CN114887635B - 一种无铅稳定的含Te双钙钛矿微米晶及其制备方法和应用 - Google Patents

一种无铅稳定的含Te双钙钛矿微米晶及其制备方法和应用 Download PDF

Info

Publication number
CN114887635B
CN114887635B CN202210615265.7A CN202210615265A CN114887635B CN 114887635 B CN114887635 B CN 114887635B CN 202210615265 A CN202210615265 A CN 202210615265A CN 114887635 B CN114887635 B CN 114887635B
Authority
CN
China
Prior art keywords
containing double
tecl
double perovskite
lead
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210615265.7A
Other languages
English (en)
Other versions
CN114887635A (zh
Inventor
唐孝生
田长青
黄强
戚飞
张楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University of Post and Telecommunications
Original Assignee
Chongqing University of Post and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University of Post and Telecommunications filed Critical Chongqing University of Post and Telecommunications
Priority to CN202210615265.7A priority Critical patent/CN114887635B/zh
Publication of CN114887635A publication Critical patent/CN114887635A/zh
Application granted granted Critical
Publication of CN114887635B publication Critical patent/CN114887635B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/08Halides
    • B01J27/10Chlorides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8671Removing components of defined structure not provided for in B01D53/8603 - B01D53/8668
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/40Carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D17/00Rubidium, caesium or francium compounds
    • C01D17/003Compounds of alkali metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/12Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon dioxide with hydrogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/40Mixed oxides
    • B01D2255/402Perovskites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/80Type of catalytic reaction
    • B01D2255/802Photocatalytic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/20Carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/24Hydrocarbons
    • B01D2256/245Methane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/34Three-dimensional structures perovskite-type (ABO3)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Catalysts (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明涉及一种无铅稳定的含Te双钙钛矿微米晶及其制备方法和应用,属于钙钛矿微米晶制备技术领域。本发明公开了一种无铅稳定的含Te双钙钛矿微米晶,该含Te双钙钛矿微米晶(Cs2TeCl6)具有良好的晶体结构且结构极其稳定,平均粒径为5~8μm、尺寸均匀、有较强的吸收能力;同时具有稳定性好、发光好的特点。另外该含Te双钙钛矿微米晶(Cs2TeCl6)的合成方法简单、易操作、对设备要求不高,具有低成本、低能耗的特点,适合扩大化生产;该含Te双钙钛矿微米晶(Cs2TeCl6)具有良好的光催化还原CO2能力,其产物有CO生成的同时,还伴有CH4的生成,具有较好的应用前景。

Description

一种无铅稳定的含Te双钙钛矿微米晶及其制备方法和应用
技术领域
本发明属于钙钛矿微米晶制备技术领域,涉及一种无铅稳定的含Te双钙钛矿微米晶及其制备方法和应用。
背景技术
人工光催化将CO2还原为有价值的化学原料是解决全球能源和环境危机的有效途径,迄今已引起了人们的极大兴趣。
在筛选出的光催化剂中,卤化铅钙钛矿由于具有高光致发光量子产率、较强发射和带隙的可调性、优异的电荷传输性能和较短的辐射寿命等优异的光学性质,在光电子和光催化领域具有广阔的应用前景,近年来已被大量报道。然而,它们的毒性和有限的稳定性是限制其大规模在光催化方面应用的主要障碍,例如,铅(Pb)基钙钛矿的毒性会造成环境污染且对人体有害;再者传统卤化铅钙钛矿长时间暴露在空气环境中时,空气中的湿度、光热等会导致材料分解、被氧化等,进而对钙钛矿材料的性能造成较大影响,严重的会导致光致发光(PL) 猝灭。
因此,为了保持钙钛矿的优异性能,就必须保证其稳定性,因此迫切需要研究一种稳定且无铅的钙钛矿材料。
发明内容
有鉴于此,本发明的目的之一在于提供一种无铅稳定的含Te双钙钛矿微米晶;本发明的目的之二在于提供一种无铅稳定的含Te双钙钛矿微米晶的制备方法;本发明的目的之三在于提供一种无铅稳定的含Te双钙钛矿微米晶在光催化还原二氧化碳方面的应用。
为达到上述目的,本发明提供如下技术方案:
1.一种无铅稳定的含Te双钙钛矿微米晶,所述含Te双钙钛矿微米晶的化学组成为Cs2TeCl6
2.上述含Te双钙钛矿微米晶的制备方法,所述制备方法包括如下步骤:
(1)将氯化铯(CsCl)、氯化碲(TeCl4)和盐酸混合均匀,形成前驱体溶液;
(2)将所述前驱体溶液置于聚四氟乙烯高压反应釜中,按照以下流程进行反应:升温过程:将所述前驱体溶液在10h内从室温加热到180℃,保持10~12h;降温过程,在24h内缓慢降至室温;
(3)将步骤(2)中高压反应釜中反应得到的产物经过清洗、离心和干燥,即可得到无铅稳定的含Te双钙钛矿微米晶(Cs2TeCl6)。
优选的,步骤(1)中,所述氯化铯(CsCl)和氯化碲(TeCl4)的摩尔比为2:1。
优选的,步骤(1)中,所述盐酸的质量分数为37~38%,所述氯化铯(CsCl)和盐酸的摩尔体积比为2:1,mmol:ml。
优选的,步骤(3)中,所述清洗时采用无水乙醇作为清洗剂,所述产物与无水乙醇的体积比不大于1:2。
优选的,步骤(3)中,所述离心为在8000~10000rpm的转速下离心5~10min。
优选的,步骤(3)中,所述干燥为在60~70℃下干燥4~6h。
3.上述无铅稳定的含Te双钙钛矿微米晶在光催化还原二氧化碳方面的应用。
本发明的有益效果在于:
本发明公开了一种无铅稳定的含Te双钙钛矿微米晶,该含Te双钙钛矿微米晶(Cs2TeCl6) 具有良好的晶体结构且结构极其稳定,平均粒径为5~8μm、尺寸均匀、有较强的吸收能力;同时具有稳定性好、发光好的特点。另外该含Te双钙钛矿微米晶(Cs2TeCl6)的合成方法简单、易操作、对设备要求不高,具有低成本、低能耗的特点,适合扩大化生产;该含Te双钙钛矿微米晶(Cs2TeCl6)具有良好的光催化还原CO2能力,其产物有CO生成的同时,还伴有CH4的生成,具有较好的应用前景。
本发明的其他优点、目标和特征在某种程度上将在随后的说明书中进行阐述,并且在某种程度上,基于对下文的考察研究对本领域技术人员而言将是显而易见的,或者可以从本发明的实践中得到教导。本发明的目标和其他优点可以通过下面的说明书来实现和获得。
附图说明
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作优选的详细描述,其中:
图1为实施例1制备的无铅稳定的含Te双钙钛矿微米晶(Cs2TeCl6)(0days)以及放置120天(120days)后的微米晶在可见光(Visiable light)、254nm紫外激发和365nm紫外激发下的发光性;
图2为实施例1制备的无铅稳定的含Te双钙钛矿微米晶(Cs2TeCl6)的扫描电镜(SEM) 图(a)和X射线衍射(XRD)图(b);
图3为实施例1的制备的无铅稳定的含Te双钙钛矿微米晶(Cs2TeCl6)的X射线光电子能谱,其中a为XPS总谱图、b为XPS元素Cs 3d分谱图、c为XPS元素Te 3d分谱图、d 为XPS元素Cl 2p分谱图;
图4为实施例1的制备的无铅稳定的含Te双钙钛矿微米晶(Cs2TeCl6)在不同环境下的 XRD图(a)和热重分析图(b);
图5为实施例1制备的无铅稳定的含Te双钙钛矿微米晶(Cs2TeCl6)的吸收光谱图(a)、荧光光谱图(b)、光催化性能(c)和CO和CH4随光照时间的变化曲线(d)。
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。需要说明的是,以下实施例中所提供的图示仅以示意方式说明本发明的基本构想,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合。
实施例1
制备一种无铅稳定的含Te双钙钛矿微米晶,具体方法如下所示:
(1)将2mmol的氯化铯(CsCl)、1mmol的氯化碲(TeCl4)和5mL的盐酸(质量分数为37%)混合均匀,形成前驱体溶液;
(2)将上述前驱体溶液置于聚四氟乙烯高压反应釜中,按照以下流程进行反应:升温过程:将所述前驱体溶液在10h内从室温加热到180℃,保持12h;降温过程,在24h内缓慢降至室温;
(3)将步骤(2)中高压反应釜中反应得到的产物用无水乙醇清洗(其中每1ml产物需至少加入2ml无水乙醇),以10000rpm的转速离心5min,然后在70℃下干燥4h。
实施例2
制备一种无铅稳定的含Te双钙钛矿微米晶,具体方法如下所示
(1)将2mmol的氯化铯(CsCl)、1mmol的氯化碲(TeCl4)和5mL的盐酸(质量分数为38%)混合均匀,形成前驱体溶液;
(2)将上述前驱体溶液置于聚四氟乙烯高压反应釜中,按照以下流程进行反应:升温过程:将所述前驱体溶液在10h内从室温加热到180℃,保持10h;降温过程,在24h内缓慢降至室温;
(3)将步骤(2)中高压反应釜中反应得到的产物用无水乙醇清洗(其中每1ml产物需至少加入2ml无水乙醇),以10000rpm的转速离心5min,然后在70℃下干燥4h。
实施例3
制备一种无铅稳定的含Te双钙钛矿微米晶,具体方法如下所示
(1)将2mmol的氯化铯(CsCl)、1mmol的氯化碲(TeCl4)和5mL的盐酸(质量分数为37%)混合均匀,形成前驱体溶液;
(2)将上述前驱体溶液置于聚四氟乙烯高压反应釜中,按照以下流程进行反应:升温过程:将所述前驱体溶液在10h内从室温加热到180℃,保持10h;降温过程,在24h内缓慢降至室温;
(3)将步骤(2)中高压反应釜中反应得到的产物用无水乙醇清洗(其中每1ml产物需至少加入2ml无水乙醇),以8000rpm的转速离心10min,然后在60℃下干燥6h。
性能测试
为了更好地验证本发明制备的无铅稳定的含Te双钙钛矿微米晶(Cs2TeCl6)的性质,首先分别测试实施例1制备的无铅稳定的含Te双钙钛矿微米晶(Cs2TeCl6)在可见光(Visiabl e light)、254nm紫外激发和365nm紫外激发下的发光性,测试方法如下:将50mgCs2TeC l6微米晶放入称量纸,分别用可见光(黄色)、254nm(橙色)紫外光和365nm(橙色)紫外光照射,观察其颜色变化,放置120天后,分别用可见光(黄色)、254nm(橙色)和3 65nm(橙色)紫外光照射,观察其颜色变化,其结果如图1所示。从图1可以看出,实施例 1制备的无铅稳定的含Te双钙钛矿微米晶(Cs2TeCl6)放置120天前后的发光无明显变化,说明其具有良好的稳定性。
为了测试实施例1制备的无铅稳定的含Te双钙钛矿微米晶(Cs2TeCl6)的形貌、尺寸与结晶性,将其进行扫描电镜(SEM)和X射线衍射(XRD)测试,其结果如图2所示。从图 2中a的SEM图可以看出,通过实施例1制备的无铅稳定的含Te双钙钛矿微米晶(Cs2TeCl 6)平均尺寸为5~8μm,其颗粒分布均匀,形貌呈准球形。从图2中b的XRD图可以看出,与Cs2TeCl6微米晶标准卡片(PDF#074-1010)相比,实施例1制备的无铅稳定的含Te双钙钛矿微米晶(Cs2TeCl6)的XRD曲线均一一对应,这表明通过实施例1的方法成功合成了无铅稳定的含Te双钙钛矿微米晶(Cs2TeCl6)。此外,Cs2TeCl6微米晶衍射峰狭窄且尖锐,这表明实施例1制备的Cs2TeCl6微米晶具有较好的结晶度,其结果如图2中b所示。
对实施例1制备无铅稳定的含Te双钙钛矿微米晶(Cs2TeCl6)进行X射线光电子能谱(X PS)测试,对Cs2TeCl6微米晶进行的表面化学分析,其结果如图3所示。图3中a为Cs2TeCl6微米晶的XPS总谱图,从中可以看出相关元素Cs、Te、Cl均存在;图3中b为Cs2TeCl 6微米晶的XPS元素Cs 3d分谱图,从中可以观察到元素Cs的两个峰处于738.27eV和724. 37eV,分别分配给Cs 3d3/2和Cs 3d5/2两个能级,此外,根据XPS标准图谱中显示元素Cs 3d双峰之间能量间距为13.9eV,与图3中b显示的完全一致;图3中c为Cs2TeCl6微米晶的 XPS元素Te 3d分谱图,从中可以观察到元素Te的两个峰处于587.34eV和577.0eV,分别分配给Te 3d3/2和Te 3d5/2两个能级,根据XPS标准图谱显示的元素Te 3d双峰之间能量间距为10.34eV,与其也完全一致;图3中d为Cs2TeCl6微米晶的XPS元素Cl 2p分谱谱图,从中可以观察到元素Cl的两个峰处于200.3eV和198.7eV,分别分配给Cl 2p1/2和Cl 2p3/2两个能级,根据XPS标准图谱显示的元素Cl 2p双峰之间能量间距为1.6eV,这一结果也与其完全一致。从上述XPS的分析结果说明,通过实施例1的制备方法确实能够成功合成无铅稳定的含Te双钙钛矿微米晶(Cs2TeCl6),相关元素Cs、Te、Cl均存在。
为了测试实施例1的制备的无铅稳定的含Te双钙钛矿微米晶(Cs2TeCl6)的热稳定性,对实施例1制备的Cs2TeCl6微米晶在不同环境下进行XRD测试和热重分析(TGA)测试,其结果分别如图4中a和b所示。图4中a显示,将实施例1制备的Cs2TeCl6微米晶(Initial) 以及分别置于100℃下保持120h(heating at 100℃for 120hours)、完全暴露在365nm紫外照射下120h(exposure under 365nm UV light for 120hours)和直接放置环境气氛中90 天(90days)处理后的Cs2TeCl6微米晶进行XRD检测,从中可以看出,经过不同条件处理后的Cs2TeCl6微米晶与最开始合成的Cs2TeCl6微米晶XRD曲线基本一致,既没有分解,也没有被氧化和产生其它杂质,依然表现出良好的稳定性的结晶度。图4中b为Cs2TeCl6微米晶的热重分析(TGA)测试结果,结果表明Cs2TeCl6微米晶在500℃之前,均表现出较好的热稳定性。
图5为实施例1制备的无铅稳定的含Te双钙钛矿微米晶(Cs2TeCl6)的吸收光谱图(a)、荧光光谱图(b)、光催化性能(c)和CO和CH4随光照时间的变化曲线(d)。从图5中a 可以看出,Cs2TeCl6微米晶吸收波段约在500nm,有良好的可见光吸收。从图5中b可以看出,Cs2TeCl6微米晶在激发波长为300nm下的光致发光荧光光谱,发射峰约在558nm,这表明Cs2TeCl6微米晶具有良好的荧光发射。此外,将Cs2TeCl6微米晶应用在光催化还原CO2领域,其光催化性能如图5中c所示,测试了Cs2TeCl6微米晶在光照(λ≥420nm)下的光催化性能图。值得一提的是,Cs2TeCl6微米晶在将CO2还原为CO的同时,还伴随有另一种高附加价值产物CH4的生成。其光催化性能3h CO和CH4的生成量分别为45.83μmol/g和44. 05μmol/g。此外,为了便于观察光催化Cs2TeCl6微米晶的生成物CO和CH4随光照时间的变化曲线,如图5中d所示,从中可以看出光照1h的CO和CH4增长最快,光照2~3h的增长趋于缓慢,这可能是由于CO分子附着在Cs2TeCl6微米晶表面活性位点。
同样的,将实施例2和实施例3中制备的无铅稳定的含Te双钙钛矿微米晶(Cs2TeCl6) 进行上述性能测试,其结果与实施例1中制备的无铅稳定的含Te双钙钛矿微米晶(Cs2TeCl6) 相同。由此说明本发明的方法确实能够制备得到稳定性好、发光好无铅稳定的含Te双钙钛矿微米晶(Cs2TeCl6)。
综上所述,本发明提供了一种无铅稳定的双钙钛矿微米晶及其制备方法和应用,该含Te 双钙钛矿微米晶(Cs2TeCl6)具有良好的晶体结构且结构极其稳定,平均粒径为5~8μm、尺寸均匀、有较强的吸收能力;同时具有稳定性好、发光好的特点。另外该含Te双钙钛矿微米晶(Cs2TeCl6)的合成方法简单、易操作、对设备要求不高,具有低成本、低能耗的特点,适合扩大化生产;该含Te双钙钛矿微米晶(Cs2TeCl6)具有良好的光催化还原CO2能力,其产物有CO生成的同时,还伴有CH4的生成,具有较好的应用前景。
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (7)

1.一种无铅稳定的含Te双钙钛矿微米晶在光催化还原二氧化碳方面的应用,其特征在于,所述含Te双钙钛矿微米晶的化学组成为Cs2TeCl6
2.根据权利要求1所述的应用,其特征在于,所述含Te双钙钛矿微米晶通过由以下方法制备:
(1)将氯化铯、氯化碲和盐酸混合均匀,形成前驱体溶液;
(2)将所述前驱体溶液置于聚四氟乙烯高压反应釜中,按照以下流程进行反应:升温过程:将所述前驱体溶液在10h内从室温加热到180℃,保持10~12h;降温过程,在24h内缓慢降至室温;
(3)将步骤(2)中高压反应釜中反应得到的产物经过清洗、离心和干燥,即可得到无铅稳定的含Te双钙钛矿微米晶。
3.根据权利要求2所述的应用,其特征在于,步骤(1)中,所述氯化铯和氯化碲的摩尔比为2:1。
4.根据权利要求2所述的应用,其特征在于,步骤(1)中,所述盐酸的质量分数为37~38%,所述氯化铯和盐酸的摩尔体积比为2:1,mmol:ml。
5.根据权利要求2所述的应用,其特征在于,步骤(3)中,所述清洗时采用无水乙醇作为清洗剂,所述产物与无水乙醇的体积比不大于1:2。
6.根据权利要求2所述的应用,其特征在于,步骤(3)中,所述离心为在8000~10000rpm的转速下离心5~10min。
7.根据权利要求2所述的应用,其特征在于,步骤(3)中,所述干燥为在60~70℃下干燥4~6h。
CN202210615265.7A 2022-05-31 2022-05-31 一种无铅稳定的含Te双钙钛矿微米晶及其制备方法和应用 Active CN114887635B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210615265.7A CN114887635B (zh) 2022-05-31 2022-05-31 一种无铅稳定的含Te双钙钛矿微米晶及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210615265.7A CN114887635B (zh) 2022-05-31 2022-05-31 一种无铅稳定的含Te双钙钛矿微米晶及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN114887635A CN114887635A (zh) 2022-08-12
CN114887635B true CN114887635B (zh) 2023-05-26

Family

ID=82726603

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210615265.7A Active CN114887635B (zh) 2022-05-31 2022-05-31 一种无铅稳定的含Te双钙钛矿微米晶及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN114887635B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1729140A (zh) * 2002-12-20 2006-02-01 本田技研工业株式会社 用于氢产生的不含铂的钌-钴催化剂配方
CN108251110A (zh) * 2018-01-29 2018-07-06 福州大学 一种钙钛矿量子点/薄膜体系构建多色发光膜的方法
EP3709373A1 (en) * 2019-03-15 2020-09-16 Oxford University Innovation Limited Double perovskite
CN112048302A (zh) * 2020-09-17 2020-12-08 昆明理工大学 一种Cs2TeCl6无铅钙钛矿薄膜的制备方法及应用
CN112358876A (zh) * 2020-11-17 2021-02-12 广西大学 一种Te掺杂Cs2ZrCl6钙钛矿衍生物材料及其制备方法和应用
CN114166900A (zh) * 2021-11-29 2022-03-11 苏州大学 一种基于鱼骨状钙钛矿Cs2TeI6的一氧化氮传感器及其制备方法和应用
CN114471628A (zh) * 2022-03-10 2022-05-13 重庆邮电大学 一种钙钛矿光催化剂及其制备方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1729140A (zh) * 2002-12-20 2006-02-01 本田技研工业株式会社 用于氢产生的不含铂的钌-钴催化剂配方
CN108251110A (zh) * 2018-01-29 2018-07-06 福州大学 一种钙钛矿量子点/薄膜体系构建多色发光膜的方法
EP3709373A1 (en) * 2019-03-15 2020-09-16 Oxford University Innovation Limited Double perovskite
CN112048302A (zh) * 2020-09-17 2020-12-08 昆明理工大学 一种Cs2TeCl6无铅钙钛矿薄膜的制备方法及应用
CN112358876A (zh) * 2020-11-17 2021-02-12 广西大学 一种Te掺杂Cs2ZrCl6钙钛矿衍生物材料及其制备方法和应用
CN114166900A (zh) * 2021-11-29 2022-03-11 苏州大学 一种基于鱼骨状钙钛矿Cs2TeI6的一氧化氮传感器及其制备方法和应用
CN114471628A (zh) * 2022-03-10 2022-05-13 重庆邮电大学 一种钙钛矿光催化剂及其制备方法和应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
A reversible and fast-responsive humidity sensor based on a lead-free Cs2TeCl6 double perovskite;Chaojie Pi et al.;《Mater. Adv.》;第2卷;第1043-1049页 *
Boosting triplet self-trapped exciton emission in Te(IV)-doped Cs2SnCl6 perovskite variants;Ruosheng Zeng et al.;《Nano Research》;第14卷(第5期);第1551–1558页 *
Lead-free perovskite Cs2XCl6 (X= Hf, Zr, Te) microcrystals for photocatalytic CO2 reduction;Changqing Tian et al.;《Materials Today Energy》;第28卷;第1-8页 *
Synthesis and CO2 Photoreduction of Lead-Free Cesium Bismuth Halide Perovskite Nanocrystals;Daofu Wu et al.;《J. Phys. Chem. C》;第125卷;第18328-18333页 *
高压下非铅双钙钛矿Cs2TeCl6 的 结构和光学性质;姚盼盼等;《物理学报》;第69卷(第21期);第1-7页 *

Also Published As

Publication number Publication date
CN114887635A (zh) 2022-08-12

Similar Documents

Publication Publication Date Title
Baweja et al. Economical and green synthesis of graphene and carbon quantum dots from agricultural waste
CN110877904B (zh) 一种高量子产率的碳量子点的制备方法
CN104479675B (zh) 荧光石墨烯量子点材料的大规模工业化制备方法
CN107876035A (zh) 一种碳量子点/二氧化钛复合光催化材料及其制备方法和应用
Han et al. Silk-mediated synthesis and modification of photoluminescent ZnO nanoparticles
CN113173575B (zh) 一种铜纳米颗粒/富勒醇纳米复合材料及其制备方法和应用
CN110252379A (zh) 一种坡缕石/石墨相碳氮化合物复合材料的制备及应用
CN109731613A (zh) 一种PVDF/六棱柱形ZnO纳米线纤维膜及其制备方法和用途
CN114887635B (zh) 一种无铅稳定的含Te双钙钛矿微米晶及其制备方法和应用
CN116534812A (zh) 一种荧光石墨相氮化碳量子点、其制备方法及应用
CN105672038A (zh) 一种量子点荧光防伪纸的制备方法
CN107224972A (zh) 花球状结构ZnO/ZnWO4光催化剂的合成方法
CN101372394B (zh) 利用表面活性剂修饰的二氧化钛合成超亲水性薄膜的方法
CN102134105A (zh) 一种在室温下利用氨基酸辅助制备纳米四氧化三钴颗粒的方法
CN106582758A (zh) 层级纳米结构Bi2O3/(BiO)2CO3的制备
CN110026170A (zh) 一种光催化降解罗丹明B的TiO2光催化剂及其制备方法
Sivakumar et al. Synthesis of ZnO nanowire and ZnO/CeO2 solid solution nanowire by bio-morphing and its characterization
Thirumamagal et al. Evaluation of the cytotoxicity effect on HAp doped with Ce2O3 and its assessment with breast cancer cell line of MCF-7
CN109046231B (zh) 一种超声波辅助水热合成法制备介孔硅酸铜铋纳米复合材料的方法及应用
CN114890444B (zh) 一种制备无铅含Te双钙钛矿微米晶的反溶剂制备方法及其产品
CN110182847A (zh) 一种花状MoO2纳米材料的制备方法
CN104028264B (zh) 一种正四棱柱状铋系含氧酸盐Bi2WO6的制备方法
Rahmatolahzadeh et al. Synthesis, characterization, and morphological control of Cn 3 B 2 O 6 nanostructures by sol–gel process for azo dye degradation
CN109499615A (zh) 一种多金属氧酸盐掺杂的固态发光纳米材料及其制备方法和应用
Senthamilselvi et al. Microstructure and photocatalytic properties of bismuth oxide (Bi2O3) nanocrystallites

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant