CN116212051B - 一种羟基喜树碱恶性肿瘤靶向微球及其制备方法与应用 - Google Patents

一种羟基喜树碱恶性肿瘤靶向微球及其制备方法与应用 Download PDF

Info

Publication number
CN116212051B
CN116212051B CN202310291052.8A CN202310291052A CN116212051B CN 116212051 B CN116212051 B CN 116212051B CN 202310291052 A CN202310291052 A CN 202310291052A CN 116212051 B CN116212051 B CN 116212051B
Authority
CN
China
Prior art keywords
hydroxycamptothecin
microsphere
preparation
solution
soy protein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310291052.8A
Other languages
English (en)
Other versions
CN116212051A (zh
Inventor
杜会强
郑新华
李玖零
毛冬雪
何佩娜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pingdingshan University
Original Assignee
Pingdingshan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pingdingshan University filed Critical Pingdingshan University
Publication of CN116212051A publication Critical patent/CN116212051A/zh
Application granted granted Critical
Publication of CN116212051B publication Critical patent/CN116212051B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/4738Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/4745Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems condensed with ring systems having nitrogen as a ring hetero atom, e.g. phenantrolines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6927Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/19Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles lyophilised, i.e. freeze-dried, solutions or dispersions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本发明公开一种羟基喜树碱恶性肿瘤靶向微球的制备方法,属于功能材料技术领域,包括以下步骤:(1)大豆分离蛋白微球的制备;(2)偶联大豆分离蛋白‑羟基喜树碱微球的制备;(3)绿原酸偶联大豆分离蛋白‑羟基喜树碱微球的制备。同时本发明中还公开了上述制备方法制备得到的靶向微球以及该靶向微球在抗肺部肿瘤药物的制备中的应用。本发明提供的靶向微球具有能够延长血液循环时间、改善药物溶解性、改变药物的给药途径、控制药物的释放等优点,本发明中使用大豆分离蛋白与其他蛋白质相比,具有较大比例的亲水性氨基酸,能够包裹绿原酸并组装成稳定的微球。此外,本发明提供的制备方法简便,利于放大生产。

Description

一种羟基喜树碱恶性肿瘤靶向微球及其制备方法与应用
技术领域
本发明涉及功能材料领域,特别是涉及一种羟基喜树碱恶性肿瘤靶向微球及其制备方法与应用。
背景技术
肺癌是全球最常见最致命的恶性肿瘤之一,其中非小细胞肺癌(NSCLC)约占所有新诊断肺癌的85%。肺癌首选治疗方案为手术切除,但由于60%肺癌患者确诊时已进入进展期,手术切除率不及半数,而传统的放、化疗手段有效率较低。目前,传统的铂类化疗方案的研究和临床应用进入了瓶颈期,单纯的化疗有效率低,随着治疗周期的增长,毒副作用不断累积。除传统治疗手段外,还有介入治疗,免疫治疗等新兴的治疗手段,但均有各自的不足与局限性。
近年来,肺癌靶向治疗发展迅速,己有相当数量的靶向抑制剂上市,用于临床治疗研究,但现有技术中,此类靶向制剂在取得良好临床效果的同时也存在着一些不可避免的问题,例如患者长期使用EGFR-TKI类药物后均会产生耐药性,同样针对ALK基因的靶向药物也具有耐药性等。
因此,如何提供一种新型靶向制剂系统用于肺癌的治疗是本领域技术人员亟需解决的技术问题。
发明内容
本发明的目的是提供一种羟基喜树碱恶性肿瘤靶向微球及其制备方法与应用,以解决上述现有技术存在的问题,为抗肺癌药物的制备提供新的思路。
为实现上述目的,本发明提供了如下方案:
一种羟基喜树碱恶性肿瘤靶向微球的制备方法,包括以下步骤:
(1)大豆分离蛋白微球的制备:
将大豆分离蛋白溶于缓冲溶液中,调节pH=10,搅拌反应6h后逐滴加入溴酸钠溶液,避光继续搅拌反应60min,然后利用煮好的(蒸馏水煮沸30min)透析袋透析三天,再将透析袋中所得溶液冷冻干燥,即得大豆分离蛋白微球;
(2)偶联大豆分离蛋白-羟基喜树碱微球的制备:
将所述大豆分离蛋白微球溶于有机溶剂中超声分散,再边搅拌边向其中滴入羟基喜树碱溶液后,依次进行高压均质、旋转蒸发、冷冻干燥,得到偶联大豆分离蛋白-羟基喜树碱微球;
(3)绿原酸偶联大豆分离蛋白-羟基喜树碱微球的制备:
将所述偶联大豆分离蛋白-羟基喜树碱微球加入绿原酸甲醇溶液中,匀浆搅拌后依次进行高压均质、旋转蒸发、冷冻干燥,即得绿原酸偶联大豆分离蛋白-羟基喜树碱微球。
有益效果:大豆分离蛋白作为FDA批准的GRAS级辅料,由于其成本低、生物相容性良好,是一种理想的微球载体材料。其作为一种天然的两亲性分子材料,与其他蛋白质相比,具有较大比例的亲水性氨基酸,通过适当氧化剂和偶联剂作用,能够包裹疏水性药物,组装成稳定的微球粒,适合包载疏水性药物分子。
绿原酸是一种生物活性多酚类化合物,主要存在于植物中,具有效抗病毒,抗真菌抗氧化和抗肿瘤特性。在严格控制抗菌药物和多药耐药盛行的今天,广泛应用于呼吸系统感染性疾病。另外,绿原酸可以被肺组织大量摄取,在肺组织浓度高,且肺癌组织中具有绿原酸受体,经过绿原酸修饰的微球具有良好的肺靶向性,为肺癌化疗药物靶向治疗提供了方向。
优选的,步骤(1)中所述缓冲溶液为Na2CO3-NaHCO3缓冲溶液,且pH=9.6;
所述溴酸钠溶液的质量浓度为1.8%,且滴加速度为5-60滴/min;
所述大豆分离蛋白、缓冲溶液和溴酸钠溶液的添加量之比为50mg:20mL:5mL;
所述调节pH为利用浓度为1mol/L的碳酸钠进行调节;
所述透析袋分子量为3500,所述透析介质为蒸馏水。
优选的,步骤(1)中所述搅拌速率为100r/min;
所述继续搅拌速率为200r/min;
所述冷冻干燥具体包括以下步骤:
将透析袋中所得溶液加入到冻干瓶中,在-40℃条件下预冻2小时,之后在-64℃条件下冷冻干燥48小时。
优选的,步骤(2)中所述有机溶剂为氯仿和无水乙醇的混合溶剂,其中氯仿和无水乙醇的体积比为7:3;
所述大豆分离蛋白微球在所述有机溶剂中的浓度为50-200mg/mL;
所述羟基喜树碱溶液浓度为2.3mg/mL。
优选的,步骤(2)中所述超声功率为5kW,超声时间为5-10min;
所述搅拌速率为200r/min,搅拌时间为50min;
所述高压均质压力为3kPa;
所述冷冻干燥具体包括以下步骤:
将旋转蒸发后得到的水分散液在-40℃的条件下预冻2小时,之后在-60℃的条件下冷冻干燥64小时。
优选的,步骤(3)中所述绿原酸溶液为浓度166.9mg/400mL的绿原酸甲醇溶液。
优选的,步骤(3)中所述匀浆搅拌速率为200r/min,匀浆时间为50min;
所述冷冻干燥为在-10℃下冷冻干燥64小时。
优选的,步骤(2)和(3)中所述旋转蒸发转速为80-940r/min。
一种羟基喜树碱恶性肿瘤靶向微球的制备方法制备得到的羟基喜树碱恶性肿瘤靶向微球。
一种羟基喜树碱恶性肿瘤靶向微球在抗肺部肿瘤药物的制备中的应用。
本发明公开了以下技术效果:本发明提供的靶向微球具有能够延长血液循环时间、改善药物溶解性、改变药物的给药途径、控制药物的释放等优点,并能通过增强的渗透性和保留(EPR)效应积聚于肿瘤组织中,其作为肿瘤等重大疾病的新治疗手段,在提高药效及降低毒性方面具有独特性质和优势。其次,本发明中的大豆分离蛋白由于其良好生物相容性、无毒、体内生物降解性和自组装能力,为微球药物输送系统的理想载体。本发明中使用大豆分离蛋白与其他蛋白质相比,具有较大比例的亲水性氨基酸,这使其能够包裹绿原酸并组装成稳定的微球,进而能够为肺癌的靶向治疗提供新的途径。此外,本发明提供的制备方法简便,利于放大生产。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为实施例1所得靶向微球的粒径分布图;
图2为实施例1所得靶向微球Zeta点位图;
图3为实施例1所得靶向微球的透射电镜图;
图4为实施例1所得靶向微球的存放稳定性及包封率示意图;
其中A为粒径变化图,B为包封率变化图;
图5为实施例1所得靶向微球体外释放率变化图;
图6为羟基喜树碱、药物-大豆分离蛋白、实施例1所得CG-SPI-HPs处理A549细胞后细胞存活率示意图;
图7为实施例1所得CG-SPI-HP的生物组织分布影像图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
实施例1
一种羟基喜树碱恶性肿瘤靶向微球的制备方法,包括以下步骤:
(1)空白微球的制备:大豆分离蛋白(SPI)微球
称取SPI 50mg,将其溶于20mL Na2CO3-NaHCO3缓冲溶液中(pH=9.6),用1M碳酸钠溶液将体系pH值调节为10,磁力搅拌器上以100r/min的搅拌速度搅拌反应6h,得第一产物,然后将第一产物一次滴加至5mL质量浓度为1.8%的溴酸钠溶液中,整个体系避光置于磁力搅拌器上以200r/min的搅拌速度搅拌混匀反应60min;
将分子量为3500的透析袋用沸水煮30min,然后将上述反应溶液加入到煮好的透析袋中,以蒸馏水为透析介质,透析三天。将透析袋中的溶液加入到冻干瓶中,在-40℃条件下预冻2小时,然后在-64℃条件下冷冻干燥48小时,得到大豆分离蛋白(SPI)微球冻干粉86.89mg;
(2)制备偶联大豆分离蛋白-羟基喜树碱微球(SPI-HPs)
取步骤(1)中所得SPI微球50mg溶于1mL含有氯仿和无水乙醇的混合有机溶剂中,然后以5KW的超声功率超声5-10min,其中,该混合有机溶剂中氯仿与无水乙醇的体积比为7:3,然后将浓度为2.3mg/mL的羟基喜树碱溶液滴加入上述含有大豆分离蛋白的溶液中,期间伴随高速匀浆器以200r/min的速率高速搅拌匀浆50min。将匀浆后的呈乳化状态的体系,在3kPa压力下进行高压均质,得到半透明呈现淡黄色乳光的均一体系,利用旋转蒸发在80r/min转速下除去体系中的有机溶剂(乙醇和氯仿),将得到的水分散液在-40℃的条件下预冻2小时,之后在-60℃的条件下冷冻干燥64小时,得到SPI-HPs119.88mg;
(3)制备绿原酸偶联大豆分离蛋白-羟基喜树碱微球(GC-SPI-HPs)
称取166.9mg CG溶于400mL甲醇中,然后将步骤(2)中所得SPI-HPs冷冻干燥物加入该溶液中,高速匀浆器以200r/min的速率高速搅拌匀浆50min,得到乳化状态体系,然后高压均质,80-940r/min转速旋转蒸发除去甲醇,产物在-10℃的条件下冷冻干燥64小时,得到产物CG-SPI-HPs 169.66mg。
所得产物CG-SPI-HPs的粒径分布图如图1所示,Zeta点位图如图2所示,透射电镜图如图3所示。
将实施例1中的技术方案重复实施三次,对三次所得产物分别进行检测,检测结果见表1:
表1
次数 Zeta电位:mV 粒径:nm 平均粒径 包封率:% 载药量:%
37.2 110.1 0.202 83.82 3.19
37.8 121.9 0.213 85.01 3.48
39.1 121.6 0.256 81.9 3.51
实施例2-4
一种羟基喜树碱恶性肿瘤靶向微球的制备方法,与实施例1的不同之处在于,步骤(1)中第一产物滴加至溴酸钠溶液中的速度依次为每滴3秒、每滴6秒、每滴12秒。
不同滴加速率对微球性质的影响如下表2:
表2:
加入速度 微粒直径:nm 平均直径:nm
实施例1 138.3±2.6 0.236±0.002
实施例2 129.3±1.3 0.169±0.021
实施例3 128.2±0.9 0.176±0.020
实施例4 139.9±0.8 0.188±0.021
实施例5-8
一种羟基喜树碱恶性肿瘤靶向微球的制备方法,与实施例1的不同之处在于,步骤(2)中旋转蒸发转速依次为180r/min、480r/min、760r/min、940r/min。
不同转速对微球性质的影响如下表3:
表3:
转速r/min 微粒直径:nm 平均粒径:nm
实施例1 139.3±0.12 0.181±0.009
实施例5 129.8±1.2 0.159±0.016
实施例6 112.3±0.9 0.192±0.013
实施例7 108.6±1.2 0.193±0.017
实施例8 109.6±1.3 0.199±0.021
实施例9-10
一种羟基喜树碱恶性肿瘤靶向微球的制备方法,与实施例1的不同之处在于,步骤(2)中大豆分离蛋白微球在有机溶剂中的浓度依次为120mg/mL、200mg/mL。不同大豆分离蛋白微球浓度对微球性质的影响见下表4:
表4:
浓度:mg·mL-1 微粒直径:nm 平均粒径:nm
实施例1 112.1±0.1 0.178±0.021
实施例9 129.7±1.2 0.179±0.09
实施例10 128.8±1.3 0.19±0.020
技术效果
1.存放稳定性和包封率
存放稳定性和包封率
按照最佳制备工艺制备所得产品用纯净水稀释10倍后,于4℃下储存,分别于存储后0,1,2,6,12,24,48h时测定包封率及粒径,每个时间点平行设置三份样品。具体结果参考图4,其中粒径随时间变化图为图4A,包封率随时间变化图为图4B。
2.体外释放:
37℃含有0.2%吐温-80的去离子水中测试了产品体外释放动力学。参考图5,结果表明,释放是双相的,其特征是在最初的8小时内快速释放约20%的药物,然后进入第二阶段缓慢释放,在24h后DM1累积释放量约40%。由于产品具有核-壳结构,在制备过程中,大豆分离蛋白首先形成核,然后缓慢吸附羟基喜树碱,形成一层又一层的壳。因此,药物的初始快速释放可能是由于壳中或核-壳界面处的药物引起的,而慢速药物释放阶段可能是处于产品疏水核内物理截留的药物。
3.体外抗肿瘤活性:
羟基喜树碱、药物-大豆分离蛋白、实施例1所得CG-SPI-HPs评价
A549细胞于1972年从肺癌患者体内分离得到,为人非小细胞肺癌细胞系,被广泛的用于肺癌治疗药物研究。
为了评体外抗肿瘤活性,本发明采用cck-8显色法考察其对A549人类肺癌细胞的增长抑制情况。实验中游离HP和微球药物浓度范围均为1x10-4-1x10-3ng HP equiv./mL。如图6所示,实验结果表明,CG-SPI-HP具有很强的细胞增殖抑制作用,且具有剂量依赖性,而CG-SPI对细胞增殖无影响。其中,游离的HP和CG-SPI-HP的IC50值分别为0.04173ng/mL和0.00537ng/mL CG-SPI-HPIC50值降低近8倍。而且,与游离HP相比,低剂量CG-SPI-HP对A549细胞仍然具有良好的抗增殖能力,但在剂量达到0.1ng/mL后,差异趋于一致。
4.CG-SPI-HP的肿瘤靶向效率及生物组织分布
为了评微球制剂在活体动物中的分布情况,按照最佳制备工艺制备了包裹荧光物质IR-780的微球制剂:IR-780-loaded CG-SPI-HPs,静脉注射游离IR-780(20ug)和IR-780-微球药物(20ug IR-780equiv.)60h后处死小鼠,取出主要脏器(心、肝、脾、肺、肾)以及肿瘤组织进行离体成像,并用整合形态分析软件(Molecular Devices,CA,US)计算器官中的相对信号强度,进行半定量分析。
如图7所示,影像结果显示,在肿瘤中IR-780-loaded微球药物组的荧光强度是游离IR-780组的2.5倍,IR-780-loaded微球药物组的IR一荧光信号强度显示相比于游离IR-780,微球药物显著减少了其他中的积累,并增加了肺中的积累。
主要器官及肿瘤离体荧光强度(X104)见下表5:
表5
以上所述的实施例仅是对本发明的优选方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。

Claims (3)

1.一种羟基喜树碱恶性肿瘤靶向微球的制备方法,其特征在于,包括以下步骤:
(1)大豆分离蛋白微球的制备:将大豆分离蛋白溶于缓冲溶液中,调节pH=10,搅拌反应6h后逐滴加入溴酸钠溶液,避光继续搅拌反应60min,然后利用煮好的透析袋透析三天,再将透析袋中所得溶液冷冻干燥,即得大豆分离蛋白微球;所述缓冲溶液为Na2 CO3-NaHCO3缓冲溶液,且pH=9.6;所述溴酸钠溶液的质量浓度为1.8%,且滴加速度为5-60滴/min;所述大豆分离蛋白、缓冲溶液和溴酸钠溶液的添加量之比为50mg:20mL:5mL;所述调节pH为利用浓度为1mol/L的碳酸钠进行调节;所述透析袋分子量为3500,所述透析介质为蒸馏水;所述搅拌速率为100r/min;所述继续搅拌速率为200r/min;所述冷冻干燥具体包括以下步骤:将透析袋中所得溶液加入到冻干瓶中,在-40℃条件下预冻2小时,之后在-64℃条件下冷冻干燥48小时;
(2)偶联大豆分离蛋白-羟基喜树碱微球的制备:将所述大豆分离蛋白微球溶于有机溶剂中超声分散,再边搅拌边向其中滴入羟基喜树碱溶液后,依次进行高压均质、旋转蒸发、冷冻干燥,得到偶联大豆分离蛋白-羟基喜树碱微球;所述有机溶剂为氯仿和无水乙醇的混合溶剂,其中氯仿和无水乙醇的体积比为7:3;所述大豆分离蛋白微球在所述有机溶剂中的浓度为50-200mg/mL;所述羟基喜树碱溶液浓度为2.3mg/mL;所述超声功率为5kW,超声时间为5-10min;所述搅拌速率为200r/min,搅拌时间为50min;所述高压均质压力为3kPa;所述冷冻干燥具体包括以下步骤:将旋转蒸发后得到的水分散液在-40℃的条件下预冻2小时,之后在-60℃的条件下冷冻干燥64小时;所述旋转蒸发转速为80-940r/min;
(3)绿原酸偶联大豆分离蛋白-羟基喜树碱微球的制备:将所述偶联大豆分离蛋白-羟基喜树碱微球加入绿原酸甲醇溶液中,匀浆搅拌后依次进行高压均质、旋转蒸发、冷冻干燥,即得绿原酸偶联大豆分离蛋白-羟基喜树碱微球;所述绿原酸溶液为浓度166.9mg/400mL的绿原酸甲醇溶液;所述匀浆搅拌速率为200r/min,匀浆时间为50min;所述高压均质压力为3kPa;所述冷冻干燥为在-10℃下冷冻干燥64小时;所述旋转蒸发转速为80-940r/min。
2.一种如权利要求1所述的羟基喜树碱恶性肿瘤靶向微球的制备方法制备得到的羟基喜树碱恶性肿瘤靶向微球。
3.一种如权利要求2所述的羟基喜树碱恶性肿瘤靶向微球在抗肺部肿瘤药物的制备中的应用。
CN202310291052.8A 2022-06-02 2023-03-23 一种羟基喜树碱恶性肿瘤靶向微球及其制备方法与应用 Active CN116212051B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2022106260971 2022-06-02
CN202210626097.1A CN114870029A (zh) 2022-06-02 2022-06-02 一种羟基喜树碱恶性肿瘤靶向微球及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN116212051A CN116212051A (zh) 2023-06-06
CN116212051B true CN116212051B (zh) 2023-09-22

Family

ID=82680127

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202210626097.1A Withdrawn CN114870029A (zh) 2022-06-02 2022-06-02 一种羟基喜树碱恶性肿瘤靶向微球及其制备方法与应用
CN202310291052.8A Active CN116212051B (zh) 2022-06-02 2023-03-23 一种羟基喜树碱恶性肿瘤靶向微球及其制备方法与应用

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202210626097.1A Withdrawn CN114870029A (zh) 2022-06-02 2022-06-02 一种羟基喜树碱恶性肿瘤靶向微球及其制备方法与应用

Country Status (1)

Country Link
CN (2) CN114870029A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101317823A (zh) * 2008-07-17 2008-12-10 厦门大学 植入型抗肿瘤药10-羟基喜树碱双重缓释颗粒制剂及其制备方法
CN101352420A (zh) * 2008-09-08 2009-01-28 厦门大学 羟基喜树碱缓释微球及其制备方法
CN102908318A (zh) * 2012-10-31 2013-02-06 中山大学 一种10-羟基喜树碱纳米微球及其制备方法
KR20180138113A (ko) * 2017-06-20 2018-12-28 내셔널센터 포 나노사이언스 앤 테크놀로지, 차이나 표적 지향성 하이브리드 나노 시스템 및 그 제조 방법과 용도
CN109700784A (zh) * 2019-03-11 2019-05-03 梁江丽 替格瑞洛缓释微球及其制备和应用

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005120286A (ja) * 2003-10-17 2005-05-12 Little Scientist:Kk 羽毛ケラチン加水分解物またはその塩、及びこれらを含有する化粧料組成物、並びに羽毛ケラチン加水分解物またはその塩の製造方法
CN101455645B (zh) * 2008-12-30 2011-11-09 上海纳米技术及应用国家工程研究中心有限公司 植物性大豆蛋白载体的药物微球的制备方法
CN101450213A (zh) * 2008-12-30 2009-06-10 上海纳米技术及应用国家工程研究中心有限公司 大豆蛋白药物凝胶剂及其制备方法
CN102382247B (zh) * 2010-09-03 2014-06-04 中国科学院过程工程研究所 一种尺寸均一的分子印迹聚合物微球制备方法及应用
WO2013149323A1 (en) * 2012-04-02 2013-10-10 Ntegrity Natural products for skin care
CN105412024B (zh) * 2015-12-14 2018-03-30 广州帝奇医药技术有限公司 靶向疏水性抗肿瘤药物纳米制剂及其制备方法
CN108938598A (zh) * 2018-09-14 2018-12-07 华南理工大学 琥珀酸酐改性玉米醇溶蛋白载药颗粒的制备方法
CN111838397A (zh) * 2020-07-15 2020-10-30 东北农业大学 一种热聚集介导的茶多酚-大豆蛋白微球颗粒的制备工艺
CN113693155A (zh) * 2021-08-25 2021-11-26 芜湖职业技术学院 一种大豆分离蛋白膜的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101317823A (zh) * 2008-07-17 2008-12-10 厦门大学 植入型抗肿瘤药10-羟基喜树碱双重缓释颗粒制剂及其制备方法
CN101352420A (zh) * 2008-09-08 2009-01-28 厦门大学 羟基喜树碱缓释微球及其制备方法
CN102908318A (zh) * 2012-10-31 2013-02-06 中山大学 一种10-羟基喜树碱纳米微球及其制备方法
KR20180138113A (ko) * 2017-06-20 2018-12-28 내셔널센터 포 나노사이언스 앤 테크놀로지, 차이나 표적 지향성 하이브리드 나노 시스템 및 그 제조 방법과 용도
CN109700784A (zh) * 2019-03-11 2019-05-03 梁江丽 替格瑞洛缓释微球及其制备和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Development and Application of Nanoparticles Synthesized with Folic Acid Conjugated Soy Protein";Zi Teng等;《Journal of Agricultural and Food Chemistry》;第61卷(第10期);第2556-2564页 *
"羟基喜树碱微球的制备及其小鼠体内分布研究";孔晓龙;《中国药房》;第20卷(第22期);第1710-1711页 *

Also Published As

Publication number Publication date
CN114870029A (zh) 2022-08-09
CN116212051A (zh) 2023-06-06

Similar Documents

Publication Publication Date Title
CN101910274B (zh) 含紫杉烷的两亲嵌段共聚物胶束组合物及其制备方法
CN102218027B (zh) 一种包载难溶性抗肿瘤药物的聚合物胶束冻干制剂
CN102327230B (zh) 一种包裹紫杉烷类药物的蛋白纳米颗粒及其制备方法
CN105853403B (zh) 一种紫杉醇棕榈酸酯脂质体及其制备方法
CN108186605B (zh) 一种基于单宁酸的载药纳米颗粒及其制备方法和应用
CN110623925B (zh) 一种雷帕霉素纳米缓释剂及其制备方法
CN104177624A (zh) 含二硫键与酰腙键的双重敏感两亲性三嵌段共聚物及其制备方法与应用
CN109771663B (zh) 一种酸响应性抗癌纳米药物的制备及应用
EP2978423A1 (en) Stable nanocomposition comprising doxorubicin, process for the preparation thereof, its use and pharmaceutical compositions containing it
CN102125547A (zh) 一种含藤黄酸类药物的药物组合物及其制备方法
CN105232459A (zh) 一种复溶自组装的水难溶性药物聚合物胶束组合物及其制备方法
CN101984958B (zh) 纳米级阿苯达唑微粉及其制备方法
CN105617362A (zh) 一种新型的胰岛素-磷脂-壳聚糖自组装微粒载体及其制剂
CN113651959B (zh) 一种基于氨基酸-羟基酸共聚物的纳米载药体系及其制备方法和应用
CN109464676A (zh) 一种壳寡糖光敏靶向纳米粒的制备方法及产品
CN109953974B (zh) 一种酶-还原双响应性透明质酸-聚硫化丙烯共聚物纳米胶囊的制备方法
CN104856974A (zh) 一种难溶性抗肿瘤药物胶束制剂及其制法
CN107823652B (zh) 一种长循环自组装复合纳米制剂、其制备方法及其用途
CN116212051B (zh) 一种羟基喜树碱恶性肿瘤靶向微球及其制备方法与应用
CN111821469A (zh) 归巢靶向rsgrvsn肽修饰的聚乙二醇-聚多巴胺-普鲁士蓝复合纳米粒子及制备方法
CN109954144B (zh) 基于改性聚β-氨基酯材料的双级pH响应纳米粒及其制备方法
CN102078301A (zh) 以白蛋白与磷脂为载体的多西他赛纳米制剂及其制备方法
Liao et al. Preparation of galactosyl nanoparticles and their targeting efficiency to hepatocellular carcinoma
CN107982543B (zh) 一种蛋白质-异硫氰酸酯类键合物及其应用
CN109620815B (zh) 一种具有肠溶保护层bcs分类iv类药物口服制剂及其制备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant