CN115287610B - 一种自润滑涂层及其制备方法和应用 - Google Patents
一种自润滑涂层及其制备方法和应用 Download PDFInfo
- Publication number
- CN115287610B CN115287610B CN202210599714.3A CN202210599714A CN115287610B CN 115287610 B CN115287610 B CN 115287610B CN 202210599714 A CN202210599714 A CN 202210599714A CN 115287610 B CN115287610 B CN 115287610B
- Authority
- CN
- China
- Prior art keywords
- coating
- mos
- self
- soft
- transition layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
- C23C14/32—Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
- C23C14/325—Electric arc evaporation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23D—PLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
- B23D79/00—Methods, machines, or devices not covered elsewhere, for working metal by removal of material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/0021—Reactive sputtering or evaporation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/0021—Reactive sputtering or evaporation
- C23C14/0036—Reactive sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0664—Carbonitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0688—Cermets, e.g. mixtures of metal and one or more of carbides, nitrides, oxides or borides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/35—Sputtering by application of a magnetic field, e.g. magnetron sputtering
- C23C14/352—Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Physical Vapour Deposition (AREA)
Abstract
本发明公开了一种自润滑涂层及其制备方法和应用,属于机械切削刀具制造技术领域。所述自润滑涂层由内至外包括:Ti/TiN过渡层和复合涂层;其中所述复合涂层为交替沉积的TiCN硬涂层和MoS2/C软涂层,所述Ti/TiN过渡层和所述TiCN硬涂层接触,自润滑涂层最外层为MoS2/C软涂层,交替沉积2~4次。本发明制得的自润滑涂层具有优异性能,这种软硬涂层交替沉积的方式兼具较高的硬度、较低的应力和摩擦系数,能有效提高刀具的使用寿命。该涂层因为结合了硬涂层和软涂层优点,具有优异的性能,可广泛应用于各种材料的切削加工,尤其是难加工材料,具有十分广泛的应用前景,具有极大的应用价值和推广的可能性。
Description
技术领域
本发明涉及机械切削刀具制造技术领域,特别涉及一种自润滑涂层及其制备方法和应用。
背景技术
在机械切削刀具制造技术领域,切削刀具由于缺少切削液的冷却润滑作用,在加工过程中刀具和工件摩擦十分严重,刀具极易产生磨损,导致刀具使用寿命急剧下降。硬涂层材料虽然对于提升刀具的硬度和耐磨性有非常明显的效果,但在加工过程中摩擦系数较高;软涂层材料则能够改善刀具间的摩擦系数,降低切削力和切削温度,使得刀具更加耐磨。
综合软硬涂层的优点,中国发明专利“申请号:201510219459.5”报道了Mo-W-S-C自润滑涂层刀具及其制备工艺,该自润滑涂层刀具综合了MoS2、WS2、C三种固体润滑剂的优点,具有较低的摩擦系数,但这种自润滑涂层硬度相对偏低,且对刀具基体材料、切削材料等有一定的选择性。中国发明专利“申请号:201910287915.8”报道了一种原子层沉积软硬复合涂层自润滑刀具及其制备方法,先在基体表面沉积Al2O3硬涂层,再在基体表面沉积MoS2或WS2软涂层,但是沉积Al2O3涂层速度很低,控制困难,使涂层与基体的结合强度降低。因此,开发一种硬度高,且兼具良好的韧性和自润滑功效的刀具涂层,是本领域亟待解决的技术问题。
发明内容
为解决上述问题,本发明提供了一种自润滑涂层及其制备方法和应用。通过在基体上生成Ti/TiN过渡层和交替沉积的TiCN硬涂层与MoS2/C软涂层,显著增强基体的耐磨性能,延长基体的使用寿命。基体上的Ti/TiN过渡层能降低界面上的残余热应力,提高涂层与基体之间的结合强度;将硬涂层TiCN与软涂层MoS2/C交替沉积,能够有效的阻止软硬层之间的内应力积累,使软硬涂层的自润滑基体有结合强度高、硬度高、抗高温氧化的能力强、摩擦系数低且寿命长等优势,其中C元素的添加可使涂层具有更高的硬度和抗氧化温度,也可弥补单一MoS2结合性能差、硬度低、承载能力弱等缺点,加强软硬涂层之间的结合强度,并在基体表面形成连续的固体润滑膜,实现基体本身的自润滑功能。
为实现上述目的,本发明提供了如下技术方案:
本发明技术方案之一:提供一种自润滑涂层,所述自润滑涂层由内至外包括:Ti/TiN过渡层和复合涂层;其中所述复合涂层为交替沉积的TiCN硬涂层和MoS2/C软涂层,所述Ti/TiN过渡层和所述TiCN硬涂层接触,自润滑涂层最外层为MoS2/C软涂层,交替沉积2~4次。
优选地,所述Ti/TiN过渡层的厚度为0.2~0.3μm。
优选地,所述复合涂层的总厚度为3.5~4μm,单层的硬涂层和软涂层的厚度根据交替次数变化,为0.5~1μm。
本发明技术方案之二:提供一种上述自润滑涂层的制备方法,其特征在于,包括以下步骤:
(1)在基体上生长Ti/TiN过渡层;
(2)于Ti/TiN过渡层上交替生长TiCN硬涂层和MoS2/C软涂层。
优选地,所述基体在生长Ti/TiN过渡层前还包含清洗步骤。
所述清洗步骤包括:将表面研磨后的基体依次放入乙醇和丙酮溶液中超声清洗各20min,以去除基体表面的油污和其他污物。
优选地,生长所述Ti/TiN过渡层的方法为多弧离子镀;生长所述TiCN硬涂层的方法为磁控溅射;生长所述MoS2/C软涂层的方法为磁控溅射。
优选地,所述多弧离子镀的偏压电压为-200V,弧电流为60~90A,气压为1Pa,电弧镀Ti的时间为10~15min,通入N2后,N2流量为150sccm,电弧镀TiN的时间为15~20min。
优选地,磁控溅射TiCN硬涂层时,偏压电压为-100V,Ti靶电流为1~2A,石墨靶电流为0.5~1.5A,气压为0.5~1Pa,沉积时间为30~60min。
优选地,磁控溅射MoS2/C软涂层时,关闭Ti靶,偏压电压为-100V,MoS2靶电流为1~2A,气压为0.5~1Pa,沉积时间为30~60min。
更优选地,基体在电弧镀Ti/TiN过渡层前,进行离子清洗,具体步骤为:通入Ar气,气压设置为2Pa,开启脉冲偏压电源,电压设置为-800V,开启旋转,辉光清洗20min,偏压降至-400V,气压降至1Pa,开启离子源,开启电弧源Ti靶,电流调至60A,离子清洗2min。
所述Ar气的纯度为99.99%。
多弧离子镀沉积Ti/TiN过渡层的具体步骤为:离子清洗完成后,将偏压降至-200V,选用Ti靶,先电弧镀Ti 10~15min,开启N2,然后调整N2流量为150sccm,电弧镀TiN 15~20min。
所述N2的纯度为99.99%。
磁控溅射TiCN硬涂层的具体步骤为:完成Ti/TiN过渡层沉积后,调整工作气压为0.5Pa,偏压-100V,开启石墨靶,靶电流2A,沉积TiCN。
磁控溅射MoS2/C软涂层的具体步骤为:完成TiCN硬涂层的沉积后,关闭Ti靶,开启MoS2靶,电流为2A,偏压调至-100V,沉积MoS2/C。
交替沉积TiCN硬涂层和MoS2/C软涂层通过不间断地开启Ti靶与MoS2靶实现。单层硬涂层和软涂层的沉积时间为30~60min,沉积的总时间为360~450min。
本发明技术方案之三:提供一种上述自润滑涂层在制备机械切削刀具中的应用。
本发明的有益技术效果如下:
本发明利用TiCN硬涂层作为主要提升基体的硬度和耐磨性,利用MoS2/C作为软涂层,降低基体间的摩擦系数,使得高硬度、超耐磨与低摩擦系数同时作用,得到优能优异的自润滑涂层。
本发明选用的Ti/TiN过渡层可以提高基体与硬涂层之间的结合强度,并为基体提供一定的硬度。
本发明C元素的加入可以弥补单一MoS2与硬涂层之间结合强度差、硬度低、承载能力弱等缺点。另外,C元素的加入能使MoS2被保护在非晶C中,形成具有润滑效果的转移膜,有利于实现基体本身的自润滑功能。
本发明制得的基体自润滑涂层具有优异的性能,这种软硬涂层交替沉积的方式兼具较高的硬度、较低的应力和摩擦系数,能有效提高基体的使用寿命。该涂层因为结合了硬涂层和软涂层优点,具有优异的性能,可广泛应用于各种材料的切削加工,尤其是难加工材料,具有十分广泛的应用前景,具有极大的应用价值和推广的可能性。
附图说明
图1为本发明实施例交替沉积的软硬涂层自润滑刀具的结构示意图。
图2为本发明实施例1-2及对比例1-3所制得交替沉积的软硬涂层测得的硬度。
其中,1为刀具基体材料,2为Ti/TiN过渡层,3为TiCN硬涂层,4为MoS2/C软涂层,5为交替沉积的软硬涂层。
具体实施方式
现详细说明本发明的多种示例性实施方式,该详细说明不应认为是对本发明的限制,而应理解为是对本发明的某些方面、特性和实施方案的更详细的描述。应理解本发明中所述的术语仅仅是为描述特别的实施方式,并非用于限制本发明。
另外,对于本发明中的数值范围,应理解为还具体公开了该范围的上限和下限之间的每个中间值。在任何陈述值或陈述范围内的中间值,以及任何其他陈述值或在所述范围内的中间值之间的每个较小的范围也包括在本发明内。这些较小范围的上限和下限可独立地包括或排除在范围内。
除非另有说明,否则本文使用的所有技术和科学术语具有本发明所述领域的常规技术人员通常理解的相同含义。虽然本发明仅描述了优选的方法和材料,但是在本发明的实施或测试中也可以使用与本文所述相似或等同的任何方法和材料。
关于本文中所使用的“包含”、“包括”、“具有”、“含有”等等,均为开放性的用语,即意指包含但不限于。
本发明实施例中交替沉积的软硬涂层自润滑刀具的结构示意图间图1。
其中,1为刀具基体材料,2为Ti/TiN过渡层,3为TiCN硬涂层,4为MoS2/C软涂层,5为交替沉积的软硬涂层。
本发明所用Ar气和N2的纯度为99.99%。
实施例1
在基体材料W18Cr4V高速钢刀具上沉积刀具自润滑涂层:
(1)前处理:将W18Cr4V高速钢刀具基体表面研磨后依次放在乙醇(99.7wt.%)和丙酮(99.5wt.%)溶液中超声清洗各20min,去除基体表面油污和其他污染物;
(2)离子清洗:通入Ar气,气压设置为2Pa,开启脉冲偏压电源,电压设置为-800V,开启旋转,辉光清洗20min,偏压降至-400V,气压降至1Pa,开启离子源,开启电弧源Ti靶,电流调至60A,离子清洗2min;
(3)沉积Ti/TiN过渡层:偏压降至-200V,选用Ti靶,先电弧镀Ti 15min,开启N2,然后调整N2流量为150sccm,电弧镀TiN 20min;
(4)沉积TiCN硬涂层:调整工作气压为0.5Pa,偏压-100V,Ti靶电流调整为2A,开启石墨靶,靶电流0.5A,沉积TiCN,沉积时间为60min;
(5)沉积MoS2/C软涂层:关闭Ti靶,开启MoS2靶,电流为2A,偏压调至-100V,沉积MoS2/C,沉积时间为60min;
(6)交替沉积软硬涂层:通过不间断地开启Ti靶与MoS2靶交替沉积TiCN+MoS2/C软硬涂层,交替沉积次数为4次,单层硬涂层和软涂层沉积时间为60min,总的沉积时间为480min;
(7)后处理:关闭石墨靶,关闭MoS2靶,关闭离子源及气体源,关闭脉冲偏压,涂层制备结束。
实施例2
在基体材料YT14硬质合金刀具上沉积刀具自润滑涂层:
(1)前处理:将YT14硬质合金刀具基体表面研磨后依次放在乙醇和丙酮溶液中超声清洗各20min,去除基体表面油污和其他污染物;
(2)离子清洗:通入Ar气,气压设置为2Pa,开启脉冲偏压电源,电压设置为-800V,开启旋转,辉光清洗20min,偏压降至-400V,气压降至1Pa,开启离子源,开启电弧源Ti靶,电流调至60A,离子清洗2min;
(3)沉积Ti/TiN过渡层:偏压降至-200V,选用Ti靶,先电弧镀Ti 15min,开启N2,然后调整N2流量为150sccm,电弧镀TiN 20min;
(4)沉积TiCN硬涂层:调整工作气压为0.5Pa,偏压-100V,Ti靶电流调整为2A,开启石墨靶,靶电流0.5A,沉积TiCN,沉积时间为60min;
(5)沉积MoS2/C软涂层:关闭Ti靶,开启MoS2靶,电流为2A,偏压调至-100V,沉积MoS2/C,沉积时间为60min;
(6)交替沉积软硬涂层:通过不间断地开启Ti靶与MoS2靶交替沉积TiCN+MoS2/C软硬涂层,交替沉积次数为4次,单层硬涂层和软涂层沉积时间为60min,总的沉积时间为480min;
(7)后处理:关闭石墨靶,关闭MoS2靶,关闭离子源及气体源,关闭脉冲偏压,涂层制备结束。
对比例1
与实施例1相比,区别在于,在沉积硬涂层时,不开启石墨靶。
对比例2
与实施例1相比,区别在于,在沉积软涂层时,不开启石墨靶。
对比例3
与实施例1相比,区别在于,在沉积硬涂层和软涂层时,不开启石墨靶。
结果检测
(1)硬度
将实施例1、实施例2、对比例1、对比例2和对比例3所得涂层分别经过一系列磨平、抛光工艺后,使涂层保持较小的的粗糙度。通过显微硬度计测量涂层的显微硬度。其压头为相对面夹角136°的方锥形金刚石。在一定载荷的作用下,压头压入样品,并保持一段时间后卸去载荷,通过测量压痕的对角线长度来计算硬度。测得的硬度如图2所示。
(2)摩擦磨损性能测试
采用UMT-2球-盘摩擦试验机研究涂层的摩擦磨损特性,具体测试参数:磨损载荷为10N,速度为400转/min,磨损时间为1h,磨损对偶为直径6mm的硬质合金球。涂层的摩擦系数和磨损率如表1所示。
表1涂层的摩擦系数和磨损率
结合图2和表1可看出,在沉积软硬涂层时,开启石墨靶,将其作为碳源,有利于获得硬度更高,摩擦系数和磨损率较小的自润滑涂层。当C元素掺入MoS2时可抑制其柱状结构的生长且减少表面缺陷的形成,使涂层结构更加致密。若关闭石墨靶,沉积纯MoS2软涂层,涂层的硬度非常低。
通过比较可知,在软硬涂层中加入C元素,可以表现较好的摩擦学性能。一方面是涂层力学性能提高,另一方面是因为MoS2和C可以作为润滑相减少摩擦,使表面软涂层发挥更好的自润滑效果。
以上所述的实施例仅是对本发明的优选方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。
Claims (4)
1.一种自润滑涂层,其特征在于,所述自润滑涂层由内至外包括:Ti/TiN过渡层和复合涂层;其中所述复合涂层为交替沉积的TiCN硬涂层和MoS2/C软涂层,所述Ti/TiN过渡层和所述TiCN硬涂层接触,自润滑涂层最外层为MoS2/C软涂层,交替沉积2~4次;
所述自润滑涂层的制备方法包括以下步骤:
(1)在基体上生长Ti/TiN过渡层;
(2)于Ti/TiN过渡层上交替生长TiCN硬涂层和MoS2/C软涂层;
生长所述Ti/TiN过渡层的方法为多弧离子镀;生长所述TiCN硬涂层的方法为磁控溅射;生长所述MoS2/C软涂层的方法为磁控溅射;
所述多弧离子镀的偏压电压为-100~-300V,弧电流为60~90A,气压为0.5~1Pa,电弧镀Ti的时间为10~20min,通入N2后,N2流量为150sccm,电弧镀TiN的时间为20~30min;
磁控溅射TiCN硬涂层时,偏压电压为-100V,Ti靶电流为1~2A,石墨靶电流为0.5~1.5A,气压为0.5~1Pa,沉积时间为30~60min;
磁控溅射MoS2/C软涂层时,关闭Ti靶,偏压电压为-100V,MoS2靶电流为1~2A,气压为0.5~1Pa,沉积时间为30~60min。
2.一种权利要求1所述自润滑涂层的制备方法,其特征在于,包括以下步骤:
(1)在基体上生长Ti/TiN过渡层;
(2)于Ti/TiN过渡层上交替生长TiCN硬涂层和MoS2/C软涂层;
生长所述Ti/TiN过渡层的方法为多弧离子镀;生长所述TiCN硬涂层的方法为磁控溅射;生长所述MoS2/C软涂层的方法为磁控溅射;
所述多弧离子镀的偏压电压为-100~-300V,弧电流为60~90A,气压为0.5~1Pa,电弧镀Ti的时间为10~20min,通入N2后,N2流量为150sccm,电弧镀TiN的时间为20~30min;
磁控溅射TiCN硬涂层时,偏压电压为-100V,Ti靶电流为1~2A,石墨靶电流为0.5~1.5A,气压为0.5~1Pa,沉积时间为30~60min;
磁控溅射MoS2/C软涂层时,关闭Ti靶,偏压电压为-100V,MoS2靶电流为1~2A,气压为0.5~1Pa,沉积时间为30~60min。
3.根据权利要求2所述的自润滑涂层制备方法,其特征在于,所述基体在生长Ti/TiN过渡层前还包含清洗步骤。
4.一种权利要求1所述自润滑涂层在制备机械切削刀具中的应用。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210599714.3A CN115287610B (zh) | 2022-05-30 | 2022-05-30 | 一种自润滑涂层及其制备方法和应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210599714.3A CN115287610B (zh) | 2022-05-30 | 2022-05-30 | 一种自润滑涂层及其制备方法和应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115287610A CN115287610A (zh) | 2022-11-04 |
CN115287610B true CN115287610B (zh) | 2023-09-08 |
Family
ID=83819969
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210599714.3A Active CN115287610B (zh) | 2022-05-30 | 2022-05-30 | 一种自润滑涂层及其制备方法和应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115287610B (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007217766A (ja) * | 2006-02-17 | 2007-08-30 | Toyota Industries Corp | 低摩擦複合膜の成膜方法および低摩擦摺動部材 |
CN101698362A (zh) * | 2009-10-30 | 2010-04-28 | 华南理工大学 | 一种自润滑硬质纳米复合多层涂层及其制备方法 |
CN106086787A (zh) * | 2016-06-15 | 2016-11-09 | 济宁学院 | Ti‑TiN+MoS2/Ti叠层复合涂层刀具及其制备工艺 |
CN108977776A (zh) * | 2018-08-09 | 2018-12-11 | 上海航天设备制造总厂有限公司 | 空间宽温域环境下高结合力固体润滑膜层及其制备方法 |
CN110735110A (zh) * | 2019-08-02 | 2020-01-31 | 缙云县先锋工具有限公司 | 一种用于圆锯片的软硬结合复合涂层及其制备方法 |
CN113046703A (zh) * | 2021-03-17 | 2021-06-29 | 昆明理工大学 | 一种高硬度纳米复合涂层及其制备方法与应用 |
-
2022
- 2022-05-30 CN CN202210599714.3A patent/CN115287610B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007217766A (ja) * | 2006-02-17 | 2007-08-30 | Toyota Industries Corp | 低摩擦複合膜の成膜方法および低摩擦摺動部材 |
CN101698362A (zh) * | 2009-10-30 | 2010-04-28 | 华南理工大学 | 一种自润滑硬质纳米复合多层涂层及其制备方法 |
CN106086787A (zh) * | 2016-06-15 | 2016-11-09 | 济宁学院 | Ti‑TiN+MoS2/Ti叠层复合涂层刀具及其制备工艺 |
CN108977776A (zh) * | 2018-08-09 | 2018-12-11 | 上海航天设备制造总厂有限公司 | 空间宽温域环境下高结合力固体润滑膜层及其制备方法 |
CN110735110A (zh) * | 2019-08-02 | 2020-01-31 | 缙云县先锋工具有限公司 | 一种用于圆锯片的软硬结合复合涂层及其制备方法 |
CN113046703A (zh) * | 2021-03-17 | 2021-06-29 | 昆明理工大学 | 一种高硬度纳米复合涂层及其制备方法与应用 |
Non-Patent Citations (1)
Title |
---|
"Amorphous self-lubricant MoS2-C sputtered coating with high hardness";Lei Gu 等;《Applied Surface Science》;第331卷;66-71 * |
Also Published As
Publication number | Publication date |
---|---|
CN115287610A (zh) | 2022-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106893986B (zh) | 一种高硬度AlCrN纳米复合涂层及其制备工艺 | |
CN101879794B (zh) | CrTiAlSiN纳米复合涂层、沉积有该涂层的刀具及其制备方法 | |
JP5920681B2 (ja) | 摺動特性に優れた塑性加工用被覆金型及びその製造方法 | |
CN106086806B (zh) | 一种AlTiCrN高温耐磨涂层及其制备方法 | |
CN104928638A (zh) | 一种AlCrSiN基多层纳米复合刀具涂层及其制备方法 | |
CN103334082B (zh) | 一种切削刀具材料表面的Ti/TiN/TiAlN复合镀层及其制备方法 | |
EP1905863A2 (en) | Slide member | |
WO2017156996A1 (zh) | 一种钛合金切削用复合功能刀具涂层及其制备方法 | |
CN101831608B (zh) | 一种纳米复合钛铝硅氮化物刀具涂层及其制备方法 | |
JP2009167512A (ja) | 摺動部品用ダイヤモンドライクカーボン皮膜およびその製造方法 | |
CN105803393B (zh) | 一种强韧耐磨涂层及其制备方法 | |
CN103789726B (zh) | 与工具表面结合牢固的AlTiCrN/MoN纳米多层涂层及其制备方法 | |
CN108517487B (zh) | 一种高硬度和高耐磨的TiAlN/W2N多层涂层及其制备方法 | |
CN109402564A (zh) | 一种AlCrSiN和AlCrSiON双层纳米复合涂层及其制备方法 | |
CN106893987A (zh) | 一种物理气相沉积Ta‑C涂层的制备方法及Ta‑C涂层 | |
CN108796453A (zh) | 一种高温耐磨的AlCrSiN纳米复合涂层及其制备方法 | |
CN109097743A (zh) | 一种超硬W-Cr-Al-Ti-N纳米梯度多层膜及其制备方法 | |
US20220213588A1 (en) | Mo Doped AlCrSiN/Mo Self-lubricating Films and Preparation Method Thereof | |
CN103938157B (zh) | 一种ZrNbAlN超晶格涂层及制备方法 | |
CN101798679A (zh) | 一种用于气浮轴承的复合涂层制备方法 | |
CN109628891A (zh) | 一种TiN/MoS2/Ag高温润滑复合薄膜的制备方法 | |
CN115287610B (zh) | 一种自润滑涂层及其制备方法和应用 | |
CN116162917B (zh) | 一种多层涂层刀具及制备方法 | |
CN204820499U (zh) | 一种用于工模具的多层复合硬质膜 | |
CN111485219A (zh) | 具有高耐磨性的AlCrSiN/Mo热处理型涂层及其制备工艺 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |