018-01-09 2018-07-10 中国科学院上海硅酸盐研究所 钛铌镁酸铅铁电薄膜氮化镓基外延集成及其制备方法
CN111423231A (zh) * 2020-03-31 2020-07-17 上海师范大学 一种三元系弛豫铁电薄膜材料及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101892522A (zh) * 2010-07-30 2010-11-24 中国科学院上海硅酸盐研究所 利用氧等离子体辅助脉冲激光沉积法制备钛铌镁酸铅薄膜
WO2015145296A1 (en) * 2014-03-27 2015-10-01 Koninklijke Philips N.V. Ultrasound probes and systems having pin-pmn-pt, a dematching layer, and improved thermally conductive backing materials
CN104480530A (zh) * 2014-12-31 2015-04-01 西安交通大学 弛豫型铁电单晶原料的制备方法
CN108269912A (zh) * 2018-01-09 2018-07-10 中国科学院上海硅酸盐研究所 钛铌镁酸铅铁电薄膜氮化镓基外延集成及其制备方法
CN111423231A (zh) * 2020-03-31 2020-07-17 上海师范大学 一种三元系弛豫铁电薄膜材料及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
焦珊: "弛豫铁电薄膜的脉冲激光方法制备及电性能研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *

Similar Documents

Publication Publication Date Title
US9543501B2 (en) Metal oxide
CN101665915B (zh) 一种铁酸铋薄膜材料的制备方法
CN111423231A (zh) 一种三元系弛豫铁电薄膜材料及其制备方法和应用
CN101717272B (zh) 具有(100)晶粒择优取向的锆钛酸铅厚膜的制备方法
CN1990418A (zh) 作为热释电材料的反铁电薄膜及其制备方法和应用
Zheng et al. Structural and electrical properties of (Na0. 85K0. 15) 0.5 Bi0. 5TiO3 thin films deposited on LaNiO3 and Pt bottom electrodes
Acharya et al. Effect of Li doping on ferroelectric and piezoelectric properties of Ba 0.5 Na 0.5 TiO 3-BaTiO 3 (BNT-BT) thin films
US10950781B2 (en) Method of manufacturing piezoelectric thin film and piezoelectric sensor manufactured using piezoelectric thin film
CN100365776C (zh) 可与读出电路集成的锆钛酸铅铁电薄膜材料的制备方法
Zhang et al. Structural and electrical study of highly (100)-oriented KNN films fabricated by a sol-gel non-alkoxide process
Yang et al. Growth, microstructure, energy–storage and dielectric performances of chemical–solution NBT–based thin films: Effect of sodium nonstoichimometry
JP4998652B2 (ja) 強誘電体薄膜、強誘電体薄膜の製造方法、圧電体素子の製造方法
CN102731107A (zh) 一种掺Mn的钛酸铋钠-钛酸钡薄膜的制备方法
JPH08253324A (ja) 強誘電体薄膜構成体
US7527690B2 (en) Ferroelectric ceramic compound, a ferroelectric ceramic single crystal, and preparation processes thereof
Li et al. Effects of LaNiO3 seeding layers on the crystal structure and electrical properties in 0.94 (Bi0. 5Na0. 5) TiO3–0.06 BaTiO3 thin films
CN113215538A (zh) 一种高居里点硅衬底铁电薄膜材料及其制备与应用
CN105088160A (zh) 一种具有高度(110)择优取向的钌酸锶薄膜的制备方法
Ruangchalermwong et al. Enhanced ferro-and piezoelectric properties in (100)-textured Nb-doped Pb (ZrxTi1− x) O3 films with compositions at morphotropic phase boundary
Yu et al. Preparation, structure, and properties of 0.3 Pb (Zn1/3Nb2/3) O3-0.7 PbTiO3 thin films on LaNiO3/YSZ/Si substrates
Chen et al. Fabrication of PZT BY sol-gel method
Li et al. A new Pb (Lu1/2Nb1/2) O3–PbZrO3–PbTiO3 ternary solid solution with morphotropic region and high Curie temperature
JP2718414B2 (ja) チタン酸鉛薄膜の製造方法
Lee et al. Phase development of radio-frequency magnetron sputter-deposited Pb (Mg 1/3 Nb 2/3) O 3–PbTiO 3 (90/10) thin films
CN100348771C (zh) 铅基铁电薄膜的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210806

RJ01 Rejection of invention patent application after publication