氢氧化催化剂的活化和再生
本发明是在国家标准和技术学会(National Institute of Standardsand Technology)授予的,授权号为70NANB5H 1143的美国政府支持下完成的。美国政府拥有本发明某些权利。
相关申请的交叉引用
本发明要求1999年12月9日提交的美国临时申请60/169,862的利益。
发明背景
本发明属于一种氢氧化催化剂的活化和再生方法,所述催化剂优选含有分散在含钛载体上的金、银或它们的组合。
氢氧化催化剂用于氢氧化工艺,它涉及在氢存在下用氧来氧化有机化合物。作为一种重要的用途,烯烃,如丙烯可以在氢和氢氧化催化剂存在下,直接用氧氢氧化成氧化烯烃,如氧化丙烯;所述氢氧化催化剂优选含有分散在含钛载体上的金或银或它们的组合。氧化烯烃,如氧化丙烯用于将醇烷氧基化以形成聚醚多元醇,如聚丙烯聚醚多元醇,这种醇在聚氨酯和合成高弹体的制备中具有重要的用途。另一种氢氧化工艺涉及在氢、氧和氢氧化催化剂存在下,由烷烃形成有用的氧化产物,如丙酮和叔丁醇。
目前在许多国际专利公开中描述了将烯烃氢氧化成氧化烯烃。例如,参见WO 97/34692和以下Dow化学公司的国际专利公开:WO 98/00413、WO 98/00414、WO 98/00415,这些专利描述用于这种方法中的沉积在含钛载体上的含金催化剂的用途。类似地,国际专利公开WO99/00188和1998年12月16日提交的,对应于国际专利公开WO 00/35893的Dow化学公司的美国临时申请60/112,429,描述了用于将烯烃氢氧化成氧化烯烃的沉积在含钛载体上的含银或银和金的混合物的催化剂。其它技术,如WO 96/02323,公开了用于液相烯烃氢氧化的,含有沉积在钛或矾硅质岩上的,处于至少两种键能状态的铂金属的催化剂。此外的技术,如WO 97/25143,公开了用于液相烯烃氢氧化的,含有沉积在硅酸钛或硅酸矾上的镧系金属的催化剂。此外的技术,如EP-A1-0,709,360,公开了在氢、氧和氢氧化催化剂存在下,将烷烃,如丙烷氢氧化形成有用的氧化产物,如丙酮。同样,可以将异丁烷氢氧化成叔丁醇和丙酮。此外的技术,如US 5,939,569描述了一种用于氢氧化的含有在含锆载体上的金的催化剂。
在上述的参考文献中公开了多种催化剂载体。例如,公开了含钛载体包括二氧化钛、钛硅酸盐、分散在二氧化硅上的钛(其中钛作为无序相存在),和同样的分散在某些金属硅酸盐上的钛,以及上述物质的组合和混合物。可选择地,如在国际专利申请公开WO98/00414中所述,这种催化剂可以包含一种或多种选自元素周期表中的第I族、第II族、镧系稀土金属和锕系金属的助催化剂金属。
在典型的上述氢氧化催化剂的合成中,在将催化金属和可选择的助催化剂金属沉积到催化剂载体上以后,通过以下方法将此复合物活化:在空气中煅烧;或在氢气下还原;或在惰性气氛中,在约250℃和800℃之间的温度下加热大约1小时到24小时。标准的活化条件在约400℃下操作6小时。活化的催化剂,尤其是包含在含钛载体上的金、银或其组合的催化剂,表现出良好的烯烃转化率和优良的对氧化烯烃的选择性,依赖于催化剂的确切性质并可以表现出长使用寿命。但是,在一段时间内,这些催化剂可能丧失某些活性,且有时可能被充分地失活至不能实际应用此催化剂。在部分或全部失活阶段,必须再生或代替这些催化剂。例如,如在WO 98/00414中所述,公开了再生涉及在可选择与惰性稀释剂如氮或氦混合的氧或氢下,在优选的约200℃和约400℃之间的温度下加热失活的催化剂数小时。可以使用从大气压至超大气压的压力范围。可选择地,可以在水,或者水与氧或氢的组合的存在下,在类似的温度和压力下再生失活的催化剂。
上述的活化和再生工艺的缺陷在于进行这种工艺首先要求时间长,其次要求温度高。而且高压也是必需的。一般来说,活化或再生期间消耗3-6小时。不利的是,在这段时间中氢氧化工艺停止。通常活化和再生温度明显超过氢氧化工艺温度,即一般大于约70℃和小于约225℃。因此,必须将催化剂加热至活化或再生温度,并在活化或再生完成时,将其冷却至氢氧化工艺的操作温度。这种温度循环消耗了有用的时间,在此期间氢氧化工艺不起作用。另外一个不利是,高活化和再生温度要求输入热和能量。而且,必须将反应器构建成耐受较高的再生温度,并进行氢氧化工艺温度和较高的再生温度之间的循环。最不利的是,重复经过较高的活化和再生温度的循环可能损害催化剂载体的结构和/或可能导致损害加到其上的金属。催化剂的活性的百分比可能随着每一次再生循环而不可逆地降低,直至在某一点突然或累积性地大量丧失时,必须更换催化剂。
考虑到上述,期望发现一种足以在短时间内达到接近于氢氧化工艺操作条件的温度和压力的活化和再生方法。这种活化和再生方法可能降低整个工艺中热和能量要求,并将减少氢氧化工艺的停产时间。更为理想的是,由于不需要进行经过高温区的循环,这种工艺可能将对催化载体的损害和对催化金属的损害最小化,从而延长了催化剂的使用寿命。更为理想的是,如果活化和再生方法可以在不将液体活化或再生试剂加到反应器的情况下完成,因为除去液体可能使这种方法复杂化并增加成本。
发明简述
本发明为一种新的活化或再生用于氢氧化工艺的催化剂的方法。所述氢氧化工艺包括在氢和氢氧化催化剂存在下使烃和氧接触以形成氧化产物,优选部分氧化的烃。术语“部分氧化的烃”意指含碳、氢和氧的产物,而不是作为深度氧化产物的仅含碳和氧的产物,如一氧化碳和二氧化碳。更优选的是,氢氧化工艺包括在氢和氢氧化催化剂存在下,在足以制备有用氧化产物,如对应的氧化烯烃或氧化烯烃的混合物的工艺条件下使烯烃或烯烃的混合物与氧接触。在另一个优选的实施方案中,可以将烷烃氢氧化成有用产物,如醇和酮。
本发明的新的活化或再生工艺包括使新鲜或失活的氢氧化催化剂与含有臭氧的物流在足以活化新鲜的催化剂或至少部分再生失活的催化剂的工艺条件下接触。为了本发明的这个目的,将“新鲜的催化剂”定义一种未使用的催化剂,优选为其“刚合成”形式的催化剂。为本发明的这个目的,将“失活的催化剂”定义为在氢氧化工艺中,与类似工艺条件下的新鲜的催化剂的活性相比,表现出部分或全部丧失活性的催化剂。
本发明的方法有效地活化或再生了氢氧化催化剂,优选包含分散在含钛载体上的金、银或金和银的组合,并可选择包含至少一种助催化剂金属的氢氧化催化剂。本发明的活化/再生方法可采用可以从反应器中容易地除去的气相试剂实现。不需要使方法复杂化和增加成本的液相试剂。可以在与氢氧化工艺的温度和压力类似或低于氢氧化工艺的温度下进行本发明的活化/再生工艺。因此,本发明的活化/再生工艺基本上不需要在氢氧化工艺的本身需求之外额外输入热和能量,并可能消耗更少的能量。更为有利的是,本发明的活化和再生方法基本上避免重复地进行在较低氢氧化操作温度和较高的活化或再生温度之间的催化剂热循环。因此,对载体和其上结合的金属的损害明显降低,并在反应器中较少损耗。而且,仅需要将反应器构造成承受氢氧化工艺温度;不需要承受较高再生温度的特定结构。另外一个优点是,与现有技术的活化和再生方法相比,本发明可以在较短时间内完成。较短的活化和再生时间,和较低的温度和压力一起导致氢氧化工艺具有较长的催化剂使用寿命,较短的停工时间和更高的生产率。
发明详述
本发明提供了一种活化和再生用于氢氧化工艺,优选用于将烯烃氢氧化成氧化烯烃的催化剂。如上述所指出的,氢氧化工艺一般包括在氢和氢氧化催化剂存在下使烃和氧接触形成氧化产物,优选部分氧化的烃。更优选,所述的氢氧化工艺包括在氢和氢氧化催化剂存在下使烯烃或烯烃的混合物与氧接触形成对应的氧化烯烃或氧化烯烃的混合物。这种接触是在足以制备氧化产物,优选氧化烯烃或其混合物的氢氧化工艺条件下进行的。
所述氢氧化催化剂可以是任何在氢存在下催化有机物与氧的氧化反应的催化剂。优选所述的氢氧化催化剂包含分散在一种载体上的一种或多种选自以下的金属:金、银、铂族金属、镧系金属及其组合。本文所用的术语“铂族金属”包括钌、铑、钯、锇、铱和铂。优选载体为含钛、含矾或含锆载体。更优选,所述的氢氧化催化剂包含分散在含钛载体上的金、银或银和金的组合。可选择地,所述氢氧化催化剂还可以包含至少一种前述的助催化剂金属。
本发明的新活化或再生工艺包括使新鲜或失活的氢氧化催化剂与含臭氧的物流在足以活化新鲜的催化剂或至少部分再生失活的催化剂的工艺条件下接触。如前文指出,将“新鲜的催化剂”定义为一种未使用的催化剂,优选为其“刚合成”形成的催化剂,即它是在用于氢氧化工艺之前从它的合成混合物中得到的催化剂。催化活性可以随其中的各种参数、催化剂载体的确切形式、催化剂金属和可选择的助催化剂金属的确切形式和所涉及的具体氢氧化工艺而变化。因此,难以在一般条件下表述什么样的活性定义为具体的新鲜的氢氧化催化剂的“活化”状态。本领域技术人员能够判断具体的新鲜的催化剂种类是否已被活化,例如,通过观察本发明处理的催化剂是否能够将氢氧化工艺中的试剂转化成为氧化产物。作为一个指导,而不拘泥于这种结果,在烯烃的氢氧化过程中,活化的催化剂一般表现出至少0.05摩尔百分比的烯烃转化率和至少约60摩尔百分比的对氧化烯烃的选择性。为本发明的这个目的,将“失活的催化剂”定义为与类似工艺条件下的新鲜的催化剂的活性相比,在应用于氢氧化工艺时,表现出部分或全部活性丧失的催化剂。
优选的有利地应用于本发明方法的氢氧化催化剂包含至少一种负载在选自含钛、含矾和含锆的载体上的选自金、银、铂族金属、镧系金属及其组合的催化剂金属。更优选的有利地应用于本发明方法的催化剂包含分散在含钛载体上的金、银或金和银的组合。可选择地,所述催化剂还可以包含一种或多种助化催化剂金属。优选助催化剂金属选自元素周期表的第I族、第II族、铂族金属、稀土镧系和锕系金属,如在化学和物理CRC手册(CRC Handbook ofChemistry and Physics),第75版,1994中所述。(例如,铂族金属和镧系金属在与金和/或银组合时,可以用作助催化剂。可选择地,铂族金属和镧系金属在沉积在钛或矾硅质岩上时,可以用作基本催化金属)。如果由它们得到的催化剂能够催化氢氧化工艺,优选本文所述的烯烃氢氧化工艺的话,则由现代分析方法确定,催化金属,优选金和/或银或任何助催化剂金属的氧化态可以是任何氧化态或氧化态的组合,包括零价和正氧化态。金属颗粒可以存在或不存在。如果催化剂中存在金属颗粒,则对它们的颗粒大小没有限制。令人惊奇的是,本发明的臭氧处理在没有明显降低烯烃转化率和氧化烯烃选择性和没有明显增加水与副产物形成的情况下,再活化了上述的烯烃氢氧化工艺中的优选的催化剂种类。
氢氧化催化剂中总催化金属负载量可以是任何在氢氧化工艺中产生活性催化剂的量。一般来说,负载在氢氧化催化剂上的催化金属的总负载量,优选总金和银的负载量,至少约0.005,优选至少约0.01,更优选至少约0.03重量百分比,以催化剂的总重量计。一般来说,催化金属的总负载量,优选总的金和银的负载量小于约20,优选小于约10,更优选小于约5.0重量百分比,以催化剂的总重量计。在另一个优选的实施方案中,在总负载量,优选金和银的负载量为小于约0.5重量百分比,更优选小于约0.1重量百分比的情况下有利地进行。催化载体可以是任何一种在其上可以加入催化金属和可选择的助催化剂金属并产生活性氢氧化催化剂的物质。优选的载体为含钛载体,它可以有多种形式。一般来说,钛基本上作为非金属钛存在。下文所述的含钛载体例举了用于本发明方法的物质;但是,不应将所提供的这些实例认为是以任何方式限定本发明。本领域技术人员可以认识到等同地应用于本发明方法的其它载体。例如,可以使用下文所述的载体的组合和混合物。
非晶的和晶体二氧化钛有利地用作含钛载体。二氧化钛的晶相包括锐钛矿、金红石和板钛矿。还可以适宜地使用多种载体上的这些晶相的复合物和沉积物,如二氧化硅、氧化铝和铝硅酸盐。
晶体和非晶的钛硅酸盐,优选多孔性物质,有利地用作载体。适宜的多孔性钛硅酸盐的非限制性实例包括多孔的非晶的钛硅酸盐、多孔的层状钛硅酸盐和晶体微孔状钛硅酸盐,如钛硅质岩-1(TS-1)、钛硅质岩-2(TS-2)、钛硅酸盐β(Ti-β)、钛硅酸盐ZSM-12(Ti-ZSM-12)、钛硅酸盐ZSM-48(Ti-ZSM-48)以及中孔性钛硅酸盐,例如Ti-MCM-41。许多描述上述钛硅酸盐的制备和特征的参考资料对本领域技术人员来说是已知的。例如,相关选择的参考文献可以在国际专利公开WO 98/00414中找到,本文引用作为参考。钛硅酸盐的硅与钛原子比率可以变化很大,例如从等于或大于约5/1到等或小于约200/1。
作为另一个实例,分散在二氧硅上的钛可以有利地用作含钛载体。这种载体可以商购得到或由国际专利公开WO 98/00415所述的方法制备,本文引用作为参考。负载在二氧化硅上的钛负载量可以是任何在氢氧化工艺中产生活性催化剂的量。一般来说,钛负载量大于约0.02重量百分比,优选大于约0.1重量百分比,以二氧化硅的重量计。一般来说,钛负载量小于约20重量百分比,优选小于约10重量百分比,以二氧化硅的重量计。在一个优选的实施方案中,钛离子基本上分散在二氧化硅表面的无序相中。根据一种或多种现代分析技术,例如,包括高分辨率转换电子显微法(HR-TEM)和拉曼光谱法,无规钛相可能不同于块状晶体二氧化钛。紫外-可见漫反射光谱(UV-VIS DRS)和钛K-边缘X-射线吸收近边结构(XANES)光谱还可以用于鉴定无序相。在国际专利公开WO 98/00415中更为详细地描述了这些技术,本文引用其作为参考。
类似地,分散在助催化剂金属硅酸盐上的钛可以有利地用作含钛载体。可以使用化学计量和非化学计量助催化剂金属硅酸盐,也可以使用非晶的和晶体助催化剂金属硅酸盐。优选的助催化剂金属硅酸盐包括第I族、第II族、镧系稀土金属和锕系金属的硅酸盐及其组合。关于这种类型的载体,还参考国际专利公开WO 98/00414,本文引用其作为参考。
在更优选的实施方案中,所述的含钛载体包含结合到载体上的额外骨架(framework)或非骨架钛。所述载体可以是任何可以粘附钛的物质,包括二氧化硅、氧化铝、金属硅酸盐如铝硅酸盐和钛硅酸盐;和助催化剂金属硅酸盐,最优选第I和II族、镧系稀土金属和锕系元素的硅酸盐。这种类型的载体还可以是晶体、准晶体或非晶的;并可以包含非连接或互相连接的微孔(孔径约为4A-20)和/或中孔(孔径大于约20至约500)的规则或不规则排列。钛结合到载体上的方式没有限制。任何类型的结合,从非常微弱的相互作用,如范德瓦尔斯力,到完全固定(或接枝的)的结合,都是可以接受的。沉积、分散和接枝模型都在这种形式的载体范围内。额外骨架或接枝的含钛载体包括但不限于闭塞在载体材料如硅酸盐骨架上的二氧化钛(或其它不连续的含钛组合物);作为离子或离子簇沉积在载体材料上的钛,如作为高熔点氧化物或金属硅酸盐;和接枝到骨架结构上的钛,优选非金属钛,如接枝到硅酸盐骨架上的钛。更优选的种类包括接枝到钛硅酸盐骨架上的钛,最优选接枝到MFI晶体结构上的钛硅酸盐骨架上的钛。这种类型的载体的钛负载量和硅与钛原子的比率类似于上述与分散在二氧化硅载体上的钛相关的值。关于制备额外骨架或接枝的含钛载体的方法,参考1999年4月8日提交的,对应于国际专利公开WO 00/59632的美国临时申请60/128,394,本文引用其作为参考。
化学计量和非化学计量的助催化剂金属钛酸盐也可以有利地用作催化剂载体。助催化剂金属钛酸盐可以是晶体或非晶的。其非限制性的实例包括元素周期表的第I族、第II族和镧系和锕系金属的钛酸盐。
与上述类似的是,适宜的含矾载体包括氧化矾、矾硅酸盐、分散在二氧化硅或助催化剂金属硅酸盐上的矾和结合或接枝到载体上的额外骨架或非骨架矾。适宜的含锆载体包括氧化锆和分散或接枝到载体如二氧化硅或助催化剂金属硅酸盐上的锆。
催化剂载体,优选上述的含钛载体可以形成任何合适的催化剂颗粒的形式,例如,珠、丸、球、蜂巢、独石和薄膜。可选择地,任何这些载体可以与第二载体一起挤压,结合或负载在第二载体上以将催化剂颗粒粘合在一起,和/或改进催化剂的强度或耐磨性。第二载体一般在此工艺中为惰性,且无需含有钛。适宜的第二载体包括碳、耐火氧化物如二氧化硅和氧化铝;铝硅酸盐:陶瓷,包括陶瓷碳化物和氮化物;以及任何金属载体。一般来说,第二载体的用量范围约为0-约95重量百分比,以催化剂和第二载体的组合重量计。
催化剂金属,优选金和银组分,可以通过现有技术中用于提供活性和选择性氢氧化催化剂的已知方法将催化剂沉积在,或负载在,和/或结合在催化剂载体上。已知制备方法的非限制性实例包括浸渍、离子交换和沉淀法沉积。在一种制备金催化剂的方法中,使载体与可溶性金化合物的水溶液在足以将金化合物沉淀到载体上的温度和PH下进行接触。还可以使用非水溶液。关于水溶液,可以使用任何水溶性金化合物,如氯金酸、氯金酸钠、氯金酸钾、氰化金、氰化钾金和二乙胺金酸三氯化物。一般来说,可溶性金化合物的摩尔浓度范围约为0.001M至该可溶液性化合物的饱和点,优选约为0.005M-0.5M。在沉积金的过程中,用任何适宜的碱,如第I族金属氢氧化物或碳酸盐,优选氢氧化钠、碳酸钠、碳酸钾、氢氧化铯和碳酸铯将水溶液的PH调节到约5-约11,优选约6-约9。将期望用量的载体加到此溶液,或者反之亦然;如果需要或期望,则再次调节pH。然后,在约20℃-约80℃的温度下在空气中将混合物搅拌大约1-24小时。在此期间结束时,回收固体,可选择地用水洗涤,优选大约100ml洗液每克复合物。水可选择含有一种或多种助催化剂金属盐,优选PH在大约5和11之间。然后,可以在空气中,在大约80℃和120℃之间的温度下将固体干燥以回收合成的催化剂。可选择地,此合成催化剂可以在空气中煅烧,或在还原气氛如氢中煅烧,或者在惰性气氛如氮中加热,加热温度约为250℃-800℃,加热时间约为1-24小时。
一种制备银催化剂的方法是通过将可溶性银化合物浸渍到所选择的催化剂载体上,如含钛载体上。可以使用含水和非水银溶液。可以将任何水溶性银化合物与水溶液一起使用,硝酸银、乙酸银、草酸银等等是适宜的。一般来说,可溶性银化合物的摩尔浓度的范围约为0.001M到此可溶性化合物的饱和点,优选约为0.005M-0.5M。大气压下的浸渍温度范围一般约为从室温,如20℃至100℃。可选择用水,优选用至多约100ml洗液每克复合物洗涤浸渍的载体。水可选择含有一种或多种优选PH约为5-11的助催化剂金属盐。然后,可以在空气中,在大约80℃-120℃的温度下干燥固体以除去合成催化剂。可选择地,所述合成催化剂可以在空气中煅烧,或在还原气氛如氢下煅烧,或者在惰性气氛如氮下在250℃-800℃的温度下加热1-24小时。可以依次进行上述的金和银的沉积法以得到包含金和银的催化剂。
上述的制备方法仅用于例举而已。在实践中,催化剂的制备方法没有限制。例如,可以通过浸渍法和上述的沉积法制备含金氢氧化催化剂;同时可以由沉积法和上述的浸渍法制备银催化剂。可以与上述方法类似的方式制备包含除金和银之外的金属,如铂族金属或镧系金属的氢氧化催化剂。现有技术中已知的浸渍法可以优选使用。
作为另一种选择,所述的氢氧化催化剂可以包含至少一种助催化剂金属,这种金属规定为任何化合价在+1和+7之间的金属离子,这种金属提高氢氧化工艺中的催化剂生产力。例如,有利于增加生产力的因素包括增加反应剂如烯烃的转化率;增加对目标产物如氧化烯烃的选择性;减少在烯烃氢氧化工艺中副产物如水的产量;和增加催化剂的使用寿命。具体用于烯烃氢氧化工艺的适宜的助催化剂金属的非限制性实例,包括在前述CRC Hundbook of Chemistryarid Physics(化学和物理CRC手册)中所述的元素周期表第I族至第12族金属,以及稀土镧系和锕系金属。优选地,所述助催化剂金属选自:元素周期表的第I族金属,包括锂、钠、钾、铷和铯;第II族金属,包括铍、镁、钙、锶和钡;铂族金属,包括钌、铑、钯、铼、锇和铱;镧系稀土金属,包括铈、镨、钕、钷、钐、铕、钆、铽、镝、钬、铒、铥、镱和镥;和锕系金属,特别是钍和铀。更优选,所述助催化剂金属为镁、钙、钡、铒、镥、锂、钠、钾、铷、铯或其组合。
加到此载体上的助催化剂金属的总量一般大于约0.0001,优选大于约0.10,更优选大于约0.15重量百分比,以催化剂的总重量计。沉积在此载体上的助催化剂金属的总量一般小于约20,优选小于约15,更优选小于约10重量百分比,以此催化剂的总重量计。本领域技术人员将认识到,当使用助催化剂金属钛酸盐或硅酸盐时,所述的助催化剂金属的重量百分比可以更高,例如高至大约80重量百分比。
一般来说,从含有可溶性助催化剂金属盐,如助催化剂金属硝酸盐、羧酸盐或卤化物的水溶液或有机溶液中加入助催化剂金属。通常,所述载体与所述助催化剂金属溶液在类似于使载体和金或银溶液接触的条件下发生接触。在优选的包含负载在含钛载体上的金、银或它们的组合的催化剂中,可以在钛沉积之前、之后或期间加入助催化剂。可选择地,可以在金或银沉积之前、之后或期间加入助催化剂。在加入助催化剂金属以后,可选择进行洗涤,如果加入过量的话,则可以将至少一部分助催化剂金属从催化剂中过滤出来。然后,如与引入金和银相关的以上描述,在空气中煅烧,或在还原气氛下加热,或可选择在惰性气体中加热。
本发明的活化和再生工艺在任何适宜的设计用于液相或气相氢氧化工艺的反应器中进行。适宜的反应器包括间歇反应器、固定床反应器、输送床反应器、流化床反应器、移动床反应器、列管反应器和喷啉床反应器,以及连续和间歇流动与旋转反应器设计。在典型的方法中,将新鲜催化剂加到反应器中,并在氧、空气或惰性气流中将其加热至活化温度,然后使含有臭氧的物流在进行充足活化的时间内通过催化剂。所述的再生工艺包括首先停止氢氧化工艺,然后如果需要的话,调整反应器的温度至期望的再生温度,然后使失活的催化剂与含有臭氧的物流接触充足的时间以进行再生。
理论上,可以使用纯臭氧;但在实际中,优选使催化剂与含少于约20体积百分比的臭氧,更优选约小于10体积百分比臭氧的气流接触。优选地,臭氧物流含有大于约0.05体积百分比的臭氧,更优选大于约0.1体积百分比臭氧。气流的平衡可以是任何基本上不与臭氧反应的稀释气体或稀释气体的混合物如氧、氮、空气、氩、氦、水和二氧化碳。产生臭氧的方法是已知的,包括UV照射空气或氧,以及电晕放电技术。臭氧发生器可商购得到。可以将氧或富含氧的空气作为原料加到臭氧发生器中,以保持期望的臭氧浓度。
在将本发明的方法用于再生用在液体氢氧化工艺中的催化剂时,可以优选在加入含臭氧的物流之前除去液相。本发明的方法本身可以在液相中进行,条件这种液相不与臭氧和氢氧化催化剂反应。优选在气相中完成本明的方法。
如果活化或再生催化剂的话,可以优选使用任何含臭氧物流的气时空速(gas hourly space velocity)。含臭氧物流的气时空速一般大于约0.1毫升每毫升催化剂每小时(h-1),优选大于约10h-1。含臭氧物流的气时空速一般小于约1,000h-1,优选小于约500h-1。
活化或再生工艺的温度一般大于室温(采用大约20℃),优选大于约70℃。活化和再生温度一般小于约250℃,优选小于约170℃。活化和再生循环一般大于约5分钟,优选大于约15分钟。通常,活化或再生循环小于约6小时,优选小于约3小时。再生循环的持续时间还取决于反应器结构、催化剂体积和氢氧化工艺条件。活化或再生工艺的总压力可以变化很大,从低于大气压至超高大气压的压力;但优选总压力大于约7psia(48kPa)而小于约100psia(690kPa)。
现有技术已描述了在氢存在下,直接将烯烃用氧氧化成氧化烯烃的优选的氢氧化工艺。后文完全总结了烯烃氢氧化工艺的基本方面;但为了更为详尽地讨论,参考国际专利公开WO 98/00413、WO98/00414、WO 98/00415和WO 97/34692,本文引用作为参考。
可以在氢氧化工艺中使用任何含有三个或更多碳原子的烯烃,或烯烃的混合物,条件生产对应的氧化烯烃。适于使用的烯烃的实例包括但不限于丙烯、1-丁烯、2-丁烯、2-甲基丙烯、1-戊烯、2-戊烯、2-甲基-1-丁烯、2-甲基-2-丁烯、1-己烯、2-己烯、3-己烯;和类似的甲基戊烯、乙基丁烯、庚烯、甲基己烯、乙基戊烯、丙基丁烯的异构体;辛烯,包括优选的1-辛烯,和这些物质的更高级类似物;以及丁二烯、环戊二烯、二环戊二烯、苯乙烯、α-甲基苯乙烯、二乙烯基苯、烯丙基氯、烯丙醇、烯丙醚、烯丙基乙基醚、丁酸烯丙酯、乙酸烯丙酯、烯丙基苯、烯丙基苯基醚、烯丙基丙基醚和烯丙基茴香醚。优选烯烃为C3-12烯烃,更优选C3-8烯烃。最优选烯烃为丙烯。
在氢氧化原料物流中的烯烃、氢、氧和其它任选的稀释剂的数量可以在宽范围内变化,条件生产对应的氧化烯烃。通常,氢氧化原料物流中的烯烃的数量大于约1,优选大于约10,更优选大于约20摩尔百分比,以烯烃、氧、氢和可选择的稀释剂的总摩尔数计。一般烯烃的数量小于约99,优选小于约85,更优选小于约70摩尔百分比,以烯烃、氧、氢和可选择的稀释剂的总摩尔数计。优选地,在氢氧化原料物流中的氧的量大于约0.01,更优选大于约1,最优选大于约5摩尔百分比,以烯烃、氧、氢和可选择的稀释剂的总摩尔数计。优选地,氢氧化原料物流中的氧的量小于约30,更优选小于约25,最优选小于约20摩尔百分比,以烯烃、氧、氢和可选择的稀释剂的总摩尔数计。适宜量的氢一般大于约0.01,优选大于约0.1,更优选大于约3摩尔百分比,以烯烃、氧、氢和可选择的稀释剂的总摩尔数计。适宜量的氢一般小于约50,优选小于约30,更优选小于约20摩尔百分比,以烯烃、氧、氢和可选择的稀释剂的总摩尔数计。
除了上述的试剂以外,可以期望使用含反应物的稀释剂。稀释剂可以是任何不抑制氢氧化工艺的气体或液体。适宜的气体稀释剂包括但不限于氦、氮、氩、甲烷、二氧化碳、蒸汽及其混合物。适宜的液体稀释剂包括脂肪醇,优选C1-10脂肪醇,如甲醇和叔丁醇;氯化脂肪醇,优选C1-10氯化烷醇,如氯丙醇;氯化芳烃,优选氯化苯,如氯苯和二氯苯;以及液体聚醚、聚酯和多元醇。如果使用稀释剂,则稀释剂的用量一般大于约0,优选大于约0.1,更优选大于约15摩尔百分比,以烯烃、氧、氢和可选择的稀释剂的总摩尔数计。稀释剂的量一般小于约90,优选小于约80,更优选小于约70摩尔百分比,以烯烃、氧、氢和可选择的稀释剂的总摩尔数计。
烯烃氢氧化工艺进行的温度一般约大于室温,认为是20℃,优选大于约70℃,更优选大于约130℃。通常,烯烃氢氧化工艺进行的温度小于约250℃,优选小于约225℃,更优选小于约210℃。优选烯烃氢氧化工艺的压力范围约为大气压至约400psig(2758kPa),更优选约150psig(1034kPa)至约250psig(1724kPa)。在流动反应器中,烯烃的气时空速(GHSV)一般大于约10ml烯烃每ml催化剂每小时(h-1),优选大于约100h-1,更优选大于约1,000h-1。通常,烯烃的GHSV小于约50,000h-1,优选小于约35,000h-1,更优选小于约20,000h-1。同样,对于液相连续工艺而言,烯烃组分的重时空速(WHSV)可以在宽范围内变化,但一般大于约0.01g烯烃每g催化剂每小时(h-1),优选大于约0.05h-1,更优选大于约0.1h-1。通常,烯烃的WHSV小于约100h-1,优选小于约50h-1,更优选小于约20h-1。氧、氢和稀释组分的气体和重时空速可以由考虑了期望的相对摩尔比的烯烃的空间速度而测得。
以上关于烯烃氢氧化所述的氢氧化工艺一般可以用于适于氢氧化工艺的其它类型的烃。例如,可以用烷烃取代上述氢氧化工艺中的烯烃。烷烃的氢氧化一般得到醇或酮。
考虑以下的实施例将使本发明更为清楚,这些实施例只是用于对本发明进行例举。根据本文所公开的本发明的说明和实施,本领域技术人员将容易地看出本发明的其它实施方案。
对比实验1(CE-I)-通过现有技术的方法进行再生
以与国际专利公开WO97/34692的实施例1所述的类似方式制备包含分散在载体上的金的氢氧化催化剂,所述载体包含负载在二氧化硅上的二氧化钛,引用的实施例1作为参考。但是,不同的是这里的催化剂制备不涉及在PH 8.8下进行金沉积后的广泛清洗。作为对照,WO 97/34692的实施例1并没有指定清洗中的水量,而WO97/34692的其它实施例在金沉积后使用广泛的清洗。
将二氧化钛(IV)乙酰丙酮化物(1.9651g)溶于甲醇(500cm3)。将二氧化硅[Davison Grace 57二氧化硅(>60目),60.01g]加到钛溶液,并在氮下在旋转蒸发器上旋转2小时。30℃下真空除去甲醇。真空下将干燥的物质加热到100℃。然后在空气中于120℃下将固体干燥一周。在马弗炉中于空气中将固体进行如下煅烧:3小时内110℃-600℃,并在600℃下保温3小时得到包含分散在二氧化硅上的二氧化钛的载体。
如下制备金溶液:将氯金酸(HAuCl4.3H2O,0.3487g)溶于水(500cm3)并加热到70℃。将氢氧化钠(0.1M)水溶液加到金溶液调节pH至8.8。70℃下将含二氧化钛的载体加到金溶液。将所得的混合物搅拌1.5小时。将固体沉淀,冷却至室温,然后过滤。在水(100cm3)中将固体悬浮5分钟,然后过滤。在120℃下将固体干燥6小时,然后如下进行煅烧:120℃-400℃下煅烧5小时,并在400℃下保温3小时。
将催化剂(1g)装到10cc固定床,含氦、氧、氢和丙烯流的连续流动反应器。总流速为150cc/min(或GHSV 1,800h-1)。原料物流组成为10%体积氢、10%体积氧和22%体积丙烯,余量的氦。将丙烯、氧和氦用作纯物流,将氢与氦混合成20H2/80He(体积/体积)混合物。压力为大气压,反应器温度为140℃。采用联机气相色谱仪(ChrompackTM PoraplotTM S柱,25m)分析产物。此工艺运行1小时,此时,催化剂稳定地失活。通过关掉丙烯、氧和氢的流动而停止氢氧化工艺。
通过现有技术方法,即在氧气流(20体积百分比)、水(0.5体积百分比)和氦(余量)下,在400℃和大气压下将失活的催化剂再生45分钟。在140℃和大气压下将丙烯氢氧化成氧化丙烯的过程中评价再生的催化剂,其结果见表1(CE-1)。
表1.氢氧化催化剂Au/TiO
2/SiO
2的再生
实施例 |
物流时间(h) |
PP Convc(mol%) |
PO Selc(mol%) |
CE-1a |
0.180.350.520.68 |
0.750.560.470.43 |
95.197.997.898.0 |
E-1b |
0.320.480.67 |
0.450.440.43 |
88.395.096.2 |
a.在400℃和大气压下,在氧(20%体积)、水(0.5%体积)和余量氦(体积)的物流中再生45分钟的失活的催化剂
b.在140℃和大气压下,在臭氧(0.4%体积)、氧(20%体积)、水水(0.5%体积)和余量氦(体积)的物流中再生2小时的失活的催化剂
c.氢氧化工艺条件:10%氢、10%氧、22%丙烯、余量氦,以体积计;GHSV,1,800h-1;T,140℃;大气压。
“PP Cony”是转化为产物的丙烯原料的摩尔百分比。
“PO Sel”是形成氧化丙烯的被转化的丙烯的百分比。
发现在再生0.18小时后丙烯的转化率为0.75摩尔百分比,而氧化丙烯的选择性为95.1摩尔百分比,其活性与新鲜催化剂的最初活性相近。在回流物流中的氧化丙烯的百分比为0.35摩尔百分比。在回流0.68小时后的物流中,转化率为0.43摩尔百分比,而选择性为98.0摩尔百分比。催化剂处理大约1小时,此时,回流物流中氧化丙烯的百分比降至0.10摩尔百分比,即再生后从最初值降低70%。
实施例1(E-1)-使用臭氧的再生方法
再次再生对比实施例CE-1的再生和随后失活的催化剂,这次采用本发明的方法。具体来说,在含臭氧(0.4体积百分比)、氧(20体积百分比)、水(0.5体积百分比)、余量氦的气流中再生失活的催化剂。在140℃和大气压下使再生物流通过催化剂1小时,然后停止再生工艺。在氢氧化工艺中,在140℃和大气压下,以CE-1中所述的方式评价再生的催化剂,结果见表1.E-1。在物流的0.32小时,氧化丙烯的选择性为88.3摩尔百分比,而丙烯的转化率为0.45摩尔百分比。在物流的0.48小时,氧化丙烯的选择性为95.0摩尔百分比,而丙烯转化率为0.44摩尔百分比。在物流的0.67小时,氧化丙烯的选择性为96.2摩尔百分比,而丙烯转化率为0.43摩尔百分比。氧化丙烯在回流物流中的百分率为0.26摩尔百分比。
当CE-1与E-1比较时,发现两种再生方法产生具有相当活性和选择性的再生的催化剂。有利的是,由E-1例证的本发明的再生方法,如除了使用氧和水以外还使用臭氧,与仅使用氧和水的现有技术再生方法相比在较低的温度下进行。因此,臭氧下的再生方法不需要反应器的高温循环。
实施例2-氢氧化催化剂的再生
现有技术方法与本发明方法的比较
以与国际专利公开WO 98/00415的实施例9所述的类似方式制备包含负载在载体上的金、钠和镁的氢氧化催化剂,所述载体包含分散在二氧化硅上的钛,所述文献在本文中引用作为参考。
在手套箱中将异丙醇钠(28.2g)溶于异丙醇(315g)。将溶液置于一个添加漏斗。湿润二氧化硅(PQ MS-1030),在110℃下干燥,并在500℃下煅烧。将含有二氧化硅(150g)的烧瓶连接到旋转蒸发器上,并用冰水浴冷却到0℃。0℃真空下将异丙醇钛溶液加到二氧化硅。0℃真空下除去溶剂和挥发物。真空下将剩余物加热至室温并在室温下旋转30分钟。真空下将剩余物加热到50℃,并在50℃下旋转30分钟,然后在真空下加热到80℃,并在80℃下旋转30分钟。最后在真空下将剩余物加热到100℃,并在100℃下旋转30分钟,然后在500℃下在空气中煅烧6小时,得到包含分散在二氧化硅上的钛的载体。
将氯金酸(8.86g)溶于水(5120cm3)并搅拌加热到70℃而制备金溶液。通过滴加碳酸钠水溶液(10重量百分比)而将溶液的PH缓慢调整到7.5。将硝酸镁(7.11g)搅拌加到此溶液,并用碳酸钠再调节PH至7.5。快速将溶液冷却至30℃。20分钟后PH为8.5。快速搅拌加入载体(150.0g)。用碳酸钠溶液将pH再调节至7.5。将混合物在30℃下保持30分钟,同时保持PH为7.5。然后将混合物搅拌2小时,并在需要维持PH为7.5时加入碳酸钠溶液。将固体过滤并用PH在7和8之间(用碳酸钠调整)的水(370cm3)洗涤。将固体在110℃烘箱中干燥12小时。30分钟内将固体在空气中从室温煅烧到110℃,5小时内从110℃煅烧到700℃,在700℃下保持10小时,然后冷却到室温得到包含在含钛载体上的金、钠和镁的催化剂。
将催化剂(10g)加到固定床,具有氦、氧、氢和丙烯流的连续流动反应器。总流速为2000cm3/分(或GHSV 6,000h-1)。原料物流组成是7%体积氢、7%体积氧和20%体积丙烯、余量的氦。丙烯、氧和氦用作纯物流;将氢与氦混合成20H2/80He(体积/体积)混合物。压力为200psig(1,379kPa),反应器温度为160℃。采用联机质谱仪分析产物。此工艺运行1小时,此时,回流物流中的氧化丙烯的摩尔百分比降至大约最初值的50%。通过关掉丙烯、氧和氢的流动而停止氢氧化工艺。
通过现有技术方法,即在氧气流(20体积百分比)、水(0.5体积百分比)和氦(余量)下,在375℃和200psig(1,379kPa)压力下将失活的催化剂再生6小时。在160℃和200psig下将丙烯氢氧化成氧化丙烯中评价再生的催化剂。发现最大丙烯转化率为1.82摩尔百分比,而氧化丙烯的选择性为89.4摩尔百分比(表2,CE-2-A)。
当再生的催化剂在氢氧化工艺中表现出活性降低,即测得与最初的再生值相比回流物流中的氧化丙烯的摩尔百分比下降67%时,再次停止氢氧化工艺。再次将失活的催化剂再生,这一次采用本发明的方法,即在含有臭氧(0.4体积百分比)、氧(20体积百分比)、水(0.5体积百分比)和氦(余量)的气流中进行。在160℃和大气压使再生物流通过催化剂,持续1小时,然后停止再生工艺。在160℃和200psig(1,379kPa)的氢氧化工艺中评价两次再生的催化剂,结果如表2(E-2-A)所示。
当两次再生的催化剂在氢氧化工艺中丧失明显的活性,即认为在回流物流中的氧化丙烯减少了37摩尔百分比时,使用上述的本发明的臭氧处理第三次再生失活的催化剂。在氢氧化工艺中评价第三次再生的催化剂,结果如表2(E-2-B)所示。氢氧化工艺运转直到催化剂表现出基本上失活,即测得回流物流中的氧化丙烯减少了50%。
使用上述的现有技术的再生条件重复第4次再生和氢氧化工艺,结果如表2(CE-2-B)所示。再次运行氢氧化工艺直至催化剂丧失其最初活性的50%。
采用本发明的再生条件重复再生工艺和氢氧化工艺第5次、第6次和第7次。参见表2(E2-C,D,E)。
采用现有技术的再生条件重复第8次循环,不同的是再生时间仅为0.5小时。参见表2(CE-2-C)。
采用现有技术的再生条件,使用6小时的再生时间重复第9次循环。参见表2(CE-2-D)。
采用现有技术的再生条件重复第10次循环,不同的是再生进行3小时。参见表2(CE-2-F)。
表2.氢氧化催化剂的再生
现有技术对本发明方法
运转 |
再生方法 |
PP Convc(mol%) |
PO Selc(mol%) |
原料a,b |
T(℃) |
P(psi) |
h |
CE-2-A |
O2/H2O |
375 |
200 |
6 |
1.82 |
89.4 |
E-2-A |
O3/O2/H2O |
160 |
14.6 |
1 |
1.47 |
84.0 |
E-2-B |
O3/O2/H2O |
160 |
14.6 |
1 |
1.46 |
82.4 |
CE-2-B |
O2/H2O |
375 |
200 |
6 |
1.99 |
91.9 |
E-2-C |
O3/O2/H2O |
160 |
14.6 |
1 |
1.75 |
90.3 |
E-2-D |
O3/O2/H2O |
160 |
14.6 |
1 |
1.67 |
89.1 |
E-2-E |
O3/O2/H2O |
160 |
14.6 |
1 |
1.54 |
89.0 |
CE-2-C |
O2/H2O |
375 |
200 |
0.5 |
1.64 |
91.8 |
CE-2-D |
O2/H2O |
375 |
200 |
6 |
1.99 |
93.4 |
E-2-F |
O3/O2/H2O |
160 |
14.6 |
3 |
1.94 |
92.7 |
a.不含臭氧的原料:氧(20%)、水(0.5%)、余量氦,以体积计。
b.含臭氧的原料:臭氧(0.4%)、氧(20%)、水(0.5%)、余量氦,以体积计。
c.氢氧化工艺条件:7%氢、7%氧、20%丙烯、余量氦,以体积计:GHSV,6,000h-1;T,160℃;P,200psig。"PP Cony"是转化成产物的丙烯原料的摩尔百分比率。"PO Sel"是形成氧化丙烯的被转化的丙烯的摩尔百分比率。
从表2可以看出,由使用臭氧的本发明方法再生的催化剂,产生了具有与不使用臭氧的现有技术方法再生的催化剂相当的活性和选择性的再生的催化剂。更为有利的是,与现有技术方法相比,本发明的再生方法在较低的温度和较短的时间内获得了相同的结果。