CN116371367A - 一种基于含铀废水处理的无机有机杂化材料及其制备方法和应用 - Google Patents

一种基于含铀废水处理的无机有机杂化材料及其制备方法和应用 Download PDF

Info

Publication number
CN116371367A
CN116371367A CN202310313832.8A CN202310313832A CN116371367A CN 116371367 A CN116371367 A CN 116371367A CN 202310313832 A CN202310313832 A CN 202310313832A CN 116371367 A CN116371367 A CN 116371367A
Authority
CN
China
Prior art keywords
inorganic
hybrid material
organic hybrid
uranium
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310313832.8A
Other languages
English (en)
Inventor
孟成
舒伟辉
杜明洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China Institute of Technology
Original Assignee
East China Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China Institute of Technology filed Critical East China Institute of Technology
Publication of CN116371367A publication Critical patent/CN116371367A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0214Compounds of V, Nb, Ta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/041Oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28033Membrane, sheet, cloth, pad, lamellar or mat
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/006Radioactive compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明涉及一种基于含铀废水处理的无机有机杂化材料及其制备方法和应用,属于吸附材料领域。采用水热法制备出具有开放骨架结构的无机有机钒氧层状杂化材料,对铀具有优异的离子交换性能,表现为离子交换速率快、吸附容量高、分配系数高、pH适用范围广等特点。本发明的吸附材料解决了传统吸附材料吸附动力学慢、选择性差、pH适用范围窄的缺点,拓展了吸附材料的应用环境。

Description

一种基于含铀废水处理的无机有机杂化材料及其制备方法和 应用
发明领域
本发明涉及含铀废水的离子交换型材料的制备及应用,属于吸附材料领域。
背景技术
矿物开采、加工处理过程中产生的含有高水平天然放射性核素的废物的数量巨大,需要采取不同的管理方式。通常,铀矿冶的废石、尾矿中放射性核素主要以地表水和地下水为载体迁移到生态环境中,具有隐蔽性强、滞留时间长、污染物迁移途径复杂等特点,给人类生存带来了严重威胁。开发匹配用于处理含铀放射性废水的技术迫在眉睫。目前的吸附材料pH适用范围窄,吸铀动力学差,选择性能力不足,制约着吸附材料的规模化应用。
发明内容
为了解决上述问题,本发明提出一种基于含铀废水处理的无机有机钒氧层状杂化材料及其制备方法和应用。本发明制备的钒氧层状化合物对铀具有优异的离子交换性能,表现为离子交换速率快、吸附容量高、分配系数高、pH适用范围广等特点。本发明是对目前离子交换型材料处理放射性核素的重要革新。
本发明的目的之一是提供一种基于含铀废水处理的无机有机杂化材料,以解决吸附材料对废水中铀去除效果不理想的问题。所述所述无机有机杂化材料的化学式为[(CH3)2NH2]V3O7,空间群为P21。
本发明还提供了一种所述无机有机钒氧层状杂化材料的制备方法,包括以下步骤:
(5)将步骤(4)的反应物去除上清液,置于离心管中,加入丙酮,离心洗涤3次,加入去离子水离心洗涤3次,获得黑色固体,并将黑色固体置于80 ℃的烘箱中,干燥12 h,获得无机有机钒氧层状杂化材料。
优选的,所述步骤(1)中五氧化二钒、一水氢氧化锂、去离子水的摩尔比为1:1.2:110。
优选的,步骤(2)中,所述澄清溶液与N,N-二甲基甲酰胺的体积比为8~12:1。
优选的,步骤(3)中,pH的调节范围为4.5~6。
优选的,步骤(4)中,水热反应的温度为180~200℃。
进一步的,所述无机有机杂化材料的空间群为P21
本发明的有益效果是:
本发明制备的无机有机层状杂化材料,具有开放的层状骨架结构,骨架结构中的有机胺离子[CH3NH3]+可与铀发生离子交换,饱和吸附容量为156mg/g,最大分配系数为kd U=6.06×106mL/g,离子响应速率小于20min,pH适用范围为3~9。采用2mol/L的KCl溶液可对铀进行洗脱,洗脱后晶体结构保持不变。
附图说明
图1为本发明实施案例1制备的无机有机钒氧层状杂化材料的晶体结构图。
图2为本发明实施案例1制备的无机有机钒氧层状杂化材料的XRD图谱。
图3为本发明实施案例1制备的无机有机钒氧层状杂化材料的Raman图谱。
图4为本发明实施案例1制备的无机有机钒氧层状杂化材料离子交换后的的扫描图。
图5为本发明实施案例1制备的无机有机钒氧层状杂化材料离子交换后的能谱图。
图6本发明实施案例1制备的无机有机钒氧层状杂化材料的吸附容量曲线。
图7本发明实施案例1制备的无机有机钒氧层状杂化材料的吸附前后的XRD图谱。
具体实施方式
下面将结合本发明实施例,对本发明的技术方案进行清楚地阐述。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。
实施例1
(1)称取五氧化二钒3.64g,一水氢氧化锂1.68g,置于40mL的去离子水中,磁力搅拌4h后溶解,获得黄色澄清溶液。
(2)在步骤(1)所得的澄清溶液中滴加4mL的N,N-二甲基甲酰胺,磁力搅拌2h,获得黄绿色溶液。
(3)将步骤(2)所得的溶液,采用醋酸调节pH至5,磁力搅拌1h,获得紫红色澄清溶液。
(4)将步骤(3)所得溶液转移至装有100mL聚四氟乙烯的反应釜中,置于的烘箱中,在190℃的条件下反应4天。
(5)将步骤(4)的反应物去除上清液,置于100mL的离心管中,加入20ml丙酮,离心洗涤3次,加入去离子水离心洗涤3次,获得黑色固体。并将黑色固体置于80℃的烘箱中,干燥12h,获得无机有机钒氧层状杂化材料。
本实施案例使用模拟放射性含铀废水的铀浓度为40ppm,pH值为6.0。吸附性能测试中,投料比为1:1000(),铀的饱和吸附容量为156mg/g。离子分配系数为kd U=6.06×106mL/g,离子响应速率小于20min。采用2mol/L的KCl溶液可以完成对铀的洗脱,洗脱后晶体结构保持不变。
实施例2
(1)称取五氧化二钒5.46、一水氢氧化锂2.52g,置于60mL的去离子水中,磁力搅拌4h后溶解,获得黄色澄清溶液。
(2)在步骤(1)所得的澄清溶液中滴加5mL的N,N-二甲基甲酰胺,磁力搅拌2h,获得黄绿色溶液。
(3)将步骤(2)所得的溶液,采用醋酸调节pH至6,磁力搅拌1h,获得紫红色澄清溶液。
(4)将步骤(3)所得的溶液转移至装有100mL的聚四氟乙烯的反应釜中,置于的烘箱中,在185℃的条件下反应4天。
(5)将步骤(4)中反应物去除上清液,置于100mL的离心管中,加入50ml丙酮,离心洗涤3次,加入去离子水离心洗涤3次,获得黑色固体。并将黑色固体置于80℃的烘箱中,干燥12h,获得无机有机钒氧层状杂化材料。
本实施案例使用模拟放射性含铀废水的铀浓度为40ppm,pH值为8.0。吸附性能测试中,投料比为1:100(体积比),铀的饱和吸附容量为132mg/g。离子分配系数为kd U=5.06×106mL/g,离子响应速率小于35min。采用2mol/L的KCl溶液可以完成对铀的洗脱,洗脱后晶体结构保持不变。

Claims (7)

1.一种基于含铀废水处理的无机有机杂化材料,其特征在于,所述无机有机杂化材料的化学式为[(CH3)2NH2]V3O7
2.根据权利要求1所述的无机有机杂化材料,其特征在于,所述无机有机杂化材料的制备方法,包括以下步骤:
(1)称取五氧化二钒、一水氢氧化锂置于去离子水中,磁力搅拌4h后溶解,获得黄色澄清溶液;
(2)在步骤(1)所得的澄清溶液中滴加N,N-二甲基甲酰胺,磁力搅拌2h,获得黄绿色溶液;
(3)将步骤(2)所得的溶液,采用醋酸调节pH至弱酸性后,磁力搅拌1h,获得紫红色澄清溶液;
(4)将步骤(3)所得溶液转移至装有聚四氟乙烯内胆的反应釜中,置于烘箱中,反应4天;
(5)将步骤(4)的反应物去除上清液,置于离心管中,加入丙酮,离心洗涤3次,加入去离子水离心洗涤3次,获得黑色固体,并将黑色固体置于80℃的烘箱中,干燥12h,获得无机有机钒氧层状杂化材料。
3.根据权利要求2所述的无机有机杂化材料,其特征在于,所述步骤(1)中五氧化二钒、一水氢氧化锂、去离子水的摩尔比为1:1.2:110。
4.根据权利要求2所述的无机有机杂化材料,其特征在于,所述步骤(2)中,所述澄清溶液与N,N-二甲基甲酰胺的体积比为8~12:1。
5.根据权利要求2所述的无机有机杂化材料,其特征在于,所述步骤(3)中pH的调节范围为4.5~6。
6.根据权利要求2所述的无机有机杂化材料,其特征在于,所述步骤(4)中的水热反应温度为180~200℃。
7.根据权利要求1-6任一项所述的无机有机杂化材料,其特征在于,所述无机有机杂化材料的空间群为P21
CN202310313832.8A 2022-11-22 2023-03-28 一种基于含铀废水处理的无机有机杂化材料及其制备方法和应用 Pending CN116371367A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2022114651356 2022-11-22
CN202211465135 2022-11-22

Publications (1)

Publication Number Publication Date
CN116371367A true CN116371367A (zh) 2023-07-04

Family

ID=86978184

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310313832.8A Pending CN116371367A (zh) 2022-11-22 2023-03-28 一种基于含铀废水处理的无机有机杂化材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN116371367A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5866645A (en) * 1996-11-14 1999-02-02 Board Of Trustees Operating Michigan State University Homostructured mixed organic and inorganic cation exchanged tapered compositions
CN104923167A (zh) * 2015-07-10 2015-09-23 山东大学 一种稳定的纳米SiO2/磷酸三丁酯复合吸附材料的制备方法
CN112536016A (zh) * 2019-09-23 2021-03-23 北京大学 一类用于有害离子吸附的新型锑/铋基过渡金属层状硫属化合物材料
CN113060750A (zh) * 2021-03-17 2021-07-02 电子科技大学 一种用于海水提铀的介孔离子化合物的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5866645A (en) * 1996-11-14 1999-02-02 Board Of Trustees Operating Michigan State University Homostructured mixed organic and inorganic cation exchanged tapered compositions
CN104923167A (zh) * 2015-07-10 2015-09-23 山东大学 一种稳定的纳米SiO2/磷酸三丁酯复合吸附材料的制备方法
CN112536016A (zh) * 2019-09-23 2021-03-23 北京大学 一类用于有害离子吸附的新型锑/铋基过渡金属层状硫属化合物材料
CN113060750A (zh) * 2021-03-17 2021-07-02 电子科技大学 一种用于海水提铀的介孔离子化合物的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HAIYAN SUN ET AL.: ""Highly Selective Recovery of Lanthanides by a Facilely-Synthesized Layered Vanadate with Acid and Radiation Resistance"", 《ANGEW. CHEM. INT. ED.》, 19 November 2019 (2019-11-19), pages 1878 - 1883 *
李艳梅等: ""可渗透反应墙技术修复铀矿区地下水中铀锰进展"", 《水处理技术》, 31 October 2020 (2020-10-31), pages 12 - 17 *

Similar Documents

Publication Publication Date Title
US9597658B2 (en) Metal-organic framework templated synthesis of porous inorganic materials as novel sorbents
Notini et al. Mineral defects enhance bioavailability of goethite toward microbial Fe (III) reduction
CN101596449B (zh) 一种偕胺肟基提铀吸附剂的制备方法
CN103877927B (zh) 磁性纳米Fe3O4生物催化制备法及其在含铀废水处理中的应用
Shi et al. Iron isotope fractionations reveal a finite bioavailable Fe pool for structural Fe (III) reduction in nontronite
CN110655243A (zh) 一种采用TiO2吸附-光催化还原处理含铀废水的方法
CN113321196B (zh) 一种从酸性六价铀溶液中直接矿物固铀的方法
CN108927100A (zh) 一种纳米零价铁复合材料的制备方法及应用
Li et al. Emerging investigator series: significantly enhanced uptake of Eu 3+ on a nanoporous zeolitic mineral in the presence of UO 2 2+: insights into the impact of cation–cation interaction on the geochemical behavior of lanthanides and actinides
Truex et al. Conceptual Model of Iodine Behavior in the Subsurface at the Hanford Site
CN112742343A (zh) 亚铁氰化铜镍/蒙脱土复合材料及其制备方法和吸附用途
CN115074101B (zh) 一种具有储层保护效果的低渗砂岩油藏驱油用表面活性剂制备方法及其应用
Yang et al. Inhibition of oxyanions on redox-driven transformation of layered manganese oxides
Zhang et al. Effect of siderophore DFOB on U (VI) adsorption to clay mineral and its subsequent reduction by an iron-reducing bacterium
CN116371367A (zh) 一种基于含铀废水处理的无机有机杂化材料及其制备方法和应用
CN109847692A (zh) 一种铁改性沸石的制备方法
CN102520135B (zh) 一种评价榍石固化体化学稳定性的方法
CN116637632A (zh) 一种硫化物光催化材料、制备方法及其在含铀废水处理中的应用
CN109126684B (zh) 一种碱基铁载型混合灰渣吸附剂的制备方法
CN114380361B (zh) 一种硝酸盐共存下电化学还原富集回收含铀废水和地下水中铀的方法
CN113899615A (zh) 磷石膏渗滤液特征水样磷酸盐氧同位素前处理制样方法
CA3122381C (en) Sorbent compositions and methods of manufacture for use in concentratinglithium from brines
CN109499551B (zh) 一种含磷酸酯基螯合树脂及制备与处理含铀废水的方法
CN109317117B (zh) 一种磁性吸附剂及其制备和对锕系元素废液的处理方法
CN107469773B (zh) 一种可良好吸附放射性核素铀的硅包覆炭化含氮炭基吸附材料及其使用方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination