CN1149666C - 氮化硅陶瓷电路基片及使用该陶瓷基片的半导体器件 - Google Patents

氮化硅陶瓷电路基片及使用该陶瓷基片的半导体器件 Download PDF

Info

Publication number
CN1149666C
CN1149666C CNB961144181A CN96114418A CN1149666C CN 1149666 C CN1149666 C CN 1149666C CN B961144181 A CNB961144181 A CN B961144181A CN 96114418 A CN96114418 A CN 96114418A CN 1149666 C CN1149666 C CN 1149666C
Authority
CN
China
Prior art keywords
silicon nitride
glass
substrate
nitride ceramic
ceramic plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB961144181A
Other languages
English (en)
Other versions
CN1155759A (zh
Inventor
加曾利光男
堀口昭宏
角野裕康
上野文雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Publication of CN1155759A publication Critical patent/CN1155759A/zh
Application granted granted Critical
Publication of CN1149666C publication Critical patent/CN1149666C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/24Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/025Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of glass or ceramic material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3258Tungsten oxides, tungstates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • C04B2235/3878Alpha silicon nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3895Non-oxides with a defined oxygen content, e.g. SiOC, TiON
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/447Phosphates or phosphites, e.g. orthophosphate, hypophosphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6025Tape casting, e.g. with a doctor blade
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/10Glass interlayers, e.g. frit or flux
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/366Aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/405Iron metal group, e.g. Co or Ni
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/407Copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/59Aspects relating to the structure of the interlayer
    • C04B2237/592Aspects relating to the structure of the interlayer whereby the interlayer is not continuous, e.g. not the whole surface of the smallest substrate is covered by the interlayer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/62Forming laminates or joined articles comprising holes, channels or other types of openings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/704Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the ceramic layers or articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/706Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the metallic layers or articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/708Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the interlayers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/86Joining of two substrates at their largest surfaces, one surface being complete joined and covered, the other surface not, e.g. a small plate joined at it's largest surface on top of a larger plate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • Y10T428/24967Absolute thicknesses specified
    • Y10T428/24975No layer or component greater than 5 mils thick
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Products (AREA)
  • Insulated Metal Substrates For Printed Circuits (AREA)
  • Laminated Bodies (AREA)

Abstract

本申请公开了一种包括室温下的热导率为80W/mK以上氮化硅陶瓷板1和通过玻璃层3粘接到氮化硅陶瓷板上1的金属板2的电路板,及一种其中安装在所说电路基片的半导体器件。

Description

氮化硅陶瓷电路基片及使用该陶瓷 基片的半导体器件
本发明涉及一种氮化硅电路基片和半导体元件安装在所说基片上的半导体器件,特别涉及一种有极好机械强度、耐热循环性和辐射特性的电路基片。
电子电路主要包括如IC等元件、基片、布线等等。近年来,电子电路已飞速发展,其尺寸减小,且可能产生大输出,元件的热值变得很大,已不能忽略不计。为了解决这个问题,人们已研究了例如有高热导率的氮化铝(AlN)和玻璃+有低介电常数的陶瓷基片等常规陶瓷基片。
这里,含氮化铝的基片有极好的辐射性能,但该基片的介电常数较高,烧结温度也高。因此,导电部件限于高熔点和较低电导率的金属,如W和Mo,这可以满足基片的低介电常数和布线材料的低电阻率的要求。
另外,热膨胀系数为约4.5×10-6/℃,该值小于作为常规电路基片的氧化铝陶瓷的热膨胀系数,所以在金属化时,由于热膨胀系数的不匹配会使陶瓷基片破碎,因此,使用该基片的器件存在低可靠性的问题。另一方面,含玻璃和陶瓷的基片介电常数低,烧结温度也低,所以它的特性是可以使用如Au、Ag和Cu等低熔点高电导率的金属作布线材料。然而,该基片的缺点是其热导率和机械强度低。
另外,近年来人们已研制了一种新电路基片即氮化硅陶瓷。氮化硅有极好的如弯曲强度和韧性等机械特性。特别是,甚至在1000℃以上的高温下,其强度的下降也很小,且其耐腐蚀性也极好,所以人们已把注意力集中在用氮化硅作如气轮机的部件和发动机部件等的高温和高强度材料。在已有技术中,一般认为氮化硅的热导率低,所以它不适于作电路基片。然而,近年来,如日本特许公开135771/1994中公开了对提高氮化硅陶瓷热导率所作的改进,人们已可得到热导率约为120W/mK的氮化硅陶瓷。
如上所述,人们已对陶瓷板自身的机械强度和热导率作了改进。然而,仍需要增加整个电路基片或半导体器件的机械强度,特别是陶瓷板和金属板间的粘接强度,且还需提高耐热循环性。
本发明者发现,可将金属板通过玻璃层粘接到室温下的热导率为80w/mK以上的氮化硅陶瓷板上来完成上述任务。所说玻璃层为氧化物玻璃层、氧氮化物玻璃层、结晶玻璃层或包含在这些概念中的玻璃层。优选实施例中,玻璃层含0.01-2wt%的碱金属、0.01-5wt%的过渡金属、0.02-2.5wt%的氧化铝,所有这些组分皆以氧化物计算。当选氮氧化合物玻璃层作玻璃层时,玻璃中的氮含量最好为0.05-7wt%。
如上所述,通过用玻璃层将机械强度极好、热导率极好的氮化硅陶瓷板和如铜、铝等导电金属粘接,可增强电路基片的粘接强度,还可提高耐热循环性。这样的电路基片布线电阻低,适于作高速电路的基片和大功率器件的基片。这样,便可极大地提高使用本发明电路基片的半导体器件的可靠性。
图1是氮化硅陶瓷电路基片的原理图。
图2是使用氮化硅陶瓷电路基片的半导体器件的剖面图。
首先,参考图1说明本发明的电路基片。
用室温下的热导率为80W/mK以上的陶瓷板用作本发明的氮化硅陶瓷电路基片1。具有这种特性的陶瓷板已在日本特许公开135771/1994中公开,通过把氮化硅陶瓷的晶界相中的晶相比提高到约40vol%可获得这种陶瓷板。后面将说明其具体的制备方法。
然后,最好用具有大电导率的金属作本发明的金属板2。这种金属包括例如铜、铝和镍。
用于本发明的玻璃层3为氧化物玻璃层、氮氧化合物玻璃层、结晶玻璃层或包含于这些概念中的玻璃层。
氧化物玻璃层的主组分系不受限制,可以是例如SiO2型、SiO2-B2O3型、P2O5型及混合型玻璃。
氮氧化合物玻璃层的主组分系不受限制,可以是例如SiO2型、SiO2-B2O3型、P2O5型及混合型玻璃,其中掺有预定量的氮。
制备氮氧化合物玻璃的方法已是众所周知的,例如有以下方法,用例如Si3N4和AlN等氮化物作初始材料的方法、使N2或NH3在熔融的玻璃中起泡的方法、在主要含N2和Ar气的还原气中熔化玻璃的方法、通过把碳和初始材料混合来产生还原气氛的方法,可把这些方法结合起来使用。另外,当通过凝胶法获得玻璃时,用NH3处理中间阶段的多孔凝胶,然后加热,可获得氮氧化合物玻璃。同样地,例如用NH3处理制备Bicoal玻璃期间所获得的多孔玻璃,然后加热,也可获得氮氧化合物玻璃。掺入的氮量根据这些方法及它们的结合而各不相同。在氮氧化合物玻璃中,与不掺氮的氧化物玻璃相比,如强度和韧性等机械特性得到提高,这样氮氧化合物玻璃对获得牢固的粘接是很有利的。另外,还有如耐碱性等化学耐久性增加的优点。另一方面,掺入氮的同时其粘度提高且热膨胀系数降低。因此,可通过控制掺氮量来改变氧化物为基的玻璃的特性。氮氧化合物玻璃的优选实施例是,玻璃层3中氮含量为0.05-7wt%。
结晶玻璃层的主组分均不受限制,可以是例如SiO2型、SiO2-B2O3型、P2O5型及混合型结晶玻璃。
通过控制所产生的晶体成分和选择玻璃组分,可获得有各种物理性能的结晶玻璃。与普通的玻璃相比,结晶玻璃的强度可提高两倍至三倍,所以结晶玻璃适于进行牢固的粘接。然而,由于要粘接金属板,所以结晶玻璃最好不是主要含有负热膨胀系数的晶体,例如,β-锂霞石(Li2O·Al2O3·2SiO2)和钛酸铝(Al2O·TiO2)。另外,不仅可以通过热处理析出的结晶玻璃的晶体,而且可以混合非晶玻璃和结晶物。晶体层可以是堇青石(2MgO·2Al2O3·5SiO2)、钡长石(BaO·Al2O3·2SiO2)、钙长石(Cao·Al2O3·2SiO2)、斜顽辉石(MgO·SiO2)、钛化镁(MgO·TiO2)、镁橄榄石(2MgO·SiO2)、硅灰石(CaO·SiO2)、石英(SiO2)、鳞英石(SiO2)、方英石(SiO2)及富铝红柱石(3SiO2·2Al2O3)。不特别限定晶体层在整个结晶玻璃中所占比例,但该比例一般为5-90wt%。
玻璃层3最好含以氧化物计0.01-2wt%的碱金属。这里,所加碱金属的最佳量为0.01-2wt%,这是因为如果碱金属的量太大,玻璃的化学耐久性和电绝缘性很差,如果该量太小,玻璃的熔融温度会变高,其热膨胀系数会变得太小。
玻璃层3最好含以氧化物计0.01-5wt%的过渡金属。加入这么多的过渡金属为的是提高氮化硅陶瓷板和金属板的粘接特性。这里,过渡金属最好为钛、钒、铬、铁、钴、镁、镍、铜、锆或钽。所加过渡金属的最佳量为0.01-5wt%,这是因为如果过渡金属的量小于0.01wt%,那么无法获得添加剂的效果,而如果该量大于5wt%,那么在某些情况下无法获得均匀的玻璃。
玻璃层3最好含以氧化物计0.02-2.5wt%的氧化铝。这里,所加最佳量为0.02-2.5wt%,这是因为如果所加量小于0.02wt%,玻璃的耐化学性会变差,而如果该量大于2.5wt%,那么基片的热导率会低至由于固熔体而对氮化硅陶瓷板来说是不容忽视的值。
当用铜作金属板时,最好用室温至300℃的平均热膨胀系数为7至13×10-6/℃的玻璃;当用铝作金属板时,最好用室温至300℃的平均热膨胀系数为10至18×10-6/℃的玻璃;当用镍作金属板时,最好用室温至300℃的平均热膨胀系数为5至10×10-6/℃的玻璃。
如图1所示,在本发明的电路基片中,氮化硅陶瓷板1和金属板2通过玻璃层3粘接。这里,粘接到氮化硅陶瓷板1上后的玻璃层3的厚度最较好为0.1至100μm,最好为0.5至20μm。氮化硅陶瓷板1与金属板2的厚度比最好定为1至5,金属板2与玻璃层3的厚度比最好定为2至40。
本发明的半导体器件是半导体元件安装在上述氮化硅电路基片上的器件。利用其高热导率的特殊代表例可以是被称作功率组件的半导体器件,其中安装有例如双极性晶体管。IBBT或GTR。这些半导体器件主要用于控制各种电机、大电功率开关等等。尽管受到同时伴随半导体器件的驱动和停止而出现的元件的热释放和冷却的热循环,但由于上述氮化硅电路基片具有高强度、高热导率和高可靠性,器件足以能承受这种热循环。而且,还可以将它们用于安装半导体元件的封装。此外,还可用于无引线芯片载带(LCC)、双列直插封装(DIP)和扁平方形封装(QFP)、具有许多叠层的固体结构的管脚栅格阵列(PGA)、球栅格阵列(BGA)和混合封装。
由下面的方法制备本发明的电路基片。例如,把平均颗粒尺寸为0.04-1.5μm的烧结助剂和其它添加剂加入到氮化硅粉末中,该氮化硅粉末含0.3-2.0wt%的杂质氧、以元素计总计0.4wt%以下的阳离子杂质和90wt%以上且平均颗粒尺寸为0.1-1.5μm的α-相氮化硅。向这种粉末中加入有机粘合剂和有机溶剂,搅拌该混合物,并用例如球磨破碎,使之成为浆料。用刮刀法把所得浆料制成薄片或在除去有机粘合剂后把所得浆料压制成型,由此调整该浆料使之成预定形状。然后,在如氮和氩等非氧化气氛中对该浆料进行普通的加热,除去粘合剂。除去粘合剂所需的最高温度最好是在上述非氧化气氛中在800℃以下,在含氧气氛中为550℃以下。升温的速率一般在10至200℃/h,最好在30至100℃/h。
烧结助剂选自碱土元素、稀土元素、磷化合物、硼化合物和铝化合物。
碱土元素和稀土元素是以粉末或液体形式添加的。例如可以是氧化物、碳化物、氟化物、氟氧化物、碳酸盐、草酸盐、硝酸盐和醇盐。可以制各种组合物,例如可以添加含碱土元素和稀土元素的化学物质粉末,或把稀元素溶于醇中,然后再添加。当以粉末形式添加上述元素时,其平均颗粒尺寸一般为1.0μm以下,最好为0.6μm以下。碱土元素一般为Ca、Ba、Sr或Mg,最好为Ca。稀土元素一般为Sc、Y或镧系元素,最好为Y、Ce或La。添加的碱土元素或稀土元素以氧化物计一般为0.2-10wt%,最好为1.0-7.0wt%。
磷化合物可以是例如,Ca(PO4)2和其中由Ba、或Sr代替Ca的相同分子式的化合物,YPO4和其中由La、Ce、Gd或Yb代替Y的相同分子式的化合物,Ca(H2PO4)2和CaHPO4及其中由Ba或Sr代替Ca的相同分子式的化合物,AlPO4和Al(PO3)3
硼化合物可以是例如,LaB6等稀土元素的硼化物,如CaB6等碱土元素的硼化物,及如WB等过渡金属的硼化物。
铝化合物可以是例如,Al2O3,一种在烧结期间变成Al2O3的化合物,AlN和AlF3。少量添加这些铝化合物对于改善烧结特性是有效的。
这些磷化合物、硼化合物和铝化合物的量一般为2wt%以下,最好0.8wt%以下。
对于其它添加剂,可以主要添加过渡金属化合物以着色或弄黑。过渡金属化合物是以例如Ti、Nb、Zr、Ta、W、Mo、Cr、Fe、Co或Ni的氧化物、氮化物、碳化物、碳氧化合物或氮氧化合物的形式添加的。特别要求用于弄黑的过渡金属化合物具有导电性。这种有导电性的过渡金属化合物例如可以是Wo、Mo或选自Zr、Ti、Nb和Ta的元素的氮化物或碳化物。添加的上述过渡金属化合物的量以元素计一般为2.5wt%以下,最好为1.0wt%以下。
例如可用丙烯酰基类、异丁烯酰基类和PVB类粘合剂作上述粘合剂。这些粘合剂分散于其中的溶剂可以是例如,如n-丁醇、甲基·异丁基甲酮、甲苯、二甲苯等醇类溶剂。这些粘合剂的添加量根据所用的AlN粉束的颗粒尺寸的不同而不同,但一般为2-45wt%,最好为4-20wt%。
在除去粘合剂后,把剩余物填入与氮化硅不反应的烧结容器中,如由Si3N4陶瓷制成的容器,然后在含氮或氩或部分含氢的非氧化气氛中,在1700至2000℃的温度下烧结。烧结一般是在10个大气压以下的加压条件下的气氛中进行的,但当烧结温度在约1750℃时,也可在大气压下进行烧结。关于烧结时间,一般在最高温度下保持的时间为0.5至12小时,最好为2至8小时。例如,在氮和/或氩或如上所述的给氮和/或氩中加入氢或二氧化碳气的混合气体中,在由Si3N4、BN或碳陶瓷制成的烧结容器中,在装有由碳、钨、钼等制成的加热器的烧结炉中,进行烧结。气氛中氧的含量可以为100ppm以下。在烧结步骤中,可将温度线性地升到最高温,但如果必要也可以阶跃地升到最高温。升温的速率一般在每小时50至2000℃,最好在每小时200至1000℃。降温也可用相同的速率,但为了通过晶化烧结体的晶界相提高热导率,要求以每小时100℃以下的速率降温。
用上述方法,可获得热导率为80w/mK以上及室温下的四点弯曲强度为600Mpa的氮化硅陶瓷板。
通过下述方法粘接金属板和所得氮化硅陶瓷板。首先,如果必要,可在氧存在的气氛中、在1000-1400℃温度下加热处理2至15小时,模压成型和氧化氮化硅陶瓷板。在这种情况下,氧化层的厚度一般为0.1-10μm最好为1-5μm。
然后,在陶瓷板上均匀地涂敷玻璃。通常,熔化玻璃,并通过水造粒、水冷轧制等将玻璃形成易被粉碎的形状,然后,利用例如球磨粉碎,形成要求颗粒尺寸的粉末。将这种粉末状的玻璃悬浮在含粘合剂的有机溶剂中。玻璃悬浮于其中的溶剂可以用例如醇类溶剂,如n-丁醇、甲基异丁基甲酮、甲苯、二甲苯等。如果必要,可通过另外添加少量如乙基纤维素和硝化纤维等纤维,如邻苯二甲酸二辛酯、α-或β-萜品醇、MIBK(甲基·异丁基甲酮)、MEK(甲基乙基酮)、香芹烯醇等增塑剂采改善涂敷膜的悬浮体性能和附着力。例如可通过旋涂或浸渍法把这种玻璃悬浮体均匀地涂敷在氮化硅陶瓷板上。然而,在烧结体上涂敷玻璃层时,玻璃软化时便会填充烧结体的凸凹处,这样在许多情况下可不必再注意烧结体自身的表面粗糙度。
通过在所用玻璃的软化点左右加热,使玻璃粉末熔化,同时除去有机溶剂和粘合剂。然后,用有机粘合剂把形成的金属板固定到涂敷了玻璃的氮化硅陶瓷板上,并在根据用于获得粘接体的金属板和玻璃组分而定的温度下、在非氧化气氛中加热。至于其它方法,可通过在陶瓷板上涂敷玻璃粉进行粘接和不用把玻璃制成涂敷膜来将金属板固定到陶瓷板上,然后加热。另外,通过把未经预先处理的金属板粘接到陶瓷板上,然后进行腐蚀等,可获得所要求的金属板图型。至于用于把金属板固定于陶瓷板的有机粘合剂,可用任何有机粘合剂,只要它在甚至不含氧的气氛中也易分解和易挥发。但通常,用异丁烯酸酯类粘合剂等。
粘接后的玻璃层的厚度一般为0.1-100μm,最好为0.5-20μm。
为了保护粘接到氮化硅陶瓷板上的金属板,改善它与其它电极的电接触,可在金属板的表面上形成一层如Ni、Ni-P和Ni-Ag涂敷层。要求涂敷层的厚度为1-6μm。涂敷是利用电解或无电方法形成的。
下面参照实施例详细说明本发明。
实施例1
步骤a  制备氮化硅陶瓷板
把n-丁醇加到含96.0wt%的氮化硅粉、3.5wt%的Y2O3和0.5wt%的TiO2的粉中,用球磨湿法破碎和搅拌该混合物。其中所说氮化硅粉含1.3wt%的杂质氧、以元素计0.15wt%的阳离子杂质和97wt%的α-相氮化硅,且其平均颗粒尺寸为0.55μm;所说Y2O3的平均颗粒尺寸为0.1μm,且其纯度为99.9wt%;所说TiO2的平均颗粒尺寸为0.5μm,且其纯度为99.9wt%。把该混合物和丙烯酸酯粘合剂分散于醇类溶剂中,制备粘度约为5000CPS的成型涂料。然后,用该料,利用刮刀法制备平均厚度约为0.8mm的生坯片。再后把生坯片切成要求的尺寸。如果必要,在对该片进行了外形处理后,在氮气氛中,把该片加热到700℃的最高温度,除去粘合剂。在除去粘合剂后,把其余物填进由Si3N4陶瓷制成的容器中,利用具有由碳制成的加热器的烧结炉,在氮气氛中,在9.8个大气压下,在1780℃温度下,烧结3小时。所得氮化硅陶瓷板的厚度为0.67μm。
为了检测氮化硅陶瓷板的弯曲强度、韧性和热导率,从与如上所述的生坯相同的生坯片中除去有机溶剂,用0.3mm的网眼把剩余物制成颗粒状粉末,并压制成型代替模制成片。用与上述相同的方法,除去粘合剂,对所得粉末进行烧结处理。从所得烧结体上切下样品棒并进行处理。当按JIS R1601利用四点弯曲和SEPB法评价样品棒时,其弯曲强度为770MPa,韧性为8.8。从同一烧结体上切下直径为10mm、厚度为3.5mm的圆盘。用激光照射法测量圆盘的室温下的热导率,热导率为92W/mK。
步骤b  制备用于粘接的玻璃
制备有下列组分的玻璃
SiO2      75.6
B2O3     18.0
Al2O3    0.5
Co3O4    0.5
TiO2      1.5
Na2O      0.2
Li2O      0.2
CaO        3.5(wt%)
这里,用H3BO3作B2O3的初始材料,用NaNO3作Na2O的初始材料,用Li2CO3作Li2O的初始材料,用CaCO3作CaO的初始材料。另外,在上述100份重量的组合物中加入0.1wt%的As2O3作去发泡剂。把这些粉末混合,然后在用电炉的铂坩埚中熔化。熔化的条件为,分批地投放初始材料的温度是1300℃,使混合物保持在1500℃的最高温度4小时,然后降温至1250℃,并把所得熔化物注入水冷轧辊。用由氧化铝制成的球磨将所得玻璃破碎24小时,获得玻璃粉末。另外,将一部分熔化的玻璃注入不锈钢制的模具中,在530℃保持3小时,然后用约30小时冷却至室温,进行退火。用钻石切刀从这样获得的玻璃块上切下样品片,用差分膨胀计测量样品室温至300℃时的平均热膨胀系数,热膨胀系数为8.3×10-6
步骤c  制备涂敷了玻璃的氮化硅陶瓷板
然后,将在步骤b获得的SiO2-B2O3型氧化物玻璃破碎成325目以下那么大,然后把它们悬浮于乙醇中。用旋涂法将该悬浮物涂敷于在步骤a获得的厚度为0.67mm的Si3N4陶瓷板上,使之厚度为15μm。
在有空气成分的干燥气体气氛中,加热陶瓷板,并在830℃的最高温度保持30分钟,以获得涂敷了玻璃的氮化硅陶瓷板。
步骤d  粘接氮化硅陶瓷板和金属板
用异丁烯酸酯类粘合剂,把处理过以使之有预定尺寸的厚为0.3mm的铜板暂时固定到在步骤c所得的涂敷了玻璃的氮化硅陶瓷板上。然后,在有80ppm的氮气氛中,通过在920℃的最高温度下加热20分钟,粘接铜板。借助剥落强度来评估所得到的电路基片的铜/陶瓷体的粘接强度,结果获得8.2Kg/cm的足够高的粘接强度。这里,剥落强度意思是在与陶瓷板正交的垂直方向上剥落粘接到氮化硅陶瓷板上的大小为1cm的金属板所需要的力。
实施例2-10
步骤a  制备氮化硅陶瓷板
把n-丁醇加到包括95.5wt%的氮化硅粉、3.0wt%的Y2O3、1.0wt%的CeO2和0.5wt%的WO3的粉中,用球磨湿法破碎和搅拌该混合物。其中所说氮化硅粉含1.4wt%的杂质氧、以元素计0.1wt%以下的阳离子杂质和96wt%的α-相氮化硅,且其平均颗粒尺寸为0.48μm;所说Y2O3的平均颗粒尺寸为0.1μm,且其纯度为99.9wt%;所说CeO2的平均颗粒尺寸为0.1μm,且其纯度为99.9wt%,所说WO3的平均颗粒尺寸为0.4μm,且其纯度为99.9wt%。然后,把该混合物和丙烯酸类粘合剂分散于醇类溶剂中,制备粘度约为5000CPS的成型料。然后,用该料,利用刮刀法制备平均厚度约为0.8mm的生坯片。再把生坯片切成要求的尺寸。如果必要,在对该片进行了外形处理后,在氮气氛中,把该片加热到700℃的最高温度,除去粘合剂。在除去粘合剂后,把剩余物填进由Si3N4陶瓷制成的容器中,利用具有由碳制成的加热器的烧结炉,在氮气氛中,在9.5个大气压下,在1850℃温度下,烧结6小时。所得氮化硅陶瓷板的厚度为0.66μm。
以与实施例1相同的方法测量氮化硅陶瓷板的弯曲强度、韧性和热导率,结果,弯曲强度为810MPa,韧性8.2,热导率为102W/mK。
步骤b  制备用于粘接的玻璃
以与实施例1相同的方法制备氧化物玻璃。玻璃的具体组分和平均热膨胀系数示于表1中。
       实施例    实施例   实施例   实施例   实施例   实施例   实施例   实施例   实施例
         2         3        4        5        6        7        8         9       10
SiO2   78.3     76.1     59.5     72.0     76.3     78.3      74.6     74.5     76.0
B2O3  18.0     19.5     17.8     21.0     16.0     16.0      20.0     18.5     18.6
Co3O4 0.5                        0.2      0.2                0.2      0.2
P2O5                    15.1
Cr2O3          0.2
V2O5           0.2
Fe2O3                   0.1
NiO                        0.2
CuO                                 0.2
ZrO2                                       0.1
MnO2                                                0.1
TiO2                                                0.2                0.1      1.5
Ta2O5                                                       0.1
Al2O3 0.5      1.0      0.5      0.5      0.2      0.2      0.5       2.5      0.2
Na2O   0.2      0.3      0.3               0.2      0.2      0.1       0.2
Li2O            0.2               0.1                                           0.2
CaO     2.5      2.5      6.5      4.5      5.5      2.5      4.5       2.5      3.5
MgO                                1.5      1.5      2.5                1.5
热膨胀
系数(×10-6) 7.1      8.9      12.5     8.2      9.5      8.5      9.5       7.8      8.5
在碳酸盐的形式加入碱土氧化物,以碳酸盐或硝酸盐的形式加入碱金属氧化物,以与实施例1相同方法,以H3BO3的形式加入B2O3。同样以与实施例1相同的方法,在上述100份重量的组合物中加入0.2wt%的As2O3
步骤c  制备涂敷了玻璃的氮化硅陶瓷板瓷板
在有氧气存在的气氛中,在1300℃下加热所得氮化硅陶瓷板5小时,进行表面氧化。在陶瓷板上,以与实施例1相同的方法,分别涂敷在步骤b所获得的不同组分的玻璃粉。
步骤d  粘接氮化硅陶瓷板和金属板
用异丁烯酸酯类粘合剂,分别把厚度为0.3mm的有固定的间距的铜板暂时固定到在步骤c所得的涂敷了玻璃的氮化硅陶瓷板上。然后,在有40ppm的氧的氮气氛中,通过在保持950℃的条件下加热30分钟,粘接铜板。所获得的电路基片的剥落强度示于表2中。
表2
  实施例2  实施例3  实施例4  实施例5
  剥落强度   8.6      9.2      8.5      8.9
  实施例6  实施例7  实施例8  实施例9  实施例10
  剥落强度   7.8      8.6      8.6      8.6      8.8
实施例11
以与实施例1相同的方法进行各步骤,只是用厚度为0.3mm的铝板代替铜板,且用P2O5-SiO2-B2O3类(组分比:67.6/24.9/4.6)氧化物玻璃,把铝板粘接到在实施例1中所得的氮化硅陶瓷板上,其中所说氧化物玻璃含1.5wt%的TiO2,0.5wt%的Co3O4,0.7wt%的Al2O3和0.2wt%的碱金属氧化物(Na2O),其室温至300℃的平均热膨胀系数为15.5×10-6。该粘接是在含空气成分的干燥气氛中,在610℃的最高温度下加热并保持30分钟进行的。以与实施例1相同的方法用剥落强度来评估铝/氮化硅陶瓷体的粘接强度,粘接强度为7.5Kg/cm。
实施例12
以与实施例1相同的方法进行各步骤,只是用厚度为0.3mm的镍板代替铜板,且用P2O5-SiO2-B2O3类(组分比:65.6/25.0/6.5)氧化物玻璃,把镍板粘接到在实施例1中所得的氮化硅陶瓷板上,其中所说氧化物玻璃含1.5wt%的TiO2,0.5wt%的Co3O4,0.7wt%的Al2O3和0.2wt%的碱金属氧化物(Na2O),其室温至300℃的平均热膨胀系数为7.5×10-6。该粘接是在含空气成分的干燥气氛中,在980℃的最高温度加热并保持30分钟进行的。以与实施例1相同的方法用剥落强度来评估镍/氮化硅陶瓷体的粘接强度,粘接强度为7.5Kg/cm。
实施例13
步骤a  制备氮化硅陶瓷板
以与实施例1相同的方法制备氮化硅陶瓷板。
步骤b  制备用于粘接的玻璃
用下列组分作初始材料制备氧氮化物的玻璃。
SiO2    24.3
Si3N4  50.0
B2O3   18.0
AlN       0.6
Co3O4  0.5
TiO2    1.5
Na2O    0.2
Li2O    0.4
CaO      4.5(重量%)
在氮气气氛中,用电炉在氧化铝坩埚中把该混合粉末熔化。熔化的条件为,分批地投放初始材料的温度是1200℃,使混合粉末保持在1500℃的最高温度2小时,然后降温至1300℃,并把所得熔化物注入水冷轧辊。以与实施例1相同的方法,用H3BO3作B2O3的初始材料,用NaNO3作Na2O的初始材料,用Li2CO3作Li2O的初始材料,用CaCO3作CaO的初始材料。用由氧化铝制成的球磨把所得玻璃破碎24小时,获得玻璃粉末。另外,将一部分熔化的玻璃注入不锈钢制的模具中,在580℃保持3小时,然后用约30小时冷却至室温,进行退火。用钻石切刀从这样获得的玻璃块上切下样品片,用差分膨胀计测量样品片室温至300℃时的平均热膨胀系数,热膨胀系数为9.3×10-6。另外,用气体分析法测量玻璃粉末中所含氮的量,结果含氮量为1.30wt%。
步骤c  制备涂敷了玻璃的氮化硅陶瓷板
然后,将在步骤b获得的SiO2-B2O3类氮氧化合物玻璃破碎成325目以下那么大,然后把它们悬浮于乙醇中。用旋涂法将该悬浮物涂敷于在步骤a获得的厚度为0.67mm的Si3N4陶瓷板上。
在有空气成分的干燥气体气氛中,加热陶瓷板,并在830℃的最高温度保持30分钟,以获得涂敷了玻璃的氮化硅陶瓷板。
步骤d  粘接氮化硅陶瓷板和金属板
用异丁烯酸酯类粘合剂,把处理过以使之有预定尺寸的厚为0.3mm的铜板暂时固定到所得陶瓷板上。然后,在有80ppm的氧的氮气氛中,通过在保持1150℃的最高温度条件下加热5分钟,粘接铜板。借助剥落强度来评估所得到的电路基片的铜/陶瓷体的粘接强度,结果粘接强度为8.2Kg/cm。
实施例14至22
步骤a  制备氮化硅陶瓷板
以与实施例2相同的方法制备氮化硅陶瓷板。
步骤b  制备用于粘接的玻璃
以与实施例13相同的方法制备氧氮化物玻璃。玻璃的具体组分和平均热膨胀系数示于表3中。
表3
          实施例    实施例    实施例    实施例    实施例    实施例    实施例    实施例    实施例
          14        15        16        17        18        19        20        21        22
SiO2     78.3      76.2      60.3      75.5      74.8      77.8      76.6      74.9      78.3
B2O3    18.0      19.5      18.5      17.5      19.5      19.0      18.5      18.6      19.0
P2O5                        15.1
Ta2O5                                                               0.1
Co3O4   0.5                           0.2       0.2                 0.2       0.2
Cr2O3
V2O5              0.1
Fe2O3                       0.1
NiO                            0.2
CuO                                      0.2
ZrO2               0.2                           0.1
TiO2                                                       0.2                 0.1       1.5
MnO2                                                       0.1
Al2O3   0.5       1.0       0.5       0.5       0.2       0.2       0.5       2.5       0.2
Na2O     0.2       0.3       0.3       0.1       0.2       0.2       0.1                 0.2
Li2O               0.2                                                         0.2
CaO       2.5       2.5       5.0       4.5       3.5       2.5       2.5       3.5
MgO                                     1.5       1.5                 1.5
含氮量    0.05      7.0       2.2       0.15      2.3       3.3       1.2       1.6       0.8
(wt%)
热膨胀
系数
(×10-6) 6.1       7.9       10.5      8.6       8.1       7.5       9.5       7.8       8.5
在表3中,由各氧化物的组分表示所有组分。用与实施例13相同的方法,用SiO2(部分或全部地代替Si3N4)和Al2O3(部分或全部地代替AlN),并在氮气氛中进行熔化步骤。由于掺入的氮量根据熔化的条件的不同而不同,很难由一个化学式表示它在玻璃中的含量。因此,假定Si3N4中的Si不挥发,则可通过以SiO2为基础的计算来表示表3中所有组分。这同样适用于AlN,可通过以Al2O3为基础的计算来表示AlN中的Al。
以碳酸盐的形式加入碱土氧化物,以碳酸盐或硝酸盐的形式加入碱金属氧化物,以与实施例1相同方法,以H3BO3的形式加入B2O3
步骤c  制备涂敷了玻璃的氮化硅陶瓷板
在有氧气存在的气氛中,在1280℃下加热所得氮化硅陶瓷板8小时,在陶瓷板上,以与实施例13相同的方法,分别涂敷在步骤b所获得的有不同组分的玻璃粉末。
步骤d  粘接氮化硅陶瓷板和金属板
用异丁烯酸酯类粘合剂,分别把厚为0.3mm的有固定间距的铜板暂时固定到在步骤c所得的氮化硅陶瓷板上。然后,在有40ppm的氧的氮气氛中,通过在保持950℃的条件下加热30分钟,粘接铜板。
所获得的电路基片的剥落强度示于表4中。
表4
实施例14  实施例15  实施例16  实施例17
剥落强度 7.8       8.5       8.9       8.7
实施例18  实施例19  实施例20  实施例21  实施例22
剥落强度 8.5       9.2       8.3       8.0       8.0
实施例23
以与实施例1相同的方法进行各步骤,只是用处理过以使之有预定尺寸的厚度为0.3mm的铝板代替铜板,且用P2O5-SiO2-B2O3类(组分比:64.6/26.2/6.3)氮氧化合物玻璃,把铝板粘接到在实施例1中所得的氮化硅陶瓷板上,其中所说氮氧化合物玻璃含2.1wt%的氮,1.5wt%的TiO2,0.5wt%的Co3O4,0.7wt%的Al2O3和0.2wt%的碱金属氧化物(Na2O),其室温至300℃的平均热膨胀系数为15.5×10-6/℃。该粘接是在含空气成分的干燥气氛中,在610℃的最高温度下加热15分钟进行的。以与实施例1相同的方法,用剥落强度来评估铝/氮化硅陶瓷体的粘接强度,粘接强度为7.5Kg/cm。
实施例24
以与实施例1相同的方法进行各步骤,只是用处理过以使之有预定尺寸的厚度为0.3mm的镍板代替铜板,且用P2O5-SiO2-B2O3类(组分比:64.6/26.2/6.3)氮氧化合物玻璃,把镍板粘接到在实施例1中所得的氮化硅陶瓷板上,其中所说氮氧化合物玻璃含2.6wt%的氮,1.5wt%的TiO2,0.5wt%的Co3O4,0.7wt%的Al2O3和0.2wt%的碱金属氧化物(Na2O),其室温至300℃的平均热膨胀系数为7.5×10-6/℃。该粘接是在含空气成分的干燥气氛中,在980℃的最高温度加热15分钟进行的。以与实施例1相同的方法用剥落强度来评估镍/氮化硅陶瓷体的粘接强度,粘接强度为7.5Kg/cm。
实施例25
步骤a  制备氮化硅陶瓷板
把n-丁醇加到含95.5wt%的氮化硅粉未、3.0wt%的Y2O3、1.0wt%的CeO2、0.3wt%的WO3和0.2wt%r的AlPO4的粉末中,用球磨湿法破碎和搅拌该混合物。其中所说氮化硅粉末含1.1wt%的杂质氧、以元素计0.3wt%以下的阳离子杂质和96wt%的α-相氮化硅,且其平均颗粒尺寸为0.46μm;所说Y2O3的平均颗粒尺寸为0.1μm,且其纯度为99.9wt%;所说CeO2的平均颗粒尺寸为0.1μm,且其纯度为99.9wt%,所说WO3的平均颗粒尺寸为0.4μm,且其纯度为99.9wt%,所说AlPO4的平均颗粒尺寸为0.8μm,且其纯度为99.9wt%。然后,把该混合物和丙烯酸类粘合剂分散于醇类溶剂中,制备粘度约为6000CPS的成型料。然后,用该料,利用刮刀法制备平均厚度约为0.81mm的生坯片。再后把生坯片切成要求的尺寸。如果必要,在对该片进行了外形处理后,在氮气氛中,把该片加热到700℃的最高温度,除去粘合剂。在除去粘合剂后,把剩余物填进由Si3N4陶瓷制成的容器中,利用具有由碳制成的加热器的烧结炉,在氮气氛中,在5.5个大气压下,在1850℃温度下,烧结6小时。所得氮化硅陶瓷板的厚度为0.66μm。
以与实施例1相同的方法测量氮化硅陶瓷板的弯曲强度、韧性和热导率,结果,弯曲强度为850MPa,韧性8.5,热导率为90W/mK。
步骤b  制备用于粘接的玻璃
SiO2    68.0
B2O3   12.0
Al2O3  0.5
Co3O4  0.8
TiO2    1.0
Na2O    0.2
CaO      11.5
MgO      3.5
BaO      1.5
MnO2    1.0(wt%)
这里,用H3BO3作B2O3的初始材料,用NaNO3作Na2O的初始材料,用Li2CO3作Li2O的初始材料,用CaCO3作CaO的初始材料。把这些粉末混合,然后,用电炉在大气中用氧化铝坩埚熔化该混合物。熔化的条件为,分批地投放初始材料的温度是1300℃,使混合物保持在1450℃的最高温度3小时,然后降温至1250℃,并把所得熔化物注入水中,以获得水破碎的碎玻璃。把所得碎玻璃干燥,然后用由氧化铝制成的球磨所得碎玻璃破碎24小时,获得玻璃粉末。另外,将一部分熔化的玻璃注入不锈钢制的模具中,在530℃保持3小时,然后用约30小时冷却至室温,进行退火。另外,把所获得的玻璃块在900℃下加热并保持3小时,进行预结晶。破碎部分结晶的玻璃的一部分,并用粉末X-射线衍射仪测量晶相,发现产生了硅灰石和鳞英石。由预先准备的较准曲线检测晶相量,发现硅灰石含量为21wt%,鳞英石含量为17wt%。用钻石切刀从结晶玻璃块上切下样品片,用差分膨胀计测量样品室温至300℃时的平均热膨胀系数,热膨胀系数为8.0×10-6
步骤c  制备涂敷了玻璃的氮化硅陶瓷板
在有氧的气氛中,有1250℃加热在步骤a中所得的氮化硅陶瓷板8小时,进行表面氧化。
然后,将在步骤b获得的SiO2-B2O3-CaO-Al2O3-MnO型结晶玻璃破碎成325目以下那么大,然后把它们悬浮于乙醇中。用旋涂法将该悬浮物涂敷于氮化硅陶瓷板上。在有空气成分的干燥气体气氛中,加热陶瓷板,并在1050℃的最高温度保持30分钟,进行玻璃涂敷和结晶化,从而获得涂敷了结晶玻璃的氮化硅陶瓷板。
步骤d  粘接氮化硅陶瓷板和金属板
用异丁烯酸类粘合剂,把处理过以使之有预定尺寸的厚为0.3mm的铜板暂时固定到涂敷了玻璃的氮化硅陶瓷板上。然后,在有65ppm的氧的氮气氛中,通过在保持1100℃的最高温度条件下加热5分钟,粘接铜板。借助剥落强度来评估所得到的电路基片的铜/陶瓷体的粘接强度,结果获得8.5Kg/cm的足够高的粘接强度。
实施例26至28
步骤a  制备氮化硅陶瓷板
把n-丁醇加到含94.5wt%的氮化硅粉末、4.0wt%的Y2O3、以CaO的重量计1.0wt%的CaCO3、0.5wt%的Al2O3的粉末中,用球磨湿法破碎和搅拌该混合物。其中所说氮化硅粉末含1.3wt%的杂质氧、以元素计0.15wt%以下的阳离子杂质和97wt%的α-相氮化硅,且其平均颗粒尺寸为0.55μm;所说Y2O3的平均颗粒尺寸为0.1μm,且其纯度为99.9wt%;所说CaCO3的平均颗粒尺寸为0.8μm,且其纯度为99.9wt%,所说Al2O3的平均颗粒尺寸为0.4μm,且其纯度为99.9wt%。然后,把该混合物和丙烯酸酯类粘合剂分散于醇类溶剂中,制备粘度约为5500CPS的成型料。然后,用该料,利用刮刀法制备平均厚度约为0.8mm的生坯片。再后把生坯片切成要求的尺寸。如果必要,在对该片进行了外形处理后,在氮气氛中,把该片加热到700℃的最高温度,除去粘合剂。在除去粘合剂后,把其余物填进由Si3N4陶瓷制成的容器中,利用具有由碳制成的加热器的烧结炉,在氮气氛中,在3.5个大气压下,在1900℃温度下,烧结3小时。所得氮化硅陶瓷板的厚度为0.66μm。
结果氮化硅陶瓷板的弯曲强度为880MPa,韧性8.1,热导率为100W/mK。
步骤b  制备用于粘接的玻璃
以与实施例25相同的方法制备结晶玻璃。该玻璃的具体组分和平均热膨胀系数示于表5中。
表5
             实施例26            实施例27            实施例28
SiO2          45.8                81.2                82.0
BaO            42.0
B2O3         5.9                 6.5                 5.8
Co3O4        0.6                 0.1
TiO2                              0.2                 0.1
NiO                                                    0.2
Al2O3        0.5                 1.0                 0.3
Na2O          0.2                 0.3                 0.5
Li2O                              0.2
CaO            3.5                 9.5                 2.5
MgO            1.5                                     8.6
晶相热                             硅灰石              斜顽辉石
膨胀系数                           鳞英石
(×10-6)      6.1                 7.9                 10.5
步骤c  制备涂敷了玻璃的氮化陶瓷板瓷板
在有氧的气氛中,在1290℃加热所得的氮化硅陶瓷板8小时,进行表面氧化。用与实施例1相同的方法,把在步骤b中所得的有不同组分的结晶玻璃粉末涂敷到陶瓷板上。
步骤d  粘接氮化硅陶瓷板和金属板
用异丁烯酸类粘合剂,分别把厚为0.3mm的韧铜板暂时固定到在步骤C所得的氮化硅陶瓷板上。然后,在有40PPm的氧的氮气氛中,通过在保持950℃的条件下加热并保持30分钟,粘接铜板。所获得的电路基片的剥落强度示于表6中。
 表6
  实施例26    实施例27    实施28
剥落强度 8.6         8.7       8.5
实施例29
以与实施例1相同的方法进行各步骤,只是用厚度为0.3mm的铝板代替铜板,把铝板粘接到在实施例1中所得的氮化硅陶瓷板上。即,用含65wt%的玻璃、15wt%的鳞英石和20wt%的钛化镁的PBO-ZnO-B2O3型玻璃和晶体的混合粉末,在含空气成分的干燥气氛中,在610℃的最高温度下加热15分钟,把处理过以使之有预定尺寸的厚为0.3mm的铝板粘接到氮化硅陶瓷板上。其中所说玻璃含2.1wt%的氮,1.5wt%的TiO2,0.5wt%的Co3O4,0.7wt%的Al2O3,0.2wt%的碱金属氧化物(Na2O),其室温至300℃的平均热膨胀系数为15.5×10-6/℃,其平均颗尺寸为1.5μm。所说鳞英石的平均颗尺寸为1.5μm。所说硅灰石的平均颗尺寸为1.1μm。以与实施例1相同的方法,用剥落强度来评估铝/氮化硅陶瓷体的粘接强度,粘接强度为7.8Kg/cm。
比较例1
用与实施例1相同的组分和相同的制备方法,制备厚0.67mm的氮化硅陶瓷板,在有空气成分的干燥气体中,在1300℃加热该陶瓷板12小时,形成厚约2μm的氧化层。除不用玻璃层外,用与实施例1相同的材料和相同的方法,把铜板粘接到氧化层上。以相同的方法测量所得电路基片的粘接强度,粘接强度为2.1Kg/cm,不到可以实际应用的强度5Kg/cm,所以该电路基片无法实际应用。
实施例30
在实施例1、13和25中所得的各氮化硅陶瓷电路基片的金属板上,通过焊接层安装大功率管(半导体元件),并用键合线把它连接到金属板的端部,分别用氮化硅陶瓷基片制备半导体器件。图2中示出了该器件的构思图,其中1为氮化硅陶瓷板,2金属板,3为玻璃层,4为氮化硅陶瓷电路基片,5为大功率管,6为焊接层,7为键合引线。
当电通过所得的半导体器件时,测量每个的瞬时热阻,证实半导体器件呈现出足够的辐射性能,陶瓷部分片没有发生龟裂,器件有极好的耐久性和可靠性。

Claims (13)

1.一种电路基片,包括:室温下的热导率为80W/mK以上的氮化硅陶瓷板,和通过玻璃层粘接到氮化硅陶瓷板上的金属板,其中所述玻璃层含以氧化物计0.01-2wt%的碱金属;玻璃层含以氧化物计0.01-5wt%的过渡金属;玻璃层含以氧化物计0.02-2.5wt%的氧化铝。
2.根据权利要求1的基片,其特征在于:玻璃层是氧化物玻璃层。
3.根据权利要求1的基片,其特征在于:玻璃层是含0.05-7wt%的氮的氮氧化合物玻璃层。
4.根据权利要求1的基片,其特征在于:玻璃层是结晶玻璃层。
5.根据权利要求1的基片,其特征在于:过渡金属是钛、钒、铬、铁、钴、镁、镍、铜、锆或钽。
6.根据权利要求1的基片,其特征在于:金属板包括铜,玻璃的室温至300℃的平均热膨胀系数为7-13×10-6/℃。
7.根据权利要求1的基片,其特征在于:金属板包括铝,玻璃的室温至300℃的平均热膨胀系数为10-18×10-6/℃。
8.根据权利要求1的基片,其特征在于:金属板包括镍,玻璃的室温至300℃的平均热膨胀系数为5-10×10-6/℃。
9.根据权利要求1的基片,其特征在于:氮化硅陶瓷板/金属板的厚度比为1至5,金属板/玻璃层的厚度比为2至40。
10.根据权利要求1的基片,其特征在于:氮化硅陶瓷板是通过在非氧化气氛中加热而获得的。
11.根据权利要求1的基片,其特征在于:玻璃层是通过加热由旋涂法涂敷在氮化硅陶瓷板上的玻璃悬浮体而获得的。
12.根据权利要求1的基片,其特征在于:玻璃层是通过加热由浸渍法涂敷在氮化硅陶瓷板上的玻璃悬浮体而获得的。
13.一种含权利要求1的基片的半导体器件。
CNB961144181A 1995-09-28 1996-09-27 氮化硅陶瓷电路基片及使用该陶瓷基片的半导体器件 Expired - Fee Related CN1149666C (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP25031795 1995-09-28
JP250317/1995 1995-09-28
JP250317/95 1995-09-28
JP8070012A JPH09153568A (ja) 1995-09-28 1996-03-26 窒化珪素セラミック回路基板および半導体装置
JP070012/1996 1996-03-26
JP070012/96 1996-03-26

Publications (2)

Publication Number Publication Date
CN1155759A CN1155759A (zh) 1997-07-30
CN1149666C true CN1149666C (zh) 2004-05-12

Family

ID=26411187

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB961144181A Expired - Fee Related CN1149666C (zh) 1995-09-28 1996-09-27 氮化硅陶瓷电路基片及使用该陶瓷基片的半导体器件

Country Status (5)

Country Link
US (1) US6110596A (zh)
JP (1) JPH09153568A (zh)
KR (1) KR100244823B1 (zh)
CN (1) CN1149666C (zh)
TW (1) TW343381B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108605417A (zh) * 2016-03-30 2018-09-28 日立金属株式会社 陶瓷基板及其制造方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6294244B1 (en) * 1997-12-22 2001-09-25 Kyocera Corporation Wiring board having excellent heat-radiating property
JP3792129B2 (ja) 2001-03-01 2006-07-05 新光電気工業株式会社 キャパシタ、キャパシタ内蔵回路基板及びそれらの製造方法
JP3868854B2 (ja) * 2002-06-14 2007-01-17 Dowaホールディングス株式会社 金属−セラミックス接合体およびその製造方法
KR20040051961A (ko) * 2002-12-13 2004-06-19 삼화전자공업 주식회사 태양전지용 기판 및 그 제조방법
US7148577B2 (en) * 2003-12-31 2006-12-12 Intel Corporation Materials for electronic devices
US7019390B2 (en) * 2004-02-03 2006-03-28 Visteon Global Technologies, Inc. Silicon nitride insulating substrate for power semiconductor module
DE102005042554B4 (de) * 2005-08-10 2008-04-30 Curamik Electronics Gmbh Metall-Keramik-Substrat und Verfahren zur Herstellung eines Metall-Keramik-Substrats
JP2010171536A (ja) * 2009-01-20 2010-08-05 Seiko Instruments Inc 圧電振動子
EP2484957B1 (en) * 2009-07-06 2022-05-04 Kabushiki Kaisha Toshiba Method of packaging a ceramic substrate for mounting a device, method of packaging a ceramic substrate for mounting an led
CN102548197B (zh) * 2012-01-30 2016-08-03 华为技术有限公司 一种高速印制电路板
EP2866534B1 (en) * 2012-06-21 2019-05-01 Kyocera Corporation Circuit board and electronic apparatus provided with the circuit board
JP5844299B2 (ja) * 2013-03-25 2016-01-13 株式会社日立製作所 接合材、接合構造体
WO2014156835A1 (ja) 2013-03-29 2014-10-02 三菱マテリアル株式会社 金属-セラミックス板積層体の製造装置及び製造方法、パワーモジュール用基板の製造装置及び製造方法
DE102013108610A1 (de) * 2013-08-06 2015-02-12 Rogers Germany Gmbh Metall-Keramik-Substrat sowie Verfahren zum Herstellen eines Metall-Keramik-Substrates
US20190376359A1 (en) * 2018-06-10 2019-12-12 Pa&E, Hermetic Solutions Group, Llc Hydrophobic dielectric sealing materials
DE102020108867A1 (de) 2020-03-31 2021-09-30 Schott Ag Einschmelzglas und dessen Verwendung

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB761045A (en) * 1952-08-29 1956-11-07 Lodge Plugs Ltd Improvements in or relating to the bonding of ceramics with copper
JPS5842260A (ja) * 1981-09-07 1983-03-11 Mitsubishi Electric Corp 半導体装置
EP0097944B1 (en) * 1982-06-29 1988-06-01 Kabushiki Kaisha Toshiba Method for directly bonding ceramic and metal members and laminated body of the same
JPS59150453A (ja) * 1982-12-23 1984-08-28 Toshiba Corp 半導体モジユ−ル用基板の製造方法
US4647477A (en) * 1984-12-07 1987-03-03 Kollmorgen Technologies Corporation Surface preparation of ceramic substrates for metallization
US4608354A (en) * 1984-12-24 1986-08-26 Gte Laboratories Incorporated Silicon nitride substrate
US5100714A (en) * 1986-07-24 1992-03-31 Ceramic Packaging, Inc. Metallized ceramic substrate and method therefor
JP3011433B2 (ja) * 1990-05-25 2000-02-21 株式会社東芝 セラミックス回路基板の製造方法
EP0484916A3 (en) * 1990-11-07 1993-06-02 Sumitomo Electric Industries, Limited Silicon nitride sintered body
JP2554210B2 (ja) * 1991-03-19 1996-11-13 株式会社日立製作所 金属接合回路基板およびそれを用いた電子装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108605417A (zh) * 2016-03-30 2018-09-28 日立金属株式会社 陶瓷基板及其制造方法

Also Published As

Publication number Publication date
CN1155759A (zh) 1997-07-30
US6110596A (en) 2000-08-29
TW343381B (en) 1998-10-21
JPH09153568A (ja) 1997-06-10
KR100244823B1 (ko) 2000-02-15
KR970018760A (ko) 1997-04-30

Similar Documents

Publication Publication Date Title
CN1149666C (zh) 氮化硅陶瓷电路基片及使用该陶瓷基片的半导体器件
JP4997431B2 (ja) 高熱伝導窒化ケイ素基板の製造方法
CN1356292A (zh) 氮化硅粉、其烧结体、基板、及由此的电路板和热电元件模块
EP2301906A1 (en) Silicon nitride board, method for manufacturing the silicon nitride board, and silicon nitride circuit board and semiconductor module using the silicon nitride board
CN1149667C (zh) 高热导率氮化硅电路衬底和使用它的半导体器件
EP1201623A2 (en) Silicon nitride ceramic substrate, silicon nitride ceramic circuit board using the substrate, and method of manufacturing the same
CN1082938C (zh) 高导热性氮化硅烧结体和使用它的压接结构体
WO2010082478A1 (ja) 窒化珪素基板の製造方法、窒化珪素基板、窒化珪素回路基板および半導体モジュール
KR102139194B1 (ko) 질화물 세라믹스 활성금속 브레이징 기판의 제조방법
CN1810713A (zh) 电介质陶瓷组合物及电子部件
JPH01203270A (ja) 高熱伝導性窒化アルミニウム焼結体及びその製造法
JP3629783B2 (ja) 回路基板
CN1760156A (zh) 陶瓷电子部件及其制造方法
CN1313418C (zh) 电介质陶瓷组合物、电子部件及其制造方法
CN1179912C (zh) 介电陶瓷组合物、电子器件及其生产方法
CN1445800A (zh) 陶瓷粉末和层叠陶瓷电子部件
JP2009280494A (ja) パワーモジュール
JP3408298B2 (ja) 高熱伝導性窒化けい素メタライズ基板,その製造方法および窒化けい素モジュール
JPH0969672A (ja) 窒化けい素回路基板
JP4556162B2 (ja) 窒化珪素質焼結体及びその製造方法、並びにそれを用いた回路基板
CN1757272A (zh) 多层陶瓷基板及其制造方法以及使用了它的电子机器
JPH08319187A (ja) 高熱伝導性窒化けい素回路基板
CN101054293A (zh) 电介质陶瓷组合物、电子部件及其制造方法
JP2018184316A (ja) 窒化アルミニウム焼結体及びその製造方法
JP5073135B2 (ja) 窒化アルミニウム焼結体、その製造方法及び用途

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20040512

Termination date: 20091027