CN114956082A - 一种低温铝熔盐体系制备过量Al掺杂MAX相的方法 - Google Patents

一种低温铝熔盐体系制备过量Al掺杂MAX相的方法 Download PDF

Info

Publication number
CN114956082A
CN114956082A CN202110215872.XA CN202110215872A CN114956082A CN 114956082 A CN114956082 A CN 114956082A CN 202110215872 A CN202110215872 A CN 202110215872A CN 114956082 A CN114956082 A CN 114956082A
Authority
CN
China
Prior art keywords
alc
alx
excessive
max phase
salt system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110215872.XA
Other languages
English (en)
Inventor
何青
胡慧慧
章冬雯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Beike Nano Technology Co ltd
Original Assignee
Suzhou Beike Nano Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Beike Nano Technology Co ltd filed Critical Suzhou Beike Nano Technology Co ltd
Priority to CN202110215872.XA priority Critical patent/CN114956082A/zh
Publication of CN114956082A publication Critical patent/CN114956082A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

本发明公开了一种低温熔融盐体系制备过量Al掺杂MAX相的方法,属于二维纳米材料技术领域。所述铝熔融盐体系包括卤化铝AlX3和/或碱金属卤铝酸盐MX‑AlX3,所述MAX相包括A位元素为Al的Mn+1AlXn前体。所述方法包括:对Mn+ 1AlXn相与路易斯熔融盐的混合物进行低温煅烧得到过量Al掺杂的MAX相烧结块;一定浓度的HCl洗涤Al‑MAlX除去残留的中间杂质;干燥、筛分得到铝过量的Mn+1AlXn粉末。本发明提供的熔融盐体系掺杂过量铝的方法不仅可以通过刻蚀法得到抗氧化Ti3C2TX纳米片,而且对于不易刻蚀的MAX相能起到高效剥离片层的作用;并且,该方法实施工艺简单、煅烧温度低、流程可控,具有较强的推广和应用价值,属于低能耗的制备方法。

Description

一种低温铝熔盐体系制备过量Al掺杂MAX相的方法
技术领域
本发明属于二维纳米材料技术领域,具体涉及一种低温熔融盐体系制备过量Al掺杂MAX相的方法。
背景技术
由于其无与伦比的性能,被称为MAX相的纳米叠层及其二维(2D)衍生物MXene引起了极大的关注。MAX相的分子式为Mn+1AXn(n = 1-3),其中M是早期过渡金属,A是传统上来自13-16组的元素,X是碳或氮。 MAX相的晶胞由与A元素层(例如Al)层交错的M6X八面体(例如Ti6C)组成。当通过HF或其他酸蚀刻A位原子时,保留的Mn+1XnTx片形成2D片,称为MXenes。这些2D衍生物在电池电极,超级电容器,电磁吸收和屏蔽涂层,催化剂和碳捕获方面具有广阔的应用前景。
随着MXene研究范围的扩大,有文献报道了令人惊讶的结果,即烧结后的MAX的相纯度不一定决定所得MXene的质量。德雷塞尔大学的Yury Gogotsi团队在题目为“ModifiedMAX Phase Synthesis for Environmentally Stable and Highly Conductive Ti3C2MXene”的文章中报道了通过控制TiC、Ti和Al粉的比例制备含有少量Al杂质的Ti3AlC2前体,通过HF刻蚀获得稳定的Ti3C2 MXene。文献表明在Ti3AlC2 MAX相前体的合成过程中包含过量的铝会导致化学计量和结晶度得到改善的Ti3AlC2晶粒的产生。而且由改进的Ti3AlC2制成的Ti3C2纳米片具有明显提高的抗氧化性。在MAX相Ti3AlC2的高温合成过程中加入了过量的铝(A元素),以在烧结过程的早期阶段形成液相,烧结反应过程中熔融金属的存在会促进反应物的扩散,从而导致Ti3AlC2晶粒具有改善的结构有序性和形态。由此消除Ti3C2的合成过程中产生的缺陷所导致Ti3C2在水溶液和空气中高度不稳定性。
中国科学院宁波材料技术与工程研究黄庆团队在题目为“Element ReplacementApproach by Reaction with Lewis Acidic Molten Salts to SynthesizeNanolaminated MAX Phases and MXenes”的文章中报道了通过MAX相与后期过渡金属卤化物ZnCl2之间的置换反应合成一系列基于Zn的MAX相和Cl端基MXene的通用方法,包括Ti3ZnC2, Ti2ZnC, Ti2ZnN, V2ZnC和Ti3C2Cl2,Ti2CCl2。
黄庆团队在另一篇题目为“A general Lewis acidic etching route forpreparing MXenes with enhanced electrochemical performance in non-aqueouselectrolyte”的文章中使用了同样的方法,验证通过熔融路易斯酸蚀刻A位元素为Si,Zn和Ga的非常规MAX相前体合成各种MXene。
此外,黄庆团队在申请公布号为CN 109437177 A的中国专利中公开了以Cl为表面基团的MXene材料及其制备方法与应用,重点在于将前驱体MAX相材料和过渡金属氯化物混合,并高温反应以获得以Cl为表面基团的MXene材料。
上海大学在申请公布号为CN 112225221 A的中国专利中公开了一种具有核壳结构的i-MAX相材料及其制备方法,重点在于选择CuCl2盐为刻蚀剂,高温煅烧得到壳层为带有介孔结构的过渡金属碳化物,核层仍为i-MAX相的全新核壳结构。
由鉴于此,可以通过置换反应机理在铝熔融盐体系中对Mn+1AlXn前体的A-位元素Al进行掺杂,以低温煅烧的方法获得过量铝掺杂的MAX相。本发明提供的熔融盐体系掺杂过量铝的方法还可以对于不易刻蚀的MAX相能起到高效剥离片层的作用;并且,该方法煅烧温度低、流程可控,属于低能耗的制备方法,具有较强的推广和应用价值。
发明内容
本发明的目的在于提供一种低温熔融盐体系制备过量Al掺杂MAX相的方法。本发明方法通过在煅烧过程中铝熔融盐体系对MAX相进行改良,得到过量Al掺杂的Mn+1AlXn相。
为达到上述目的,本发明的技术方案包括以下步骤,具体为:
步骤1:Mn+1AlXn相与铝熔融盐的混合物进行充分研磨,混合均匀,装到氧化铝坩埚中,石墨箔覆盖,放入管式炉中;
步骤2:将混合物在惰性气氛下煅烧;
步骤3:冷却至室温,研磨烧结块,并用HCl进行充分洗涤,直至不再有气泡逸出为止;
步骤4:用真空抽滤装置过滤,并去离子水反复抽滤;
步骤6:真空干燥,筛分,即可获得过量Al掺杂的MAX相。
优选的,Mn+1AlXn相与铝熔融盐的摩尔比为1:1~1:8;
优选的,煅烧温度为50~200℃,保温时间为5~24 h;
优选的,使用6~12M HCl对烧结块进行洗涤,洗涤时间大于2h。
较之现有技术,本发明的优点至少在于:
(1)熔融盐体系使得在进行过量Al掺杂时的煅烧温度远低于目前已报道的温度,本发明专利所使用煅烧温度不超过200℃,已报道路易斯熔融盐温度均在550~750℃;
(2)铝熔融盐体系在对Mn+1AlXn前体进行过量掺杂时引入A位元素,避免了额外中间杂质的形成;
(3)过量的铝会导致化学计量和结晶度得到改善的Mn+1AlXn晶粒的产生,消除MXene的合成过程中产生的缺陷,形成稳定的MXene胶体溶液。
附图说明
图1为过量Al掺杂的Mn2AlC相烧结块及抽滤过程实物图
图2为过量Al掺杂的Mn2AlC的SEM图
图3为过量Al掺杂的Mn2AlC的元素分布图,包括元素Mn、Al、C。
具体实施方式
下面结合实施例具体介绍本发明的实质性内容。
实施例1
在本实施例中,通过以下方法制备过量Al掺杂的Ti3AlC2相:
Ti3AlC2相与AlCl3-NaCl-KCl熔融盐体系的混合物进行充分研磨,混合均匀,装到氧化铝坩埚中,石墨箔覆盖,放入管式炉中;将混合物在Ar气氛下煅烧,煅烧温度为150℃,保温时间为10 h;冷却至室温,研磨烧结块,得到Al-Ti3AlC2粉末;用9 M HCl进行充分洗涤,直至不再有气泡逸出为止;用孔径为5μm的滤膜反复抽滤过量Al掺杂的Ti3AlC2和HCl混合物;然后在真空烘箱中干燥;通过400目的颗粒筛进行筛分,即可获得过量Al掺杂的Ti3AlC2相。
实施例2
在本实施例中,通过以下方法制备过量Al掺杂的Mn2AlC相:
Mn2AlC相与AlCl3-NaCl-KCl熔融盐体系的混合物进行充分研磨,混合均匀,装到氧化铝坩埚中,石墨箔覆盖,放入管式炉中;将混合物在Ar气氛下煅烧,煅烧温度为130℃,保温时间为12 h;冷却至室温,研磨烧结块,得到Al-Mn2AlC粉末;用9 M HCl进行充分洗涤,直至不再有气泡逸出为止;用孔径为5μm的滤膜反复抽滤过量Al掺杂的Mn2AlC和HCl混合物;然后在真空烘箱中干燥;通过400目的颗粒筛进行筛分,即可获得过量Al掺杂的Mn2AlC相。
实施例3
在本实施例中,通过以下方法制备过量Al掺杂的V2AlC相:
V2AlC与AlCl3-NaCl-KCl熔融盐体系的混合物进行充分研磨,混合均匀,装到氧化铝坩埚中,石墨箔覆盖,放入管式炉中;将混合物在Ar气氛下煅烧,煅烧温度为150℃,保温时间为12 h;冷却至室温,研磨烧结块,得到Al-V2AlC粉末;用9 M HCl进行充分洗涤,直至不再有气泡逸出为止;用孔径为5μm的滤膜反复抽滤过量Al掺杂的V2AlC和HCl混合物;然后在真空烘箱中干燥;通过400目的颗粒筛进行筛分,即可获得过量Al掺杂的V2AlC相。
以上内容仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明权利要求书的保护范围之内。

Claims (6)

1.一种所述熔融盐体系制备过量Al掺杂MAX相的方法,其特征在于,包括Mn+1AlXn前体和铝熔融盐体系,所述铝熔融盐体系包括卤化铝AlX3和/或碱金属卤铝酸盐MX-AlX3,所述MAX相包括A位元素为Al的Mn+1AlXn前体,所述过量Al是指在纯相Mn+1AlXn中引入少量的杂质铝(即A位元素)。
2.根据权利要求1所述的方法,其特征在于,所述卤化铝AlX3和/或碱金属卤铝酸盐MX-AlX3包括但不仅限于AlF3、AlCl3、Al2Cl6、AlBr3、AlI3、NaAlCl4、NaAl2Cl7、AlCl3-NaCl、AlCl3-NaCl-KCl中的任意一种或者两种以上的组合。
3.根据权利要求1所述的方法,其特征在于,所述Mn+1AlXn包含但不仅限于Ti3AlC2、Ti2AlC、Ti2AlN、Ti3AlCN、Ti3AlN2、Ti4AlC3、Ti4AlN3、TiVAlC、Mn2AlC、V2AlC、V2AlN、V3AlC2、V4AlC3、VCrAlC、Nb2AlC、NbAl2N、Nb4AlC3、Ta2AlC、Ta3AlC2、Ta3AlN2、Ta4AlC3、Ta4NAl3、Mo2Ti2AlC3、Mo2TiAlC2、MoAlB、Mo3AlC2、ScAl3C3、Mo2Ti2AlC、Cr2AlC、Ti2VAlC2、VCrAlC、TiNbAlC、Cr2TiAlC3、(Mo2/3Sc1/3)2AlC、(W2/3Sc1/3)2AlC、(Mo2/3Y1/3)2AlC中的任意一种或者两种以上的组合。
4.根据权利要求1所述的方法,其特征在于,包括:将所述Mn+1AlXn前体和铝熔融盐体系混合均匀;之后于管式炉中50~200℃下煅烧5~24 h,获得所述过量Al掺杂MAX相。
5.根据权利要求4所述的方法,其特征在于,Mn+1AlXn前体和铝熔融盐体系的摩尔比为1:1~1:8。
6.权利要求1-5中任一方法通过刻蚀所制备的抗氧化MXene材料及其复合材料在吸波或电磁屏蔽或导电材料或生物材料中的用途。
CN202110215872.XA 2021-02-26 2021-02-26 一种低温铝熔盐体系制备过量Al掺杂MAX相的方法 Pending CN114956082A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110215872.XA CN114956082A (zh) 2021-02-26 2021-02-26 一种低温铝熔盐体系制备过量Al掺杂MAX相的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110215872.XA CN114956082A (zh) 2021-02-26 2021-02-26 一种低温铝熔盐体系制备过量Al掺杂MAX相的方法

Publications (1)

Publication Number Publication Date
CN114956082A true CN114956082A (zh) 2022-08-30

Family

ID=82973373

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110215872.XA Pending CN114956082A (zh) 2021-02-26 2021-02-26 一种低温铝熔盐体系制备过量Al掺杂MAX相的方法

Country Status (1)

Country Link
CN (1) CN114956082A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114956081A (zh) * 2021-02-26 2022-08-30 苏州北科纳米科技有限公司 一种过量Al掺杂MAX相陶瓷的制备方法
CN115650729A (zh) * 2022-11-04 2023-01-31 烟台大学 二钛钒铝碳陶瓷粉体材料及其制备方法与应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170088429A1 (en) * 2015-09-24 2017-03-30 Samsung Electronics Co., Ltd. Mxene nanosheet and manufacturing method thereof
CN111634914A (zh) * 2020-06-12 2020-09-08 陕西科技大学 一种M位掺杂钒系MXene的制备方法
US20200407281A1 (en) * 2018-07-10 2020-12-31 Ningbo Institute Of Materials Technology & Engineering, Chinese Academy Of Sciences Max phase material, preparation method therefor and application thereof
CN112225221A (zh) * 2020-06-05 2021-01-15 上海大学 具有核壳结构的i-MAX相材料及其制备方法
CN112316157A (zh) * 2020-11-12 2021-02-05 苏州北科纳米科技有限公司 一种抗氧化MXenes材料的制备方法及应用
CN114956081A (zh) * 2021-02-26 2022-08-30 苏州北科纳米科技有限公司 一种过量Al掺杂MAX相陶瓷的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170088429A1 (en) * 2015-09-24 2017-03-30 Samsung Electronics Co., Ltd. Mxene nanosheet and manufacturing method thereof
US20200407281A1 (en) * 2018-07-10 2020-12-31 Ningbo Institute Of Materials Technology & Engineering, Chinese Academy Of Sciences Max phase material, preparation method therefor and application thereof
CN112225221A (zh) * 2020-06-05 2021-01-15 上海大学 具有核壳结构的i-MAX相材料及其制备方法
CN111634914A (zh) * 2020-06-12 2020-09-08 陕西科技大学 一种M位掺杂钒系MXene的制备方法
CN112316157A (zh) * 2020-11-12 2021-02-05 苏州北科纳米科技有限公司 一种抗氧化MXenes材料的制备方法及应用
CN114956081A (zh) * 2021-02-26 2022-08-30 苏州北科纳米科技有限公司 一种过量Al掺杂MAX相陶瓷的制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114956081A (zh) * 2021-02-26 2022-08-30 苏州北科纳米科技有限公司 一种过量Al掺杂MAX相陶瓷的制备方法
CN115650729A (zh) * 2022-11-04 2023-01-31 烟台大学 二钛钒铝碳陶瓷粉体材料及其制备方法与应用
CN115650729B (zh) * 2022-11-04 2023-05-12 烟台大学 二钛钒铝碳陶瓷粉体材料及其制备方法与应用

Similar Documents

Publication Publication Date Title
EP3158599B1 (en) Porous silicon electrode and method
CN111924894B (zh) 高镍三元正极材料及其制备方法
CN115745018B (zh) 高熵MXene材料、高熵MAX相材料及其制备方法、电极和电池
JP7348329B2 (ja) 非水系電解質二次電池用電極及びこれを備える非水系電解質二次電池
AU2010265710B2 (en) Method for producing composite lithium iron phosphate material and composite lithium iron phosphate material produced thereby
CN114956082A (zh) 一种低温铝熔盐体系制备过量Al掺杂MAX相的方法
JP2018520488A (ja) 金属および金属イオン電池用の安定なフッ化リチウム系カソード
EP3130023A1 (en) Method and material for lithium ion battery anodes
CN112225221B (zh) 具有核壳结构的i-MAX相材料及其制备方法
KR20230036949A (ko) 리튬 함유 실리콘 산화물 복합 음극재 및 그 제조 방법과 리튬 이온 배터리
CN114956085A (zh) 一种低温熔融盐体系制备抗氧化MXene的方法
JP5888400B1 (ja) 電極材料及びその製造方法
CN114956084A (zh) 一种Al掺杂的MXene的制备方法
WO2016201611A1 (en) Porous silicon particles and a method for producing silicon particles
JP2024512113A (ja) 負極材料、その調製方法およびリチウムイオン電池
CN116216663A (zh) 一种新型二维立方多层氮化钛材料及其制备方法和应用
Jiao et al. Synthesis of nanoparticles, nanorods, and mesoporous SnO2 as anode materials for lithium-ion batteries
CN114956081A (zh) 一种过量Al掺杂MAX相陶瓷的制备方法
CN114628661A (zh) 负极材料、其制备方法及锂离子电池
CN114206779A (zh) 制备石榴石型无机材料的方法
CN114843510B (zh) 一种金属-硫原位共掺杂MXene电极材料的制备方法
JP6436234B2 (ja) CaSi2含有組成物及びシリコン材料の製造方法
Yan et al. Preparation of Fluorine-free MXene Ti3C2T x and Its Electrical Properties
CN114195504B (zh) 一种MgAl2O4纳米线膜的制备方法和应用
CN115403358B (zh) 一种过渡金属离子与Eu3+共掺杂型固体电解质陶瓷材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination