CN116355818A - 一种生产l-亮氨酸的基因工程菌及其应用 - Google Patents

一种生产l-亮氨酸的基因工程菌及其应用 Download PDF

Info

Publication number
CN116355818A
CN116355818A CN202211638586.5A CN202211638586A CN116355818A CN 116355818 A CN116355818 A CN 116355818A CN 202211638586 A CN202211638586 A CN 202211638586A CN 116355818 A CN116355818 A CN 116355818A
Authority
CN
China
Prior art keywords
leucine
encoding gene
gene
escherichia coli
protein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211638586.5A
Other languages
English (en)
Inventor
张成林
丁啸虎
杨文君
李贵荣
魏敏华
闫倩玉
张佳蓉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University of Science and Technology
Original Assignee
Tianjin University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University of Science and Technology filed Critical Tianjin University of Science and Technology
Priority to CN202211638586.5A priority Critical patent/CN116355818A/zh
Publication of CN116355818A publication Critical patent/CN116355818A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0008Oxidoreductases (1.) acting on the aldehyde or oxo group of donors (1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0012Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
    • C12N9/0014Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on the CH-NH2 group of donors (1.4)
    • C12N9/0016Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on the CH-NH2 group of donors (1.4) with NAD or NADP as acceptor (1.4.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0012Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
    • C12N9/0036Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on NADH or NADPH (1.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1022Transferases (2.) transferring aldehyde or ketonic groups (2.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1205Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1217Phosphotransferases with a carboxyl group as acceptor (2.7.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/06Alanine; Leucine; Isoleucine; Serine; Homoserine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01027L-Lactate dehydrogenase (1.1.1.27)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/010853-Isopropylmalate dehydrogenase (1.1.1.85)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01086Ketol-acid reductoisomerase (1.1.1.86)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y102/00Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
    • C12Y102/05Oxidoreductases acting on the aldehyde or oxo group of donors (1.2) with a quinone or similar compound as acceptor (1.2.5)
    • C12Y102/05001Pyruvate dehydrogenase (quinone) (1.2.5.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y104/00Oxidoreductases acting on the CH-NH2 group of donors (1.4)
    • C12Y104/01Oxidoreductases acting on the CH-NH2 group of donors (1.4) with NAD+ or NADP+ as acceptor (1.4.1)
    • C12Y104/01002Glutamate dehydrogenase (1.4.1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y104/00Oxidoreductases acting on the CH-NH2 group of donors (1.4)
    • C12Y104/01Oxidoreductases acting on the CH-NH2 group of donors (1.4) with NAD+ or NADP+ as acceptor (1.4.1)
    • C12Y104/01009Leucine dehydrogenase (1.4.1.9)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y106/00Oxidoreductases acting on NADH or NADPH (1.6)
    • C12Y106/01Oxidoreductases acting on NADH or NADPH (1.6) with NAD+ or NADP+ as acceptor (1.6.1)
    • C12Y106/01002NAD(P)+ Transhydrogenase (AB-specific) (1.6.1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y202/00Transferases transferring aldehyde or ketonic groups (2.2)
    • C12Y202/01Transketolases and transaldolases (2.2.1)
    • C12Y202/01006Acetolactate synthase (2.2.1.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/03Acyl groups converted into alkyl on transfer (2.3.3)
    • C12Y203/030132-Isopropylmalate synthase (2.3.3.13)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/01Phosphotransferases with an alcohol group as acceptor (2.7.1)
    • C12Y207/01033Pantothenate kinase (2.7.1.33)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/02Phosphotransferases with a carboxy group as acceptor (2.7.2)
    • C12Y207/02001Acetate kinase (2.7.2.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/02Aldehyde-lyases (4.1.2)
    • C12Y401/02009Phosphoketolase (4.1.2.9)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/01Hydro-lyases (4.2.1)
    • C12Y402/010333-Isopropylmalate dehydratase (4.2.1.33)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/185Escherichia
    • C12R2001/19Escherichia coli
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本发明涉及一种生产L‑亮氨酸的基因工程菌及其应用,属于代谢工程领域。本发明以E.coli W3110为出发菌株,利用系统代谢工程手段提高乙酰辅酶A和还原力供应、加强L‑亮氨酸合成通量、增强其外排系统、动态弱化TCA循环,最终构建了一株L‑亮氨酸高产菌株。于5L发酵罐进行分批补料发酵,34h时L‑亮氨酸产量达到85.6g/L,转化率和发酵强度分别为36.6%和2.52g/L/h。本发明采用的发酵工艺简单,易于控制,生产成本低,有利于工业化生产的推广和应用。与现有技术相比,本发明获得的工程菌株及其发酵工艺无营养缺陷,工艺发酵周期短,L‑亮氨酸产量和转化率高,为目前报道最高指标。

Description

一种生产L-亮氨酸的基因工程菌及其应用
技术领域:
本发明涉及一种生产L-亮氨酸的基因工程菌及其应用,属于代谢工程领域。
背景技术:
L-亮氨酸是八种必需氨基酸之一,具有良好的生理学特性,因此在饲料、医药、化工等领域的市场需求量日益提升。现阶段L-亮氨酸主要包括毛发水解法和生物发酵法。提取法具有原料来源受限制、生产成本高、污染环境等不足。相较而言,生物发酵法具有规模大、产量高、成本等优势。目前,L-亮氨酸的工业生产菌种主要由诱变获得,具有营养缺陷、生长慢、遗传性状不稳定等不足,从而引起发酵周期长、发酵性能不稳定、产量和转化率低等问题。大肠杆菌具有代谢背景较明确清晰、生长迅速等优势,是常用工业微生物。
发明内容:
为了克服现有L-亮氨酸生产菌株生长慢、性能不稳定、营养缺陷等不足,本发明提供一种生长快、非营养缺陷、合成效率高的产L-亮氨酸的基因工程菌及采用该菌直接发酵生产L-亮氨酸的方法。
本发明解决上述技术问题采用的技术方案之一是:一株L-亮氨酸高产菌株,所述菌株以Escherichia coli W3110为出发菌株,在基因组上敲除乳糖操纵子阻遏蛋白编码基因lacI,在基因组上过表达解除反馈抑制的乙酰羟酸合酶编码基因ilvBNM,利用质粒过表达解除L-亮氨酸反馈抑制异丙基苹果酸合成酶编码基因leuAM、β-异丙基苹果酸脱氢酶编码基因leuB、α-异丙基苹果酸异构酶编码基因leuCD,在基因组上表过达羟酸还原异构酶编码基因ilvC、枯草芽孢杆菌亮氨酸脱氢酶的编码基因bcd,敲除分支链氨基酸氨基转移酶编码基因ilvE,在基因组上过表达吡啶核苷酸转氢酶的基因pntAB、泛素激酶编码基因coaA、谷氨酸脱氢酶编码基因rocG以及磷酸解酮酶编码基因fxpk,敲除乙酸激酶编码基因ackA、丙酮酸脱氢酶编码基因poxB、乳酸脱氢酶编码基因ldhA;在此基础上,将基因组中柠檬酸合酶编码基因gltA的启动子替换为受亮氨酸弱化的PleuA启动子,当胞内L-亮氨酸积累时,gltA的转录被弱化,使得丙酮酸和乙酰辅酶A更多地流向L-亮氨酸合成而非TCA循环;在基因组上过表达L-亮氨酸转运蛋白编码基因yeaS,最终获得一株L-亮氨酸高产菌株。
进一步地,所述乳糖操纵子阻遏蛋白编码基因lacI来自大肠杆菌W3110,NCBI中ProteinID:BAE76127.1;
进一步地,所述解除反馈抑制的乙酰羟酸合酶编码基因ilvBNM,已公开于中国发明专利ZL201910484362.5;
进一步地,所述解除L-亮氨酸反馈抑制异丙基苹果酸合成酶编码基因leuAM,已公开于中国发明专利ZL 201910820591.X中;
进一步地,所述β-异丙基苹果酸脱氢酶编码基因leuB来自大肠杆菌W3110,NCBI中ProteinID:BAB96642.1;
进一步地,所述α-异丙基苹果酸异构酶编码基因leuCD来自大肠杆菌W3110,NCBI中Protein ID:BAB96641.2-BAB96640.1;
进一步地,所述羟酸还原异构酶编码基因ilvC来自大肠杆菌W3110,NCBI中Protein ID:BAE77523.1;
进一步地,所述亮氨酸脱氢酶的编码基因bcd来自枯草芽孢杆菌168,NCBI中Protein ID:NP_390288.1;
进一步地,所述分支链氨基酸氨基转移酶编码基因ilvE来自大肠杆菌W3110,NCBIProteinID:BAE77527.1;
进一步地,所述吡啶核苷酸转氢酶的基因pntAB来自大肠杆菌W3110,NCBI中Protein ID:BAA15342.1-BAA15336.1;
进一步地,所述泛素激酶编码基因coaA来自大肠杆菌W3110,NCBI中Protein ID:BAE77341.1;
进一步地,所述谷氨酸脱氢酶编码基因rocG来自枯草芽孢杆菌168,NCBI中Protein ID:NP_391659.2;
进一步地,所述磷酸解酮酶编码基因fxpk来自青春双歧杆菌ATCC 15703,NCBI中ProteinID:WP_011743105.1;
进一步地,所述乙酸激酶编码基因ackA来自大肠杆菌W3110,NCBI中Protein ID:BAA16135.1;
进一步地,所述丙酮酸脱氢酶编码基因poxB来自大肠杆菌W3110,NCBI中ProteinID:BAA35585.1;
进一步地,所述乳酸脱氢酶编码基因ldhA来自大肠杆菌W3110,NCBI中ProteinID:BAA14990.1;
进一步地,所述柠檬酸合酶编码基因gltA来自大肠杆菌W3110,NCBI中ProteinID:BAA35384.2;
进一步地,所述启动子PleuA为leuA启动子来自大肠杆菌W3110,NCBI中ProteinID:BAB96643.2;
进一步地,所述L-亮氨酸转运蛋白编码基因yeaS来自大肠杆菌W3110,NCBI中Protein ID:BAA15593.1;
本发明提供的技术方案之二,是技术方案一所述菌株在生产L-亮氨酸中的应用;特别是在发酵生产L-亮氨酸中的应用,具体方法如下:
以5-10%接种量将种子培养物接至发酵培养基中进行发酵培养,通风量2-5m3/h,搅拌转速300-900rpm,溶氧维持在20-50%,pH维持在6.8-7.2,培养温度32-37℃,发酵周期30-36h,发酵过程中维持残糖浓度为0.1-0.5%(W/V);
发酵结束时,发酵液中的L-亮氨酸浓度达到72.7-85.6g/L。
有益效果:
(1)本发明以E.coli W3110为出发菌株,利用系统代谢工程手段提高乙酰辅酶A和还原力供应、加强L-亮氨酸合成通量、增强其外排系统、动态弱化TCA循环,最终构建了一株L-亮氨酸高产菌株。于5L发酵罐进行分批补料发酵,34h时L-亮氨酸产量达到85.6g/L,转化率和发酵强度分别为36.6%和2.52g/L/h。
(2)本发明采用的发酵工艺简单,易于控制,生产成本低,有利于工业化生产的推广和应用。与现有技术相比,本发明获得的工程菌株及其发酵工艺无营养缺陷,工艺发酵周期短,L-亮氨酸产量和转化率高,为目前报道最高指标。
附图说明:
图1实施例14L-亮氨酸基因工程菌摇瓶发酵结果;
图2实施例15L-亮氨酸基因工程菌leu12的5L发酵罐发酵过程曲线。
具体实施方式:
为了使本专利的目的、技术方案及优点更加清楚明白,以下结合具体实施例,对本专利进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本专利,并不用于限定本发明。
本发明实施例所涉及的基因序列可根据前述发明内容部分提供的NCBI中的Protein ID编号对应的序列信息进行编码合成或以对应来源的微生物基因组为模板进行扩增;
解除L-亮氨酸反馈抑制异丙基苹果酸合成酶编码基因leuAM,已公开于中国发明专利ZL201910820591.X中(具体为该专利申请文本的SEQ ID NO.2,可根据该序列合成leuAM);
解除反馈抑制的乙酰羟酸合酶编码基因ilvBNM,已公开于中国发明专利ZL201910484362.5(具体为该专利申请文本的SEQ ID NO.2,可根据该序列合成ilvBNM)。
本发明发酵过程中的物质检测方法如下:
(1)L-亮氨酸检测方法
采用高效液相色谱系统(high-performance liquid chromatography,HPLC)分别对L-亮氨酸定量分析。用2,4-二硝基氟苯衍生处理样品,以使其可被液相信号器所检测,具体流程如下:
样品衍生方法:取1ml发酵液经13000×g离心3min后取上清液并用去离子水稀释10倍后,使用0.8%(V/V)2,4-二硝基氟苯对发酵液进行衍生反应(上述上清液过0.22μm的有机膜待用,向1.5mLEP管加入200μL衍生缓冲液、10μL过膜后的上清液和300μL衍生剂摇晃均匀,置于65℃水浴锅避光水浴60min,之后取出冷却,取定容缓冲液690μL定容至1.2mL,混匀过膜),过滤至样品池中,分别以超声过滤后的50%的乙腈和4.1g/L乙酸钠为有机相和无机相,调整柱温33℃,待基线为0,压力线水平时,开始待测样品的测定。其检测条件为:Agilent AAA(4.6mm×150mm,5-Micron),采用乙腈/乙酸钠二元梯度洗脱,流速1mL/min,柱温33℃,检测波长360nm。
(2)菌体浓度及其它产物的检测
通过分光光度计测定细菌培养物OD600,监测细胞的生长。用SBA生物传感器仪(SBA-40C;山东科学院生物研究所,济南)检测发酵过程中葡萄糖的浓度。
本发明实施例所用引物序列如下表所示:
Figure SMS_1
Figure SMS_2
Figure SMS_3
本发明实施例中菌株基因型如下表所示
菌株 基因型
E.coli W3110ΔlacI E.coli W3110敲除lacI
leu1 E.coli W3110ΔlacI yncI::Ptrc-ilvBNM-Ttrc
leu2 leu1携带pTrc99aΔlacI-leuAMBCD
leu3 leu2 yeeL::Ptrc-ilvC-Ttrc
leu4 leu3 ycgH::Ptrc-bcd-Ttrc
leu5 leu4ΔilvE
leu6 leu5 yjgX::Ptrc-pntAB-Ttrc
leu7 leu6 yjiP::Ptrc-coaA-Ttrc
leu8 leu7 yghX::Ptrc-rocG-Ttrc
leu9 leu8 gapC::Ptrc-fxpk-Ttrc
leu10 leu9ΔackAΔpoxBΔldhA
leu11 leu10 PgltA::PleuA
leu12 leu11 yjiT::Ptrc-yeaS-Ttrc
需要特别说明的是,本发明菌株的构建过程中,基因的编辑顺序可根据实际需求进行调整,编辑顺序的先后不会对最终获得的菌株生产L-亮氨酸的效果产生影响。
以下通过具体实施例对本发明作进一步地解释说明。
实施例1:lacI敲除菌株E.coli W3110ΔlacI的构建
(1)重叠片段UlacI-DlacI的构建
以野生型大肠杆菌E.coli W3110基因组为模板,分别利用引物lac-1/lac-2及lac-3/lac-4扩增lacI的上游同源臂和下游同源臂,然后利用重叠PCR获得lacI上、下游同源臂融合片段UlacI-DlacI
(2)pGRB-lacI质粒的构建
根据lacI序列设计并合成gRNA 20bp正向和反向序列pGRB-lacI-S/pGRB-lacI-A,二者退火后利用重组试剂盒ClonExpress II One Step Cloning Kit(南京诺唯赞医疗科技有限公司)连接至质粒pGRB,经转化E.coli DH5α、含100μg/mL氨苄青霉素的LB固体培养基筛选、测序鉴定获得重组质粒pGRB-lacI。
(3)lacI敲除菌株E.coli W3110ΔlacI的构建
将重组质粒pGRB-lacI和融合片段UlacI-DlacI电转化至含有pREDcas9质粒的E.coliW3110感受态细胞中,复苏后涂布于含100μg/mL壮观霉素、氨苄青霉素的LB固体培养上,32℃恒温过夜培养。次日用引物lac-1/lac-4进行菌落PCR鉴定,筛选阳性转化子。活化转化子,并添加终浓度为0.2mmol/L的阿拉伯糖,32℃振荡培养过夜,使pGRB-lacI丢失;然后42℃振荡培养过夜,使pREDcas9质粒丢失,获得菌株E.coli W3110ΔlacI。
实施例2:L-亮氨酸工程菌株leu1的构建
(1)重叠片段UyncI-Ptrc-ilvBNM-Ttrc-DyncI的构建
以大肠杆菌E.coli W3110基因组为模板,分别利用引物U-yncI-S/U-yncI-A和D-yncI-S/D-yncI-A扩增yncI的上游同源臂和下游同源臂;以人工合成的ilvBNM片段为模板,利用引物ilvBNM-S和ilvBNM-A扩增包含Ptrc启动子、Ttrc终止子以及ilvBNM基因的片段Ptrc-ilvBNM-Ttrc(Ptrc启动子和Ttrc终止子已设计在了引物ilvBNM-S和ilvBNM-A中)。PCR产物回收后,利用引物U-yncI-S/D-yncI-A经重叠PCR获得包含yncI上、下游同源臂、Ptrc-ilvBNM-Ttrc的融合片段UyncI-Ptrc-ilvBNM-Ttrc-DyncI
(2)pGRB-yncI质粒的构建
根据yncI序列设计并合成gRNA 20bp正向和反向序列pGRB-yncI-S和pGRB-yncI-A,采用实施例1步骤(2)同样的方法构建重组质粒pGRB-yncI。
(3)L-亮氨酸工程菌株leu1的构建
将重组质粒pGRB-yncI和融合片段UyncI-Ptrc-ilvBNM-Ttrc-DyncI转化至含有pREDcas9质粒的E.coli W3110ΔlacI的感受态细胞中,用引物U-yncI-S/D-yncI-A鉴定阳性转化子。并按实施例1步骤(3)相同的方法丢失质粒,获得菌株leu1。
实施例3:L-亮氨酸工程菌株leu2的构建
(1)质粒pTrc99aΔlacI-leuAMBCD的构建
根据pTrc99a质粒序列中lacI基因设计引物Ptrc-1和Ptrc-2,并利用该引物以pTrc99a质粒为模板扩增获得敲除lacI基因的线性pTrc99aΔlacI。以人工合成的操纵子leuAMBCD为模板(该操纵子中基因排列顺序依次为leuAM、leuB核糖体结合位点序列AAGGAAACCGTGTG、leuB、leuCD),利用引物leuAMBCD-S/leuAMBCD-A扩增获得leuAMBCD。线性pTrc99aΔlacI和leuAMBCD的PCR产物回收后利用重组试剂盒ClonExpress II One StepCloning Kit连接,然后转化至E.coli DH5α感受态细胞中,经含100μg/mL氨苄青霉素的LB固体培养基筛选并利用引物leuAMBCD-S/leuAMBCD-A菌落PCR鉴定后获得重组质粒pTrc99aΔlacI-leuAMBCD。(2)L-亮氨酸工程菌株leu2的构建
将pTrc99aΔlacI-leuAMBCD转化至leu1菌株,复苏后涂布于含100μg/mL氨苄青霉素的LB固体培养基上,37℃恒温过夜培养。次日用引物leuAMBCD-S/leuAMBCD-A进行菌落PCR鉴定,筛选阳性转化子,获得菌株leu2。
实施例4:L-亮氨酸工程菌株leu3的构建
(1)重叠片段UyeeL-Ptrc-ilvC-Ttrc-DyeeL的构建
以大肠杆菌E.coli W3110基因组为模板,分别利用引物U-yeeL-S/U-yeeL-A、D-yeeL-S/D-yeeL-A和ilvC-S/ilvC-A扩增yeeL的上游同源臂、下游同源臂、以及包含Ptrc启动子、Ttrc终止子和ilvC基因的Ptrc-ilvC-Ttrc片段。PCR产物回收后,利用引物U-yeeL-S/D-yeeL-A经重叠PCR获得包含yeeL上、下游同源臂、Ptrc-ilvC-Ttrc的融合片段UyeeL-Ptrc-ilvC-Ttrc-DyeeL。(2)pGRB-yeeL质粒的构建
根据yeeL序列设计并合成gRNA 20bp正向和反向序列pGRB-yeeL-S和pGRB-yeeL-A,采用实施例1步骤(2)同样的方法构建重组质粒pGRB-yeeL。
(3)L-亮氨酸工程菌株leu3的构建
将重组质粒pGRB-yeeL和融合片段UyeeL-Ptrc-ilvC-Ttrc-DyeeL转化至含有pREDcas9质粒的leu2的感受态细胞中,用引物U-yeeL-S/D-yeeL-A鉴定阳性转化子。并按实施例1步骤(3)相同的方法丢失质粒,获得菌株leu3。
实施例5:L-亮氨酸工程菌株leu4的构建
(1)重叠片段UycgH-Ptrc-bcd-Ttrc-DycgH的构建
以大肠杆菌E.coli W3110基因组为模板,分别利用引物U-ycgH-S/U-ycgH-A和D-ycgH-S/D-ycgH-A扩增ycgH的上游同源臂和下游同源臂。以枯草芽孢杆菌Bacillussubtilis168基因组为模板,利用引物bcd-A/D-ycgH-S扩增包含Ptrc启动子、Ttrc终止子和bcd基因的Ptrc-bcd-Ttrc片段。PCR产物回收后,利用引物U-ycgH-S/D-ycgH-A经重叠PCR获得包含ycgH上、下游同源臂、Ptrc-bcd-Ttrc的融合片段UycgH-Ptrc-bcd-Ttrc-DycgH
(2)pGRB-ycgH质粒的构建
根据ycgH序列设计并合成gRNA 20bp正向和反向序列pGRB-ycgH-S和pGRB-ycgH-A,采用实施例1步骤(2)同样的方法构建重组质粒pGRB-ycgH。
(3)L-亮氨酸工程菌株leu4的构建
将重组质粒pGRB-ycgH和融合片段UycgH-Ptrc-bcd-Ttrc-DycgH转化至含有pREDcas9质粒的leu3的感受态细胞中,用引物U-ycgH-S/D-ycgH-A鉴定阳性转化子。并按实施例1步骤(3)相同的方法丢失质粒,获得菌株leu4。
实施例6:L-亮氨酸工程菌株leu5的构建
(1)重叠片段UilvE-DilvE的构建
以野生型大肠杆菌E.coli W3110基因组为模板,分别利用引物U-ilvE-S/U-ilvE-A及D-ilvE-S/D-ilvE-A扩增ilvE的上、下游同源臂,然后利用重叠PCR获得ilvE上、下游同源臂融合片段UilvE-DilvE
(2)pGRB-ilvE质粒的构建
根据ilvE序列设计并合成gRNA 20bp正向和反向序列pGRB-ilvE-S和pGRB-ilvE-A。采用实施例1步骤(2)同样的方法构建重组质粒pGRB-ilvE。
(3)L-亮氨酸工程菌株leu5的构建
将重组质粒pGRB-ilvE和融合片段UilvE-DilvE电转化至含有pREDcas9质粒的leu4感受态细胞中,用引物U-ilvE-S/D-ilvE-A鉴定阳性转化子。并按实施例1步骤(3)相同的方法丢失质粒,获得菌株leu5。
实施例7:L-亮氨酸工程菌株leu6的构建
(1)重叠片段UyjgX-Ptrc-pntAB-Ttrc-DyjgX的构建
以大肠杆菌E.coli W3110基因组为模板,分别利用引物U-yjgX-S/U-yjgX-A和D-yjgX-S/D-yjgX-A、pntAB-S/pntAB-A扩增yjgX上游同源臂、和下游同源臂,以及包含Ptrc启动子、Ttrc终止子和pntAB基因的片段Ptrc-pntAB-Ttrc。PCR产物回收后,利用引物U-yjgX-S/D-yjgX-A经重叠PCR获得包含yjgX上、下游同源臂、Ptrc-pntAB-Ttrc的融合片段UyjgX-Ptrc-pntAB-Ttrc-DyjgX
(2)pGRB-yjgX质粒的构建
根据yjgX序列设计并合成gRNA 20bp正向和反向序列pGRB-yjgX-S和pGRB-yjgX-A,用实施例1步骤(2)同样的方法构建重组质粒pGRB-yjgX。
(3)L-亮氨酸工程菌株leu6的构建
将重组质粒pGRB-yjgX和融合片段UyjgX-Ptrc-pntAB-Ttrc-DyjgX转化至含有pREDcas9质粒的leu5的感受态细胞中,用引物U-yjgX-S/D-yjgX-A鉴定阳性转化子。并按实施例1步骤(3)相同的方法丢失质粒,获得菌株leu6。
实施例8:L-亮氨酸工程菌株leu7的构建
(1)重叠片段UyjiP-Ptrc-coaA-Ttrc-DyjiP的构建
以大肠杆菌E.coli W3110基因组为模板,分别利用引物U-yjiP-S/U-yjiP-A、D-yjiP-S/D-yjiP-A和coaA-S/coaA-A扩增yjiP上游同源臂、下游同源臂、以及包含Ptrc启动子、Ttrc终止子和coaA基因的Ptrc-coaA-Ttrc片段。PCR产物回收后,利用引物U-yjiP-S/D-yjiP-A经重叠PCR获得包含yjiP上、下游同源臂、Ptrc-coaA-Ttrc的融合片段UyjiP-Ptrc-coaA-Ttrc-DyjiP。(2)pGRB-yjiP质粒的构建
根据yjiP序列设计并合成gRNA 20bp正向和反向序列pGRB-yjiP-S和pGRB-yjiP,用实施例1步骤(2)同样的方法构建重组质粒pGRB-yjiP。
(3)L-亮氨酸工程菌株leu7的构建
将重组质粒pGRB-yjiP和融合片段UyjiP-Ptrc-coaA-Ttrc-DyjiP转化至含有pREDcas9质粒的leu6的感受态细胞中,用引物U-yjiP-S/D-yjiP-A鉴定阳性转化子。并按实施例1步骤(3)相同的方法丢失质粒,获得菌株leu7。
实施例9:L-亮氨酸工程菌株leu8的构建
(1)重叠片段UyghX-Ptrc-rocG-Ttrc-DyghX的构建
以大肠杆菌E.coli W3110基因组为模板,分别利用引物U-yghX-S/U-yghX-A、D-yghX-S/D-yghX-A扩增yghX的上游同源臂和下游同源臂。以枯草芽孢杆菌B.subtilis 168基因组为模板,利用引物rocG-A/D-rocG-S扩增包含Ptrc启动子、Ttrc终止子和rocG基因的Ptrc-rocG-Ttrc片段。PCR产物回收后,利用引物U-yghX-S/D-yghX-A经重叠PCR获得包含yghX上、下游同源臂、Ptrc-rocG-Ttrc的融合片段UyghX-Ptrc-rocG-Ttrc-DyghX
(2)pGRB-yghX质粒的构建
根据yghX序列设计并合成gRNA 20bp正向和反向序列pGRB-yghX-S和pGRB-yghX-A,用实施例1步骤(2)同样的方法构建重组质粒pGRB-yghX。
(3)L-亮氨酸工程菌株leu8的构建
将重组质粒pGRB-yghX和融合片段UyghX-Ptrc-rocG-Ttrc-DyghX转化至含有pREDcas9质粒的leu7的感受态细胞中,用引物U-yghX-S/D-yghX-A鉴定阳性转化子。并按实施例1步骤(3)相同的方法丢失质粒,获得菌株leu8。
实施例10:L-亮氨酸工程菌株leu9的构建
(1)重叠片段UgapC-Ptrc-fxpk-Ttrc-DgapC的构建
以大肠杆菌E.coli W3110基因组为模板,分别利用引物U-gapC-S/U-gapC-A和D-gapC-S/D-gapC-A扩增gapC的上游同源臂和下游同源臂。以青春双歧杆菌Bifidobacteriumadolescentis ATCC 15703基因组为模板,利用引物fxpk-A/fxpk-S扩增包含Ptrc启动子、Ttrc终止子和fxpk-基因的基因片段Ptrc-gapC-Ttrc。PCR产物回收后,利用引物U-gapC-S/D-gapC-A经重叠PCR获得包含gapC上、下游同源臂、Ptrc-gapC-Ttrc的融合片段UgapC-Ptrc-fxpk-Ttrc-DgapC。(2)pGRB-gapC质粒的构建
根据gapC序列设计并合成gRNA 20bp正向和反向序列pGRB-gapC-S和pGRB-gapC-A,用实施例1步骤(2)同样的方法构建重组质粒pGRB-gapC。
(3)L-亮氨酸工程菌株leu9的构建
将重组质粒pGRB-gapC和融合片段UgapC-Ptrc-fxpk-Ttrc-DgapC转化至含有pREDcas9质粒的leu8的感受态细胞中,用引物U-gapC-S/D-gapC-A鉴定阳性转化子。并按实施例1步骤(3)相同的方法丢失质粒,获得菌株leu9。
实施例11:L-亮氨酸工程菌株leu10的构建leu9
(1)重叠片段UackA-DackA、UpoxB-DpoxB及UldhA-DldhA的构建
以野生型大肠杆菌E.coli W3110基因组为模板,分别利用引物U-ackA-S/U-ackA-A、D-ackA-S/D-ackA-A、U-poxB-S/U-poxB-A、D-poxB-S/D-poxB-A、U-ldhA-S/U-ldhA-A及D-ldhA-S/D-ldhA-A扩增ackA、poxB、ldhA的上、下游同源臂,然后利用重叠PCR获得其上、下游同源臂融合片段UackA-DackA、UpoxB-DpoxB及UldhA-DldhA
(2)pGRB-ackA、pGRB-poxB及pGRB-ldhA质粒的构建
根据ackA、poxB、ldhA序列设计并合成gRNA 20bp正向和反向序列pGRB-ackA-S/pGRB-ackA-A,pGRB-poxB-S/pGRB-poxB-A及pGRB-ldhA-S/pGRB-ldhA-A。用实施例1步骤(2)同样的方法构建重组质粒pGRB-ackA、pGRB-poxB及pGRB-ldhA。
(3)L-亮氨酸工程菌株leu10的构建
将重组质粒pGRB-ackA和融合片段UackA-DackA电转化至含有pREDcas9质粒的leu9感受态细胞中,用引物U-ackA-S/D-ackA-A鉴定阳性转化子。并按实施例1步骤(3)相同的方法丢失质粒,获得菌株leu9ΔackA。将重组质粒pGRB-poxB和融合片段UpoxB-DpoxB电转化至含有pREDcas9质粒的leu9ΔackA感受态细胞中,用引物U-poxB-S/D-poxB-A鉴定阳性转化子。并按实施例1步骤(3)相同的方法丢失质粒,获得菌株leu9ΔackAΔpoxB。将重组质粒pGRB-ldhA和融合片段UldhA-DldhA电转化至含有pREDcas9质粒的leu9ΔackAΔpoxB感受态细胞中,用引物U-ldhA-S/D-ldhA-A鉴定阳性转化子。并按实施例1步骤(3)相同的方法丢失质粒,获得菌株leu10。
实施例12:L-亮氨酸工程菌株leu11的构建
(1)重叠片段UgltA-PleuA-DgltA的构建
以大肠杆菌E.coli W3110基因组为模板,分别利用引物U-gltA-S/U-gltA-A、D-gltA-S/D-gltA-A及PleuA-S/PleuA-A扩增gltA启动子的上游同源臂、下游同源臂及leuA基因启动子PleuA。PCR产物回收后,利用引物U-gltA-S/D-gltA-A经重叠PCR获得包含gltA基因启动子上、下游同源臂、PleuA的融合片段UgltA-PleuA-DgltA
(2)pGRB-gltA质粒的构建
根据gltA基因的启动子序列设计并合成gRNA 20bp正向和反向序列pGRB-PgltA-S和pGRB-PgltA-A,通过实施例1步骤(2)同样的方法构建重组质粒pGRB-PgltA
(3)L-亮氨酸工程菌株leu11的构建
将重组质粒pGRB-PgltA和融合片段UgltA-PleuA-DgltA转化至含有pREDcas9质粒的leu10的感受态细胞中,用引物U-gltA-S/D-gltA-A鉴定阳性转化子。并按实施例1步骤(3)相同的方法丢失质粒,获得菌株leu11。
实施例13:L-亮氨酸工程菌株leu12的构建
(1)重叠片段UyjiT-Ptrc-yeaS-Ttrc-DyjiT的构建
以大肠杆菌E.coli W3110基因组为模板,分别利用引物U-yjiT-S和U-yjiT-A、D-yjiT-S/D-yjiT-A及yeaS-S/yeaS-A扩增yjiT基因的上游同源臂、下游同源臂,以及包含Ptrc启动子、Ttrc终止子和yeaS基因的片段Ptrc-yeaS-Ttrc。PCR产物回收后,利用引物U-yjiT-S/D-yjiT-A经重叠PCR获得包含yjiT上、下游同源臂、Ptrc-yeaS-Ttrc的融合片段UyjiT-Ptrc-yeaS-Ttrc-DyjiT
(2)pGRB-yjiT质粒的构建
根据yjiT序列设计并合成gRNA 20bp正向和反向序列pGRB-yjiT-S和pGRB-yjiT-A,通过实施例1步骤(2)同样的方法构建重组质粒pGRB-yjiT。
(3)L-亮氨酸工程菌株leu12的构建
将重组质粒pGRB-yjiT和融合片段UyjiT-Ptrc-yeaS-Ttrc-DyjiT转化至含有pREDcas9质粒的leu11的感受态细胞中,用引物U-yjiT-S/D-yjiT-A鉴定阳性转化子。并按实施例1步骤(3)相同的方法丢失质粒,获得菌株leu12。
实施例14:L-亮氨酸工程菌的摇瓶发酵
(1)种子培养
分别将L-亮氨酸基因工程菌leu1、leu2、leu3、leu4、leu5、leu6、leu7、leu8、leu9、leu10、leu11和leu12接种到LB固体培养基斜面上,以E.coli W3110ΔlacI为对照,37℃培养12h。然后接种至30mL种子培养基中,37℃,220rpm摇床振荡培养6h-8h。
(2)发酵培养
以1%接种量接种至发酵培养基,35℃,220rpm摇床振荡培养20h。发酵过程中根据情况补充80%葡萄糖2-3次维持残糖浓度为0.1-0.5%,每次补充1mL,用氨水调节pH约为7。
(3)发酵液中L-亮氨酸的检测
发酵培养20h后,取发酵液经8000×g离心10min后取上清液并用去离子水稀释10倍后,使用0.8%(V/V)2,4-二硝基氟苯对发酵液进行衍生反应,采用高效液相色谱测定L-亮氨酸含量。leu1、leu2、leu3、leu4、leu5、leu6、leu7、leu8、leu9、leu10、leu11、leu12的L-亮氨酸产量分别达到0.5g/L、7.6g/L、9.1g/L、11.8g/L、13.2g/L、14.7g/L、16.4g/L、17.8g/L、22.3g/L、24.6g/L、32.5g/L、36.8g/L,对照菌株E.coli W3110ΔlacI无L-亮氨酸合成(如图1所示)。
(4)培养基
种子培养基成分为:20g/L葡萄糖,10g/L酵母提取物,6g/L蛋白胨,1.2g/L KH2PO4,1g/L MgSO4·7H2O,10mg/L FeSO4·7H2O,10mg/L MnSO4·7H2O,1.3mg/L VB1,0.3mg/L VH,20mL/L苯酚红,其余为水,pH 7.0-7.2,115℃,高压蒸汽灭菌15min。
发酵培养基成分为:20g/L葡萄糖,2g/L酵母提取物,4g/L蛋白胨,2g/L KH2PO4,1.8g/L MgSO4·7H2O,1g/L二水柠檬酸钠,10mg/L FeSO4·7H2O,10mg/L MnSO4·7H2O,0.8mg/L VB1,0.2mg/L VH,20mL/L苯酚红,其余为水,pH 7.0-7.2,115℃,高压蒸汽灭菌15min。
实施例15:L-亮氨酸工程菌的5L发酵罐发酵
(1)种子培养
分别用接种环将3-5支经新鲜LB斜面培养基活化的L-亮氨酸工程菌leu1、leu2、leu3、leu4、leu5、leu6、leu7、leu8、leu9、leu10、leu11和leu12接种至装有2.5L种子培养基的5L发酵罐,流加25%的氨水调节发酵液pH至6.8-7.2,溶氧维持在20-40%,通风量2-4m3/h,搅拌转速200-800rpm,37℃培养6h。
(2)发酵培养
以10%接种量将步骤(1)的种子培养物接至装有3L发酵培养基的5L发酵罐进行发酵培养,发酵温度35℃,通风量2-4m3/h,搅拌转速300-900rpm,溶氧维持在30-40%,流加浓度为80%的葡萄糖溶液,维持残糖浓度为0.1-0.5%,流加25%的氨水调节发酵液pH至6.8-7.2。每株菌发酵至其最高L-亮氨酸产量。
(3)发酵液中L-亮氨酸的检测
发酵液经8000×g离心10min后取上清液并用去离子水稀释10倍后,使用0.8%(V/V)2,4-二硝基氟苯对发酵液进行衍生反应,采用高效液相色谱测定L-亮氨酸含量。各菌株的L-亮氨酸最高产量及发酵时间如表1所示。
表1L-亮氨酸工程菌株发酵参数
Figure SMS_4
Figure SMS_5
工程菌株leu12经34h发酵,其L-亮氨酸产量达到85.6g/L,转化率为36.6%,生产强度达2.52g/L/h。上述L-亮氨酸产量、转化率及生产强度为目前报道最高指标,发酵周期为目前报道最短。
(4)培养基
种子培养基成分为:30g/L葡萄糖,5g/L酵母提取物,2g/L蛋白胨,2g/L KH2PO4,1.5g/LMgSO4·7H2O,10mg/L FeSO4·7H2O,10mg/L MnSO4·7H2O,1.3mg/L VB1,0.3mg/L VH,8mL/L玉米浆,其余为水,pH 7.0-7.2,115℃,高压蒸汽灭菌15min。
发酵培养基成分为:10g/L葡萄糖,3g/L酵母提取物,1g/L谷氨酸,3g/L KH2PO4,1.8g/LMgSO4·7H2O,2g/L二水柠檬酸钠,10mg/L FeSO4·7H2O,10mg/L MnSO4·7H2O,2mg/LVB1,0.2mg/L VH,8mL/L玉米浆,其余为水,pH 7.0-7.2,115℃,高压蒸汽灭菌15min。
实施例16:L-亮氨酸工程菌leu12的5L发酵罐发酵
(1)种子培养
同实施例15步骤(1)
(2)发酵培养
以5%接种量将步骤(1)的种子培养物接至装有3L发酵培养基的5L发酵罐进行发酵培养,发酵温度32℃,通风量2-3m3/h,搅拌转速300-700rpm,溶氧维持在25-40%,流加浓度为80%的葡萄糖溶液,维持残糖浓度为0.1-0.5%,流加25%的氨水调节发酵液pH至6.8-7.2。发酵30h。
(3)发酵液中L-亮氨酸的检测
同实施例15步骤(3)。L-亮氨酸工程菌leu12经30h发酵,其L-亮氨酸产量达到72.7g/L,转化率为32.3%,生产强度达2.42g/L/h。
(4)培养基
同实施例15步骤(4)。
实施例17:L-亮氨酸工程菌leu12的5L发酵罐发酵
(1)种子培养
同实施例15步骤(1)
(2)发酵培养
以8%接种量将步骤(1)的种子培养物接至装有3L发酵培养基的5L发酵罐进行发酵培养,发酵温度37℃,通风量3-5m3/h,搅拌转速400-900rpm,溶氧维持在40-50%,流加浓度为80%的葡萄糖溶液,维持残糖浓度为0.1-0.5%,流加25%的氨水调节发酵液pH至6.8-7.2。发酵36h。
(3)发酵液中L-亮氨酸的检测
同实施例15步骤(3)。L-亮氨酸工程菌leu12经36h发酵,其L-亮氨酸产量达到79.3g/L,转化率为36.2%,生产强度达2.20g/L/h。
(4)培养基
同实施例15步骤(4)。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本专利构思的前提下,上述各实施方式还可以做出若干变形、组合和改进,这些都属于本专利的保护范围。因此,本专利的保护范围应以权利要求为准。

Claims (5)

1.一株L-亮氨酸高产菌株,其特征在于,所述菌株以Escherichia coli W3110为出发菌株,在基因组上敲除乳糖操纵子阻遏蛋白编码基因lacI,在基因组上过表达解除反馈抑制的乙酰羟酸合酶编码基因ilvBNM,利用质粒过表达解除L-亮氨酸反馈抑制异丙基苹果酸合成酶编码基因leuAM、β-异丙基苹果酸脱氢酶编码基因leuB、α-异丙基苹果酸异构酶编码基因leuCD,在基因组上表过达羟酸还原异构酶编码基因ilvC、枯草芽孢杆菌亮氨酸脱氢酶的编码基因bcd,敲除分支链氨基酸氨基转移酶编码基因ilvE,在基因组上过表达吡啶核苷酸转氢酶的基因pntAB、泛素激酶编码基因coaA、谷氨酸脱氢酶编码基因rocG以及磷酸解酮酶编码基因fxpk,敲除乙酸激酶编码基因ackA、丙酮酸脱氢酶编码基因poxB、乳酸脱氢酶编码基因ldhA;在此基础上,将基因组中柠檬酸合酶编码基因gltA的启动子替换为受亮氨酸弱化的PleuA启动子;在基因组上过表达L-亮氨酸转运蛋白编码基因yeaS,最终获得一株L-亮氨酸高产菌株。
2.如权利要求1所述的一株L-亮氨酸高产菌株,其特征在于:
所述乳糖操纵子阻遏蛋白编码基因lacI来自大肠杆菌W3110;
所述解除反馈抑制的乙酰羟酸合酶编码基因ilvBNM,已公开于中国发明专利ZL201910484362.5;
所述解除L-亮氨酸反馈抑制异丙基苹果酸合成酶编码基因leuAM,已公开于中国发明专利ZL 201910820591.X中;
所述β-异丙基苹果酸脱氢酶编码基因leuB来自大肠杆菌W3110;
所述α-异丙基苹果酸异构酶编码基因leuCD来自大肠杆菌W3110;
所述羟酸还原异构酶编码基因ilvC来自大肠杆菌W3110;
所述亮氨酸脱氢酶的编码基因bcd来自枯草芽孢杆菌168;
所述分支链氨基酸氨基转移酶编码基因ilvE来自大肠杆菌W3110;
所述吡啶核苷酸转氢酶的基因pntAB来自大肠杆菌W3110;
所述泛素激酶编码基因coaA来自大肠杆菌W3110;
所述谷氨酸脱氢酶编码基因rocG来自枯草芽孢杆菌168;
所述磷酸解酮酶编码基因fxpk来自青春双歧杆菌ATCC 15703;
所述乙酸激酶编码基因ackA来自大肠杆菌W3110;
所述丙酮酸脱氢酶编码基因poxB来自大肠杆菌W3110;
所述乳酸脱氢酶编码基因ldhA来自大肠杆菌W3110;
所述柠檬酸合酶编码基因gltA来自大肠杆菌W3110;
所述启动子PleuA为leuA启动子,来自大肠杆菌W3110;
所述L-亮氨酸转运蛋白编码基因yeaS来自大肠杆菌W3110。
3.如权利要求2所述的一株L-亮氨酸高产菌株,其特征在于:
所述乳糖操纵子阻遏蛋白编码基因lacI来自大肠杆菌W3110,NCBI中Protein ID:BAE76127.1;
所述解除反馈抑制的乙酰羟酸合酶编码基因ilvBNM,序列如中国发明专利ZL201910484362.5中的SEQ ID NO.2;
所述解除L-亮氨酸反馈抑制异丙基苹果酸合成酶编码基因leuAM,序列如中国发明专利ZL201910820591.X中的SEQ ID NO.2;
所述β-异丙基苹果酸脱氢酶编码基因leuB来自大肠杆菌W3110,NCBI中Protein ID:BAB96642.1;
所述α-异丙基苹果酸异构酶编码基因leuCD来自大肠杆菌W3110,NCBI中Protein ID:BAB96641.2-BAB96640.1;
所述羟酸还原异构酶编码基因ilvC来自大肠杆菌W3110,NCBI中Protein ID:BAE77523.1;
所述亮氨酸脱氢酶的编码基因bcd来自枯草芽孢杆菌168,NCBI中Protein ID:NP_390288.1;
所述分支链氨基酸氨基转移酶编码基因ilvE来自大肠杆菌W3110,NCBI Protein ID:BAE77527.1;
所述吡啶核苷酸转氢酶的基因pntAB来自大肠杆菌W3110,NCBI中Protein ID:BAA15342.1-BAA15336.1;
所述泛素激酶编码基因coaA来自大肠杆菌W3110,NCBI中Protein ID:BAE77341.1;
所述谷氨酸脱氢酶编码基因rocG来自枯草芽孢杆菌168,NCBI中Protein ID:NP_391659.2;
所述磷酸解酮酶编码基因fxpk来自青春双歧杆菌ATCC 15703,NCBI中Protein ID:WP_011743105.1;
所述乙酸激酶编码基因ackA来自大肠杆菌W3110,NCBI中Protein ID:BAA16135.1;
所述丙酮酸脱氢酶编码基因poxB来自大肠杆菌W3110,NCBI中Protein ID:BAA35585.1;
所述乳酸脱氢酶编码基因ldhA来自大肠杆菌W3110,NCBI中Protein ID:BAA14990.1;
所述柠檬酸合酶编码基因gltA来自大肠杆菌W3110,NCBI中Protein ID:BAA35384.2;
所述启动子PleuA为leuA启动子来自大肠杆菌W3110,NCBI中Protein ID:BAB96643.2;
所述L-亮氨酸转运蛋白编码基因yeaS来自大肠杆菌W3110,NCBI中Protein ID:BAA15593.1。
4.权利要求1-3任意一项所述菌株在生产L-亮氨酸中的应用。
5.如权利要求4所述的应用,其特征在于,发酵生产L-亮氨酸中的应用,具体方法如下:
以5-10%接种量将种子培养物接至发酵培养基中进行发酵培养,通风量2-5m3/h,搅拌转速300-900rpm,溶氧维持在20-50%,pH维持在6.8-7.2,培养温度32-37℃,发酵周期30-36h,发酵过程中维持残糖浓度为0.1-0.5%(W/V)。
CN202211638586.5A 2022-12-20 2022-12-20 一种生产l-亮氨酸的基因工程菌及其应用 Pending CN116355818A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211638586.5A CN116355818A (zh) 2022-12-20 2022-12-20 一种生产l-亮氨酸的基因工程菌及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211638586.5A CN116355818A (zh) 2022-12-20 2022-12-20 一种生产l-亮氨酸的基因工程菌及其应用

Publications (1)

Publication Number Publication Date
CN116355818A true CN116355818A (zh) 2023-06-30

Family

ID=86915636

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211638586.5A Pending CN116355818A (zh) 2022-12-20 2022-12-20 一种生产l-亮氨酸的基因工程菌及其应用

Country Status (1)

Country Link
CN (1) CN116355818A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117925666A (zh) * 2024-03-25 2024-04-26 天津科技大学 一种l-异亮氨酸生产菌株及其构建方法与应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117925666A (zh) * 2024-03-25 2024-04-26 天津科技大学 一种l-异亮氨酸生产菌株及其构建方法与应用
CN117925666B (zh) * 2024-03-25 2024-06-11 天津科技大学 一种l-异亮氨酸生产菌株及其构建方法与应用

Similar Documents

Publication Publication Date Title
CA2700510C (en) Mutant microorganisms having high ability to produce putrescine and method for producing putrescine using the same
CN116004500A (zh) 一种生产l-缬氨酸的基因工程菌及其构建方法与应用
CN111100834A (zh) 一种提高基因工程菌泛酸产量的构建方法及菌株
WO2022174597A1 (zh) 一种用于l-肌氨酸生产的基因工程菌及构建方法与应用
CN117844728B (zh) 一种l-缬氨酸生产菌株及其构建方法与应用
CN114480235B (zh) 一种代谢工程改造大肠杆菌发酵制备α-酮异戊酸的方法
CN116355818A (zh) 一种生产l-亮氨酸的基因工程菌及其应用
CN117887652B (zh) 一种乳清酸生产菌株及其定向改造方法与应用
CN111778225A (zh) 一种天冬氨酸激酶突变体及其在生产l-苏氨酸中的应用
CN116590209A (zh) 一种产d-泛酸的基因工程菌、构建方法及应用
CN109456987B (zh) 高产l-亮氨酸的相关基因及工程菌构建方法与应用
CN116804180A (zh) 一种生产l-缬氨酸的基因工程菌及其应用
CN117844838A (zh) 一株高产l-苯丙氨酸的菌株构建及其应用
CN111944857B (zh) 一种提高l-异亮氨酸产率的发酵方法
CN112481186B (zh) 一种生产4-羟基异亮氨酸的基因工程菌及其应用
CN117683802B (zh) 一种通过甲基苹果酸途径生产异亮氨酸的罗尔斯通氏菌工程菌株及其构建与生产方法
CN118726220A (zh) 一种高产l-缬氨酸的谷氨酸棒杆菌重组菌及其构建方法
CN116970545A (zh) 一种生产四氢嘧啶的基因工程菌及其构建方法与应用
US20210292716A1 (en) D-xylose dehydrogenase from coryneform bacteria and process for preparing d-xylonate
CN118006649A (zh) 一种高响应范围的精氨酸生物传感器及其构建方法和应用
CN117363549A (zh) 一种生产5-羟色胺的基因工程菌及其构建方法与应用
CN118652920A (zh) 产5-氨基乙酰丙酸的谷氨酸棒杆菌工程菌及构建方法
CN116640711A (zh) 重组大肠杆菌及其构建方法和应用以及生产β-丙氨酸的方法
CN116445514A (zh) 基于cysB突变体的高产L-半胱氨酸基因工程菌及应用
CN117187151A (zh) 一种生产l-高丝氨酸的基因工程菌及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination