CN115505156B - 一种可图案化全降解生物基复合材料柔性电子器件及其制备方法 - Google Patents

一种可图案化全降解生物基复合材料柔性电子器件及其制备方法 Download PDF

Info

Publication number
CN115505156B
CN115505156B CN202211184401.8A CN202211184401A CN115505156B CN 115505156 B CN115505156 B CN 115505156B CN 202211184401 A CN202211184401 A CN 202211184401A CN 115505156 B CN115505156 B CN 115505156B
Authority
CN
China
Prior art keywords
degradable
bio
fully
laser
based composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211184401.8A
Other languages
English (en)
Other versions
CN115505156A (zh
Inventor
蒋灿
沈华昊
喻鹏
王祖浩
姚满钊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Institute of Technology
Original Assignee
Wuhan Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Institute of Technology filed Critical Wuhan Institute of Technology
Priority to CN202211184401.8A priority Critical patent/CN115505156B/zh
Publication of CN115505156A publication Critical patent/CN115505156A/zh
Application granted granted Critical
Publication of CN115505156B publication Critical patent/CN115505156B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/123Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2303/00Characterised by the use of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08J2303/02Starch; Degradation products thereof, e.g. dextrin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2369/00Characterised by the use of polycarbonates; Derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2389/00Characterised by the use of proteins; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2397/00Characterised by the use of lignin-containing materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2401/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2401/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2405/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2401/00 or C08J2403/00
    • C08J2405/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2497/00Characterised by the use of lignin-containing materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K2003/026Phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • C08K2003/321Phosphates
    • C08K2003/322Ammonium phosphate
    • C08K2003/323Ammonium polyphosphate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3442Heterocyclic compounds having nitrogen in the ring having two nitrogen atoms in the ring
    • C08K5/3462Six-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • C08K5/34922Melamine; Derivatives thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

本发明公开了一种可图案化全降解生物基复合材料柔性电子器件及其制备方法。其步骤为:1)通过机械共混法或溶液共混法将两种或多种全降解材料和成碳剂进行混合,其中两种或多种全降解材料中,至少含有一种全降解生物基材料,制备得到全降解生物基复合材料薄膜;2)在全降解生物基复合材料薄膜上进行激光直写,制备得到图案化柔性电路;3)将柔性电路封装制备得到可图案化全降解生物基复合材料柔性电子器件。本发明原料廉价易得,制备方法简单,在材料表面原位碳化或石墨化生物基材料形成高导电性柔性电路,且可通过电路设计和集成,实现对压力、应变、湿度等外部刺激的多种柔性传感功能;该方法成本低、操作简单,可大规模批量生产。

Description

一种可图案化全降解生物基复合材料柔性电子器件及其制备 方法
技术领域
本发明涉及柔性电子器件领域,是一种基于全降解生物基复合材料的柔性电子器件及其制备方法。
背景技术
柔性电子器件是一类可以在弯曲、折叠、扭曲、压缩、拉伸等变形条件下仍保持较高电气性能、可靠性和集成度的一类电子器件,可应用于电子皮肤、人体动作及健康监测、智能机器人、人机交互等领域,具有巨大的发展潜力。目前,柔性电子器件的制备通常是将导电物质与柔性聚合物基体进行复合,通过结构设计,实现柔性电子器件的功能如对应力、应变、温度、湿度等传感能力,或具有能源存储和转化功能。然而,目前柔性电子器件所使用的基材大多为不可降解的石油衍生的聚合物,一方面严重依赖日益短缺的石油资源,另一方面与生命体生物相容性较差。而且,柔性电子器件大多采用预先合成且昂贵的导电材料,如纳米金属,纳米碳材料等。更为重要的是,柔性器件功能的实现严重依赖这些导电物质在柔性基体中的分布以及器件或电路的设计。这使得采用传统方法制备柔性器件的工艺较为复杂、成本高且性能不可控,难以实现大规模生产和应用。
发明内容
针对现有的技术缺陷,本发明的目的是提供一种低成本、具有良好生物相容性的可图案化全降解生物基复合材料柔性电子器件及其制备方法。
为了解决上述技术问题,本发明采用了以下技术方案:
提供一种可图案化全降解生物基复合材料柔性电子器件的制备方法,包括以下步骤:
1)通过机械共混法或溶液共混法将两种或多种全降解材料和成碳剂进行混合,其中两种或多种全降解材料中,至少含有一种全降解生物基材料,制备得到全降解生物基复合材料薄膜;
2)在步骤1)所得全降解生物基复合材料薄膜上进行激光直写,制备得到图案化柔性电路;
3)将步骤2)所得柔性电路封装制备得到可图案化全降解生物基复合材料柔性电子器件。
按上述方案,所述步骤1)中,机械共混法是将一定量的两种或多种全降解材料与成碳剂进行混合,然后在100-110℃温度下混炼5-20分钟,热压成型即得全降解生物基复合材料薄膜。
优选地,混炼在双辊开炼机、密炼机或挤出机中进行;热压成型在平板压机中进行。
按上述方案,所述步骤1)中,溶液共混法是将一定量的两种或多种全降解材料与成碳剂加入溶剂中,在室温下搅拌,再将复合材料溶液倒入模具中,然后在40-100℃下干燥1-41小时,即得全降解生物基复合材料薄膜。
优选地,溶剂为水、醋酸水溶液、四氢呋喃、丙酮、N,N-二甲基甲酰胺、乙酸乙酯、氯仿或甲苯。
优选地,两种或多种全降解材料与溶剂的质量比为2-50:100。
按上述方案,所得全降解生物质复合材料薄膜厚度为50-1000μm。
按上述方案,所述步骤1)中,全降解材料为生物基材料或非生物基材料,其中,生物基材料为纳米微纤纤维素、纳米微晶纤维素、醋酸纤维素、羟丙基纤维素、羧基纤维素、碱木质素、木质素磺酸钠、木质素磺酸钙、酶解木质素、酸解木质素、大豆蛋白、蚕丝蛋白、壳聚糖、塑化淀粉;非生物基材料为聚碳酸亚丙酯、聚乳酸、聚己内酯、聚乙烯醇。
按上述方案,所述步骤1)中,成碳剂为:聚磷酸铵、焦磷酸哌嗪、次磷酸铝、三聚氯氰、三聚氰胺、哌嗪、聚磷酸三聚氰胺、红磷一种或多种的复合物。
按上述方案,所述步骤1)中两种或多种全降解材料与成碳剂的质量比为100:1-30。
按上述方案,所述步骤2)中,激光直写具体方法为:将全降解生物基复合材料薄膜放置在激光操作台上,使用激光器作为激光源,通过程序控制激光扫描路径、速度和功率,在柔性基体表面形成图案化电路。
按上述方案,所述步骤2)中,激光器为CO2(波长10.6μm)、光纤(波长1040nm)或紫外(波长355nm)激光器。
按上述方案,所述步骤2)中,激光器功率为1-10w,扫描速度为0.1-100mm/s,激光光斑为100-300μm。
按上述方案,所述步骤2)中,所得图案化电路可为蛇形、叉指形、网状中的一种或多种的复合。
按上述方案,所述步骤3)中,柔性电路封装方法是将含可降解材料的溶液涂覆或浇铸于柔性电路表面,待溶液挥发后,即可得到柔性电子器件。
优选地,封装柔性电路使用的含可降解材料的溶液为纳米微纤纤维素水溶液、聚乙烯醇水溶液、醋酸纤维素丙酮溶液、壳聚糖醋酸水溶液、聚碳酸亚丙酯丙酮溶液、聚乳酸乙酸乙酯溶液、聚己内酯丙酮溶液。
提供一种上述制备方法制备得到的可图案化全降解生物基复合材料柔性电子器件。
本发明的原理在于:
本发明提供了一种可图案化全降解生物基复合材料柔性电子器件的制备方法,以至少含有一种全降解生物基材料的两种或多种全降解材料作为原料,其中生物基材料作为碳源,同时结合多种可降解材料的优势,赋予全可降解生物基复合材料一定柔顺性和成碳能力;同时通过机械共混法或溶液共混法将两种或多种全降解材料和成碳剂进行充分混合,采用激光激发降解与成碳剂协同原位碳化生物质,在柔性可降解生物基基底表面形成导电层,生物质材料原位生成的导电碳材料和复合材料基底具有良好界面结合,从而增强柔性电子器件的循环稳定性。此外通过调节激光功率、波长、扫描路径、扫描速度,在可降解生物基复合材料表面形成稳定的高导电图案化柔性电路,实现对压力、应变、湿度等外部刺激的传感功能。
与现有的技术相比,本发明的有益效果如下:
1.本发明提供了一种可图案化全降解生物基复合材料柔性电子器件的制备方法,至少含有一种全降解生物基材料的两种或多种全降解材料作为原料,与成碳剂混合均匀得到复合材料薄膜,赋予了复合材料一定柔顺性和成碳能力,随后在激光作用下直接在材料表面原位碳化或石墨化生物基材料,从而形成高导电性柔性电路,且可通过电路设计和集成,实现对压力、应变、湿度等外部刺激的多种柔性传感功能。
2.本发明以包括生物质的全降解材料主要原料,其来源广、成本低、对环境无污染、可再生、可降解、生物相容性好。
3.本发明所采用激光直写技术设计柔性电路,其操作简单,器件结构和性能易于调节,可大规模批量生产。
附图说明
图1是本发明实施例可图案化全降解生物质复合材料柔性电子器件制备示意图。
具体实施方式
以下结合具体实施例及附图对本发明方案作进一步详细描述,但本发明不限于此。
本发明实施例中未注明具体条件者,按照常规条件或者制造商建议的条件进行。所用未注明生产厂商者的原料、试剂等,均为可以通过市售购买获得的常规产品。
实施例1
提供一种可图案化全降解生物基复合材料柔性电子器件的制备方法,包括以下步骤:
(1)将10g木质素磺酸钠、2g聚磷酸铵、10g聚乙烯醇(PVA)溶解于100g水中,然后将混合物溶液倒入到模具中,并于40℃下干燥41小时,即得到厚度为200μm的全降解木质素/PVA复合材料薄膜;
(2)将全降解木质素/PVA复合材料薄膜放置在激光操作台上,使用CO2激光器作为激光源,通过程序控制激光扫描路径,在功率为20w,扫描速度为30mm/s,激光光斑为100μm条件下于木质素/PVA复合材料薄膜基体表面形成半径为3mm的蛇形图案化柔性电路;
(3)使用PVA溶液对步骤2)所得图案化柔性电路进行封装形成全降解木质素/PVA复合材料柔性电子器件。
所制得的木质素/PVA复合材料薄膜柔性电子器件的应力检测范围为0.2-35kPa,灵敏度因子为0.64,循环次数>3000次,全部降解时间为17天。
实施例2
提供一种可图案化全降解生物基复合材料柔性电子器件的制备方法,包括以下步骤:
(1)将10g塑化淀粉、2g焦磷酸哌嗪和10g聚碳酸亚丙酯(PPC)进行混合,然后将混合物在密炼机于120℃下混合5分钟左右,将得到的复合材料切成粒,并在橡胶平板压机中120℃热压10分钟,得到厚度为500μm的塑化淀粉/PPC复合材料薄膜;
(2)将全降解塑化淀粉/PPC复合材料薄膜放置在激光操作台上,使用CO2激光器作为激光源,通过程序控制激光扫描路径,在功率为10w,扫描速度为40mm/s,激光光斑为150μm条件下于木质素/PPC复合材料薄膜基体表面形成半径为5mm的蛇形图案化柔性电路;
(3)使用PVA溶液对步骤2)所得图案化柔性电路进行封装形成全降解塑化淀粉/PPC复合材料柔性电子器件。
所制得的塑化淀粉/PPC复合材料薄膜柔性电子器件的应力检测范围为0.1-350kPa,灵敏度因子为1.16,循环次数>1000次,全部降解时间为160天。
实施例3
提供一种可图案化全降解生物基复合材料柔性电子器件的制备方法,包括以下步骤:
(1)将30g碱木质素、5g红磷和50gPLA进行混合,然后将混合物在挤出机中于110℃下混合挤出,将得到的复合材料切成粒状,并在平板硫化机中于110℃下热压20分钟,得到厚度为600μm的木质素/PLA复合材料薄膜;
(2)将全降解木质素/PLA复合材料薄膜放置在激光操作台上,使用紫外激光器作为激光源,通过程序控制激光扫描路径,在功率为1w,扫描速度为10mm/s,激光光斑为100μm条件下于木质素/PLA复合材料薄膜基体表面形成网状图案化柔性电路;
(3)使用PVA溶液对对步骤2)所得图案化柔性电路进行封装形成全降解木质素/PLA复合材料柔性电子器件。
所制得的木质素/PLA复合材料薄膜柔性电子器件的应力检测范围为0.4-550kPa,灵敏度因子为4.36,循环次数>1000次,全部降解时间为190天。
实施例4
提供一种可图案化全降解生物基复合材料柔性电子器件的制备方法,包括以下步骤:
(1)将2g壳聚糖、0.5g聚磷酸三聚氰胺和10gPVA溶于100ml 5%醋酸水溶液中,在10℃下搅拌混合均匀,降至室温下后将复合材料溶液倒入模具中,然后在60℃下鼓风干燥6小时,即可制备厚度为300μm全降解生物质复合材料薄膜。
(2)将全降解壳聚糖/PVA复合材料薄膜放置在激光操作台上,使用紫外激光器作为激光源,通过程序控制激光扫描路径,在功率为3w,扫描速度为20mm/s,激光光斑为200μm条件下于壳聚糖/PVA复合材料薄膜基体表面形成叉指电极式图案化柔性电路;
(3)使用PVA溶液对对步骤2)所得图案化柔性电路进行封装形成全降解壳聚糖/PVA复合材料柔性电子器件。
所制得的壳聚糖/PVA复合材料薄膜柔性电子器件的应力检测范围为0.03-140kPa,灵敏度因子为5.32,循环次数>3000次,全部降解时间为10天。
实施例5
提供一种可图案化全降解生物基复合材料柔性电子器件的制备方法,包括以下步骤:
(1)将1g纳米微纤纤维素,0.2g聚磷酸铵和2g大豆蛋白溶于100ml去离子水中,在室温下搅拌形成均匀透明的复合材料溶液,将复合材料乳液倒入模具中,然后在40℃下干燥24小时,即可制备厚度为150μm的全降解纤维素/大豆蛋白复合材料薄膜。
(2)将全降解纤维素/大豆蛋白复合材料薄膜放置在激光操作台上,使用CO2激光器作为激光源,通过程序控制激光扫描路径,在功率为15w,扫描速度为70mm/s,激光光斑为200μm条件下在全降解纤维素/大豆蛋白复合材料薄膜基体表面形成半径为4mm的图案化柔性电路;
(3)使用纳米微纤纤维素溶液对对步骤2)所得图案化柔性电路进行封装形成全降解纤维素/大豆蛋白复合材料柔性电子器件。
所制得的纤维素/大豆蛋白复合材料薄膜柔性电子器件的应力检测范围为0.3-56kPa,灵敏度因子为3.11,循环次数>1000次,全部降解时间为40天。

Claims (10)

1.一种可图案化全降解生物基复合材料柔性电子器件的制备方法,其特征在于,包括以下步骤:
1)通过机械共混法或溶液共混法将两种或多种全降解材料和成碳剂进行混合,其中两种或多种全降解材料中,至少含有一种全降解生物基材料,制备得到全降解生物基复合材料薄膜;
2)在步骤1)所得全降解生物基复合材料薄膜上进行激光直写,制备得到图案化柔性电路;其中激光直写中,激光功率为1-80W;
3)将步骤2)所得柔性电路封装制备得到可图案化全降解生物基复合材料柔性电子器件。
2.根据权利要求1所述的制备方法,其特征在于,所述步骤1)中,
机械共混法是将一定量的两种或多种全降解材料与成碳剂进行混合,然后在100-180℃温度下混炼5-20分钟,热压成型即得全降解生物基复合材料薄膜;
溶液共混法是将一定量的两种或多种全降解材料与成碳剂加入溶剂中,在室温下搅拌,再将复合材料溶液倒入模具中,然后在40-100℃下干燥1-48小时,即得全降解生物基复合材料薄膜。
3.根据权利要求1所述的制备方法,其特征在于,所得全降解生物质复合材料薄膜厚度为50-1000μm。
4.根据权利要求1所述的制备方法,其特征在于,所述步骤1)中,全降解材料为生物基材料或非生物基材料,其中,生物基材料为纳米微纤纤维素、纳米微晶纤维素、醋酸纤维素、羟丙基纤维素、羧基纤维素、碱木质素、木质素磺酸钠、木质素磺酸钙、酶解木质素、酸解木质素、大豆蛋白、蚕丝蛋白、壳聚糖或塑化淀粉;非生物基材料为聚碳酸亚丙酯、聚乳酸、聚己内酯或聚乙烯醇。
5.根据权利要求1所述的制备方法,其特征在于,所述步骤1)中,成碳剂为聚磷酸铵、焦磷酸哌嗪、次磷酸铝、三聚氯氰、三聚氰胺、哌嗪、聚磷酸三聚氰胺、红磷一种或多种的复合物。
6.根据权利要求1所述的制备方法,其特征在于,所述步骤1)中两种或多种全降解材料与成碳剂的质量比为100:1-30。
7.根据权利要求1所述的制备方法,其特征在于,所述步骤2)中,激光直写具体方法为:将全降解生物基复合材料薄膜放置在激光操作台上,使用激光器作为激光源,通过程序控制激光扫描路径、速度和功率,在柔性基体表面形成图案化电路。
8.根据权利要求7所述的制备方法,其特征在于,激光器的扫描速度为0.1-100mm/s,激光光斑为100-300μm。
9.根据权利要求1所述的制备方法,其特征在于,所述步骤3)中,柔性电路封装方法是将含可降解材料的溶液涂覆或浇铸于柔性电路表面,待溶液挥发后,即可得到柔性电子器件。
10.一种权利要求1-9任一项所述的制备方法制备得到的可图案化全降解生物基复合材料柔性电子器件。
CN202211184401.8A 2022-09-27 2022-09-27 一种可图案化全降解生物基复合材料柔性电子器件及其制备方法 Active CN115505156B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211184401.8A CN115505156B (zh) 2022-09-27 2022-09-27 一种可图案化全降解生物基复合材料柔性电子器件及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211184401.8A CN115505156B (zh) 2022-09-27 2022-09-27 一种可图案化全降解生物基复合材料柔性电子器件及其制备方法

Publications (2)

Publication Number Publication Date
CN115505156A CN115505156A (zh) 2022-12-23
CN115505156B true CN115505156B (zh) 2023-11-17

Family

ID=84505462

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211184401.8A Active CN115505156B (zh) 2022-09-27 2022-09-27 一种可图案化全降解生物基复合材料柔性电子器件及其制备方法

Country Status (1)

Country Link
CN (1) CN115505156B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109580027A (zh) * 2018-11-30 2019-04-05 北京印刷学院 一种柔性温度传感器及制备方法
CN110006334A (zh) * 2019-04-26 2019-07-12 华东理工大学 一种基于激光直写柚子皮的柔性应变传感器及其制备方法
CN110423371A (zh) * 2019-08-01 2019-11-08 陕西科技大学 一种可降解的多功能柔性传感材料及其制备方法和由其制成的传感器
CN111315146A (zh) * 2020-02-27 2020-06-19 清华大学 柔性复合电路的制造方法
CN113943439A (zh) * 2021-05-08 2022-01-18 天津科技大学 一种生物降解形状记忆材料制备GO/rGO微褶皱湿敏薄膜的方法
CN114720024A (zh) * 2022-03-27 2022-07-08 洛阳理工学院 一种可降解柔性压容传感器及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109580027A (zh) * 2018-11-30 2019-04-05 北京印刷学院 一种柔性温度传感器及制备方法
CN110006334A (zh) * 2019-04-26 2019-07-12 华东理工大学 一种基于激光直写柚子皮的柔性应变传感器及其制备方法
CN110423371A (zh) * 2019-08-01 2019-11-08 陕西科技大学 一种可降解的多功能柔性传感材料及其制备方法和由其制成的传感器
CN111315146A (zh) * 2020-02-27 2020-06-19 清华大学 柔性复合电路的制造方法
CN113943439A (zh) * 2021-05-08 2022-01-18 天津科技大学 一种生物降解形状记忆材料制备GO/rGO微褶皱湿敏薄膜的方法
CN114720024A (zh) * 2022-03-27 2022-07-08 洛阳理工学院 一种可降解柔性压容传感器及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Smart paper electronics by laser-induced graphene for biodegradable real-time food spoilage monitoring";Yeongju Jung等;《Applied Materials Today》;第29卷;1-10页 *

Also Published As

Publication number Publication date
CN115505156A (zh) 2022-12-23

Similar Documents

Publication Publication Date Title
CN103102419B (zh) 一种利用纤维素酶水解毛竹纤维制备纳米微晶纤维素的方法
CN106832428B (zh) 一种快速水响应形状记忆复合材料及其制备方法
CN105219004B (zh) 一种可降解植物纤维纸及其制备方法
CN111690240A (zh) 一种聚乳酸/纳米纤维素复合材料及其制备方法
CN109251494B (zh) 一种天然杜仲胶/纤维素改性聚乳酸复合材料及制备方法
CN113152150A (zh) 一种高透明高阻隔纤维素纸的制备方法
CN104559100B (zh) 功能化环糊精阻燃聚乳酸复合材料及其制备方法
CN111635641A (zh) 纳米竹纤维、纳米竹纤维树脂复合生态木及其制备方法
CN115505156B (zh) 一种可图案化全降解生物基复合材料柔性电子器件及其制备方法
CN112724512A (zh) 一种纳米纤维素聚丙烯母料的制备方法
CN107383815B (zh) 一种竹纤维聚乳酸复合材料及制备方法
CN108034205A (zh) 一种花生壳纤维改性聚乳酸的制备方法
Zheng et al. Lignocellulose hydrogels fabricated from corncob residues through a green solvent system
CN114437524B (zh) 一种甘蔗纤维素基可降解复合材料的制备方法
CN109705513A (zh) 一种高性能3d打印用生物复合材料及其制备方法
CN109627495A (zh) 纳米纤维素-聚乳酸全绿色纳米复合材料的制备方法
CN109608844A (zh) 醋酸酯化纳米纤维素-聚乳酸全绿色纳米复合材料的制备方法
CN108976755A (zh) 一种用硅烷化改性多壁碳纳米管制备耐紫外老化聚碳酸酯透明件的方法
EP4043525B1 (en) Biodegradable material, and raw material composition, preparation method, and use thereof
CN114276585A (zh) 一种可降解塑料及其制备方法
CN101173053A (zh) 一种室温自交联聚烯烃的制备方法
Huang et al. A novel salt-barrier method of preparation flexible temperature resistant full-component nanocellulose membranes
CN114106372A (zh) 一种生物基可降解塑料薄膜的制备方法
CN109206866B (zh) 一种可实现表面多孔的3d打印线材及其应用
CN109054329B (zh) 一种阻燃3d打印复合材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant