CN114874927A - 一株高产重组蛋白的酵母基因工程菌及其构建方法和应用 - Google Patents

一株高产重组蛋白的酵母基因工程菌及其构建方法和应用 Download PDF

Info

Publication number
CN114874927A
CN114874927A CN202210361480.9A CN202210361480A CN114874927A CN 114874927 A CN114874927 A CN 114874927A CN 202210361480 A CN202210361480 A CN 202210361480A CN 114874927 A CN114874927 A CN 114874927A
Authority
CN
China
Prior art keywords
strain
yeast
gene
expression
promoter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210361480.9A
Other languages
English (en)
Other versions
CN114874927B (zh
Inventor
黄明涛
林叶萍
肖楚凡
薛松绿
刘秀妨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN202210361480.9A priority Critical patent/CN114874927B/zh
Publication of CN114874927A publication Critical patent/CN114874927A/zh
Application granted granted Critical
Publication of CN114874927B publication Critical patent/CN114874927B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/37Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi
    • C07K14/39Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi from yeasts
    • C07K14/395Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi from yeasts from Saccharomyces
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/76Albumins
    • C07K14/765Serum albumin, e.g. HSA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • C12N15/905Stable introduction of foreign DNA into chromosome using homologous recombination in yeast
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1205Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/18Carboxylic ester hydrolases (3.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2408Glucanases acting on alpha -1,4-glucosidic bonds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2408Glucanases acting on alpha -1,4-glucosidic bonds
    • C12N9/2411Amylases
    • C12N9/2414Alpha-amylase (3.2.1.1.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/64Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
    • C12N9/6421Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
    • C12N9/6489Metalloendopeptidases (3.4.24)
    • C12N9/6491Matrix metalloproteases [MMP's], e.g. interstitial collagenase (3.4.24.7); Stromelysins (3.4.24.17; 3.2.1.22); Matrilysin (3.4.24.23)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/01Phosphotransferases with an alcohol group as acceptor (2.7.1)
    • C12Y207/01153Phosphatidylinositol-4,5-bisphosphate 3-kinase (2.7.1.153), i.e. phosphoinositide 3-kinase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/01Carboxylic ester hydrolases (3.1.1)
    • C12Y301/01011Pectinesterase (3.1.1.11)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/01Carboxylic ester hydrolases (3.1.1)
    • C12Y301/01074Cutinase (3.1.1.74)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01001Alpha-amylase (3.2.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01015Polygalacturonase (3.2.1.15)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y304/00Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
    • C12Y304/24Metalloendopeptidases (3.4.24)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/02Carbon-oxygen lyases (4.2) acting on polysaccharides (4.2.2)
    • C12Y402/02002Pectate lyase (4.2.2.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y503/00Intramolecular oxidoreductases (5.3)
    • C12Y503/01Intramolecular oxidoreductases (5.3) interconverting aldoses and ketoses (5.3.1)
    • C12Y503/01001Triose-phosphate isomerase (5.3.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y503/00Intramolecular oxidoreductases (5.3)
    • C12Y503/04Intramolecular oxidoreductases (5.3) transposing S-S bonds (5.3.4)
    • C12Y503/04001Protein disulfide-isomerase (5.3.4.1), i.e. disufide bond-forming enzyme
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Abstract

本发明公开了一株高产重组蛋白的酵母基因工程菌及其制备方法,该酵母基因工程菌是对酵母出发菌株进行以下一种以上的操作后得到:敲除CBC1基因、敲除RRP6基因、弱化Ypt1p的表达、强化蛋白激酶Kin1p的表达或增加HAC1 mRNA 3’BE元件数量。本发明的酵母基因工程菌可使重组蛋白的产率提高30%以上。不同于直接过表达重组蛋白或提高重组蛋白拷贝数等传统方法,该酵母基因工程菌仅从出发菌底盘细胞自身出发,围绕UPR响应相关靶点调控而展开,针对性地解决制约蛋白分泌的首要问题,即蛋白分泌压力的产生。该酵母基因工程菌用于提高其他高经济价值蛋白产量具有较强的潜力,具备广阔的应用前景。

Description

一株高产重组蛋白的酵母基因工程菌及其构建方法和应用
技术领域
本发明属于基因工程及微生物技术领域,涉及一株高产重组蛋白的酵母基因工程菌及其制备方法。
背景技术
酿酒酵母(Saccharomyces cerevisiae)由于遗传信息清晰,操作简便,培养要求低,兼具微生物与真核生物的特点,被广泛用于重组蛋白表达生产。但由于酵母细胞在表达重组蛋白时,需经过一系列复杂的胞内代谢加工过程,包括转录、翻译、新生肽链折叠及初步糖基化等翻译后修饰、转运等,其中翻译后修饰是关键环节。当细胞能力无法匹配以上加工过程时,则会产生细胞压力,从而导致重组蛋白的产量下降。为满足日益增长的重组蛋白市场需求,需要提升酿酒酵母分泌生产重组蛋白的能力。
一般可采用基因工程的方法来提升酵母表达重组蛋白的水平。例如,通过高拷贝质粒增加重组蛋白编码拷贝数来提升重组蛋白的转录水平。但这种方法无法克服重组蛋白在后续加工过程(翻译、折叠)中的限制,且会带给细胞代谢负担。也可通过更换介导重组蛋白分泌的信号肽来增加表达量。但目前用于更换的信号肽普适性不高,对于某个重组蛋白有用的信号肽,未必能适用于其他重组蛋白。改善细胞对重组蛋白的转运能力,也能提升产量。但转运蛋白往往没有专一性,过量表达转运蛋白有时会造成转运环节紊乱,反而会降低了产量。还可以直接过量表达与蛋白折叠相关的分子伴侣,如,Kar2p,来提高重组蛋白在酵母中的表达。但蛋白的折叠需要多个分子伴侣参与,有时未必能完全解除重组蛋白的分泌限制,导致提升幅度有限,有待进一步发掘合适的改造靶点基因。综上,目前的方法及改造靶点都有待进一步完善及丰富拓展。
发明内容
本发明的目的在于提供一株高产重组蛋白的酵母基因工程菌及其制备方法,来解决现有提升酿酒酵母重组蛋白表达的改造靶点数目较少的不足。通过发掘更多有效靶点基因,并尝试通过多基因协作的动态调控的方式,来提升酿酒酵母的重组蛋白表达能力。本发明围绕着与HAC1表达相关的靶点进行调控优化,动态提升酵母细胞未折叠蛋白反应响应的灵敏性,克服了现有技术的缺陷,实现了酿酒酵母重组蛋白表达能力的大幅提升。
本发明的目的通过下述技术方案实现:
一株酵母基因工程菌,是对酵母出发菌株进行以下一种以上的操作后得到:
1、敲除CBC1基因;
2、敲除RRP6基因;
3、弱化Ypt1p(Ypt家族的小ras GTP酶)的表达;
4、强化蛋白激酶Kin1p的表达;
5、增加HAC1 mRNA的3’BE元件数量;
优选地,所述弱化Ypt1p的表达是将YPT1的启动子替换为弱启动子,如CYC1p;
优选地,所述强化蛋白激酶Kin1p的表达,是将KIN1的启动子替换为强启动子,如TEF1p;
优选地,所述的酵母基因工程菌还强化磷酸肌醇3-激酶Vps34p的表达,将VPS34的启动子替换为强启动子,如TEF1p;
更优选地,所述的酵母基因工程菌还强化二硫键异构酶Pdi1p和内质网金属蛋白酶Ste24p的表达;
所述的酵母基因工程菌还含有重组蛋白的表达质粒;
所述的重组蛋白可以是α-淀粉酶、角质酶、果胶酶或人血清白蛋白中的一种以上;
所述的酵母出发菌株优选酿酒酵母IMX581。
上述酵母基因工程菌的构建方法,包括以下步骤:
(1)敲除酵母出发菌株上编码磷酸丙糖异构酶的基因TPI1,构建得到菌株Y1;将重组蛋白的表达质粒转化菌株Y1,得到菌株Y2;
(2)进行以下的一种以上操作,得到所述的酵母基因工程菌:
1、敲除菌株Y2上的CBC1基因;
2、敲除菌株Y2上的RRP6基因;
3、将菌株Y2基因组上YPT1的启动子替换为弱启动子;
4、将菌株Y2基因组上KIN1的启动子替换为强启动子;
5、将从酵母基因组中HAC1基因的3’UTR部分克隆得到的3’BE片段,整合至菌株IMX581ΔTPI1基因组HAC1的3’UTR上;
(3)将步骤(2)所得酵母重组菌基因组上VPS34的启动子替换为强启动子,得到所述的酵母基因工程菌;
(4)将基因序列ADH1t-PDI1-TEF1p-PGK1p-STE24-CYC1t整合至步骤(3)所得酵母重组菌CBC1基因座上,得到所述的酵母基因工程菌。
上述的酵母基因工程菌在表达重组蛋白中的应用;
所述应用是将含有重组蛋白表达质粒的酵母基因工程菌接种于发酵培养基中进行发酵培养,收集发酵培养产物即可得相应的重组蛋白。
本发明相对于现有技术具有如下的优点及效果:
本发明构建了一种高产重组蛋白的酵母基因工程菌,可使包括α-淀粉酶、角质酶、果胶酶、人血清白蛋白等在内的多种重组蛋白的产率分别提高了250%、30%、60%、1000%。不同于直接过表达重组蛋白或提高重组蛋白拷贝数等传统方法,该酵母基因工程菌仅从出发菌底盘细胞自身出发,围绕UPR响应相关靶点调控而展开,针对性地解决制约蛋白分泌的首要问题,即蛋白分泌压力的产生。该酵母基因工程菌用于提高其他高经济价值蛋白产量具有较强的潜力,具备广阔的应用前景。
附图说明
图1是携带POT1筛选标记,用于重组蛋白表达的质粒CPOTud的示意图。
图2是实施例2中,敲除CBC1基因或敲除RRP6基因的酵母工程菌株试管发酵生产α-淀粉酶的产率数据。
图3是实施例2中,通过弱启动子替换,弱化YPT1表达的酵母工程菌株试管发酵生产α-淀粉酶的产率数据。
图4是实施例2中,通过强启动子替换,强化KIN1表达的酵母工程菌株试管发酵生产α-淀粉酶的产率数据。
图5是实施例2中,增加HAC1基因的3’BE片段的酵母工程菌株试管发酵生产α-淀粉酶的产率数据。
图6是实施例2中,多个靶点叠加改造的酵母工程菌株试管发酵生产α-淀粉酶的产率数据。
图7是实施例2中,多个靶点叠加改造的酵母工程菌株,批次发酵连续取样测定酵母工程菌株α-淀粉酶的产量数据。
图8是实施例3中SDS-PAGE分析酵母工程菌株发酵液上清中重组蛋白角质酶、果胶酶和人血清白蛋白的含量。
图9重组蛋白角质酶、果胶酶和人血清白蛋白的相对产率,由软件ImageJ分析SDS-PAGE凝胶图像(图8)计算而得。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到;
下列实施例中未注明具体条件的实验方法,则通常按照常规条件,如《分子克隆实验指南》(北京:科学出版社,2017)、《酵母遗传学方法实验指南》(北京:科学出版社,2016)中所述的条件进行。
下述实施例中应用到的CRISPR技术参见现有技术(FEMS Yeast Research,2015,15(2):fov004.)。
为更好地理解本发明的内容,以酿酒酵母(Saccharomyces cerevisiae)IMX581(可由EUROSCARF获得,序号Y40593)为出发菌株,为具体实施例作进一步说明。
下列实施例中所涉及的培养基如下:
LB液体培养基:10g/L蛋白胨,5g/L酵母提取物,10g/L NaCl;固体培养基添加2%琼脂粉。
LB/AMP培养基:10g/L蛋白胨,5g/L酵母提取物,10g/L NaCl;固体培养基添加2%琼脂粉,以上灭菌后冷却至40℃左右,加入100μg/mL氨苄青霉素(过滤除菌)。
YPD培养基:20g/L蛋白胨,10g/L酵母提取物,20g/L葡萄糖(单独灭菌后再加入);固体培养基添加2%琼脂粉。
YPE培养基:20g/L蛋白胨,10g/L酵母提取物,0.5g/L葡萄糖,10ml无水乙醇/L(注:葡萄糖分开灭菌,无水乙醇过滤除菌);固体培养基添加2%琼脂粉。
SE-Ura营养缺陷培养基:0.77g/L CSM-Ura,1.7g/L YNB w/o aa and(NH4)2SO4,5.0g/L(NH4)2SO4,0.5g/L葡萄糖,10ml无水乙醇/L(注:葡萄糖分开灭菌,无水乙醇过滤除菌),调节pH值至5.5-6.0,固体培养基添加2%琼脂粉。
SC-Ura营养缺陷培养基:0.77g/L CSM-Ura,1.7g/L YNB w/o aa and(NH4)2SO4,5.0g/L(NH4)2SO4,20g/L葡萄糖(注:葡萄糖分开灭菌),调节pH值至5.5-6.0,固体培养基添加2%琼脂粉。
发酵培养基SD-2×SCAA+Ura:1.7g/L YNB w/o aa and(NH4)2SO4,5.0g/L(NH4)2SO4,13.6g/L Na2HPO4·12H2O,9.7g/L NaH2PO4·2H2O,调节pH值至6.0,高压蒸汽灭菌后,加入终浓度为20g/L葡萄糖,以及SCAA溶液(190mg/L Arg,108mg/L Met,52mg/L Tyr,290mg/LIle,440mg/L Lys,200mg/L Phe,1260mg/L Glu,400mg/L Asp,380mg/L Val,220mg/L Thr,130mg/L Gly,400mg/L Leu,40mg/L Trp,140mg/L His,40mg/L Ura),1g/L牛血清白蛋白视需要加入。(注:葡萄糖分开灭菌,牛血清白蛋白、SCAA过滤除菌)
下述实施例中所涉及的方法如下:
质粒构建:
(1)如无特殊说明,均采用Gibson组装方法;具体操作依照NEB Gibson AssemblyCloning kit(货号E2611,NEB)说明书操作;
(2)将5μL Gibson组装体系转化至50μL大肠杆菌E.coli DH5α感受态细胞,涂布至LB/AMP固体培养基过夜培养;
(3)筛选获得阳性克隆,扩增培养后提取质粒,具体提取过程依照HiPure PlasmidMicro Kit(货号P1001-03,Magen)说明书操作。
菌株转化:
如无特殊说明,均采用醋酸锂转化法,具体操作见相关标准规范。
重组酿酒酵母菌株OD600nm的检测方法:
接种酿酒酵母单菌落于3mL发酵培养基,置于30℃、200rpm摇床培养。取发酵液按适当比例稀释后使用紫外分光光度计测量OD600nm
α-淀粉酶酶活的检测方法:
α-淀粉酶酶活采用Ceralpha kit(货号K-CERA,Megazyme)进行测定,依照其说明书操作。
SDS-PAGE凝胶电泳:
(1)样品制备:取发酵上清液与5×SDS-PAGE蛋白上样缓冲液按照4:1的比例混合,100℃煮沸10min;
(2)凝胶电泳:安装好预制胶(货号M00654,金斯瑞),加入MOPS电泳缓冲液,上样10μL,打开电泳仪,设置电压150V,电泳时间30-50min。
(3)染色、脱色:采用考马斯亮蓝染色液染色1h后用考马斯亮蓝脱色液过夜脱色。考马斯亮蓝染色液染色和脱色液配制如下:
考马斯亮蓝染色液:称取0.1g考马斯亮蓝R-250,加入45mL甲醇、45mL水和10mL冰乙酸,充分混匀后避光保存;
考马斯亮蓝脱色液:分别量取100mL甲醇、100mL冰乙酸和800mL超纯水,混合均匀后室温保存备用。
(4)凝胶成像仪成像。
下述实施例中所涉及的引物序列如表1所示:
表1:引物序列
Figure BDA0003585458010000061
Figure BDA0003585458010000071
Figure BDA0003585458010000081
实施例1高产重组蛋白的酵母基因工程菌的构建
本实施例酵母基因工程菌的出发菌株为酿酒酵母IMX581(基因型:MATa ura3-52can1::cas9-natNT2 TRP1 LEU2 HIS3)。IMX581基因组中整合有CRISPR-Cas9系统中的Cas9蛋白表达基因盒,且该菌株为Ura营养型缺陷。该菌株应用于基因工程改造时,只需转化带有20bp gRNA识别序列以靶向目的基因的gRNA表达质粒(pROS10系列,带有Ura筛选标记)及其修复片段,经筛选,即可获得相应的阳性转化子。
1.1敲除TPI1基因以稳定表达重组蛋白
本发明所构建的菌株主要围绕优化HAC1表达而提升UPR响应调控的灵敏性,从而有利于菌株表达重组蛋白,提高重组蛋白产量。α-淀粉酶作为一种模式蛋白,常被用在酿酒酵母中表达以研究酵母细胞内质网应激及其应对能力。在本发明中,亦首先采用α-淀粉酶作为研究对象。
用于重组蛋白表达的质粒在酿酒酵母中稳定存在一般需要带有抗性或营养缺陷型筛选标记。本发明用于重组蛋白的质粒CPOTud(Biotechnology and bioengineering,2012,109(5):1259-1268.)带有POT1(裂殖酵母糖酵解途径中的关键酶磷酸丙糖异构酶)筛选标记(图1),为一种营养缺陷型筛选标记,该质粒在以葡萄糖为碳源的丰富培养基中也能够稳定存在。为了使携带重组蛋白编码基因的表达载体,例如,携带表达α-淀粉酶基因的质粒pCP-Aamylase(Biotechnology and bioengineering,2012,109(5):1259-1268.)能在酿酒酵母菌株IMX581中稳定表达,需要对菌株自身糖酵解途径中的磷酸丙糖异构酶进行敲除,该异构酶由TPI1编码。
TPI1基因敲除过程如下:
(1)构建质粒pROS10-TPI1
以质粒pROS10为模板,由引物gTPI1扩增得到带有20bp靶向TPI1 CDS的gRNA序列(核苷酸序列如SEQ ID NO.1所示);
以质粒pROS10为模板,由引物PSNR52扩增得到4088bp带有筛选标记的质粒框架片段(核苷酸序列如SEQ ID NO.2所示);
利用Gibson组装技术,将以上两种片段拼接起来,构建所得质粒命名为pROS10-TPI1;
(2)PCR扩增TPI1修复片段
合成与TPI1基因上下游完全匹配的80bp引物Rtpi1p1和Rtpi1p2,经PCR扩增、凝胶回收获得与TPI1基因上下游有60bp同源臂的靶向修复片段(核苷酸序列如SEQ ID NO.3所示);
(3)通过醋酸锂转化法,将质粒pROS10-TPI1连同修复片段一并转化至菌株IMX581,涂布至SE-Ura固体培养基于30℃培养3-4天,使用引物vTPI1F1p、vTPI1R2p进行单菌落PCR验证,筛选得到阳性转化子。
(4)将步骤(3)得到的菌株接种到3mL YPE液体培养基中于30℃培养3-4天,划线至YPE固体培养基中于30℃培养3-4天,将长出的单菌落分别在SE-Ura、YPE固体培养基上培养验证,仅在YPE培养基上生长的单菌落为正确的敲除TPI1酿酒酵母菌株IMX581△TPI1,将其命名为酿酒酵母Y1。
转化质粒pCP-Aamylase至菌株Y1以表达α-淀粉酶:
将酵母菌株Y1制备成感受态细胞,并通过醋酸锂转化法将α-淀粉酶表达质粒pCP-Aamylase转化至该感受态细胞,涂布至YPD固体培养基上于30℃培养3-4天,使用引物amY3F、amY4R进行单菌落PCR验证,筛选得到菌株IMX581△TPI1 pCP-Aamylase,将其命名为酿酒酵母Y2。
1.2敲除CBC1基因
CBC1敲除过程如下:
(1)构建质粒pROS10-CBC1
以质粒PROS10为模板,采用引物gCBC1、pROS_2μp1F扩增得到带有20bp靶向CBC1CDS的gRNA序列(核苷酸序列如SEQ ID NO.4所示);
利用Gibson组装技术,将以上片段同实施例1中4088bp核苷酸序列(SEQ ID NO.2)拼接起来,构建所得质粒命名为pROS10-CBC1。
(2)PCR扩增CBC1修复片段
以IMX581基因组为模板,采用引物RCBC1p1、RCBC1p2扩增得到与CBC1基因上游约300bp同源的片段;采用引物RCBC1p3、RCBC1p4扩增得到与CBC1基因下游约400bp同源的片段;上下游同源片段经融合PCR得到677bp的CBC1修复片段(核苷酸序列如SEQ ID NO.6所示)。
(3)将酵母菌株Y2制备成感受态,通过醋酸锂转化法,将质粒pROS10-CBC1同CBC1修复片段同时转化至Y2感受态细胞,涂布至SC-Ura固体培养基于30℃培养3-4天,使用引物RCBC1p1、RCBC1p4进行单菌落PCR验证,筛选得到阳性转化子。
(4)将该阳性菌株接种到3mL YPD液体培养基中于30℃培养3-4天,划线至YPD固体培养基中于30℃培养3-4天,将长出的单菌落分别在SC-Ura、YPD固体培养基上点板验证,仅在YPD培养基上生长的单菌落已脱去质粒pROS10-CBC1。将其命名为酿酒酵母YX1。
1.3敲除RRP6基因
RRP6的敲除过程如下:
(1)构建质粒pROS10-RRP6
以质粒PROS10为模板,采用引物gRRP6、pROS_2μp2R扩增得到带有20bp靶向RRP6CDS的gRNA序列(核苷酸序列如SEQ ID NO.5所示);
利用Gibson组装技术,将以上片段同实施例1中4088bp核苷酸序列(SEQ ID NO.2)拼接起来,构建所得质粒命名为pROS10-RRP6。
(2)PCR扩增RRP6修复片段
以IMX581基因组为模板,采用引物RRRP6p1、RRRP6p2扩增得到与RRP6基因上游约300bp同源的片段;采用引物RRRP6p3、RRRP6p4扩增得到与RRP6基因下游约250bp同源的片段;上下游同源片段经融合PCR得到572bp的RRP6基因修复片段(核苷酸序列如SEQ ID NO.7所示)。
(3)将酵母菌株Y2制备成感受态,通过醋酸锂转化法,将质粒pROS10-RRP6同RRP6修复片段同时转化至Y2感受态细胞,涂布至SC-Ura固体培养基于30℃培养3-4天,使用引物RRRP6p1、RRRP6p4进行单菌落PCR验证,筛选得到阳性转化子。
(4)将该阳性菌株接种到3mL YPD液体培养基中于30℃培养3-4天,划线至YPD固体培养基中于30℃培养3-4天,将长出的单菌落分别在SC-Ura、YPD固体培养基上点板验证,仅在YPD培养基上生长的单菌落已脱去质粒pROS10-RRP6。将其命名为酿酒酵母YX2。
1.4将YPT1的启动子替换为弱启动子CYC1p,弱化其表达
弱化YPT1的表达过程如下:
(1)构建质粒pROS10-YPT1p
以质粒pROS10为模板,采用引物gYPT1p扩增得到带有20bp靶向YPT1启动子的gRNA序列(核苷酸序列如SEQ ID NO.8所示);
利用Gibson组装技术,将以该片段同实施例1中4088bp核苷酸序列(SEQ ID NO.2)拼接起来,构建所得质粒命名为pROS10-YPT1p。
(2)PCR扩增YPT1启动子替换片段
以IMX581基因组为模板,采用引物CYC1-YPT1p1、CYC1-YPT1p2扩增得到启动子CYC1p片段,再以该片段为模板,采用引物CYC1-YPT1p3、CYC1-YPT1p4扩增得到上下游各有60bp与YPT1同源的CYC1p片段(核苷酸序列如SEQ ID NO.9所示)。
(3)通过醋酸锂转化法,将质粒pROS10-YPT1p和CYC1p片段同时转化至Y2感受态细胞,涂布至SC-Ura固体培养基于30℃培养3-4天,使用引物vYPT1F1p、vYPT1R2p进行单菌落PCR验证,筛选得到阳性转化子。
(4)将该阳性菌株接种到3mL YPD液体培养基中于30℃培养3-4天,划线至YPD固体培养基中于30℃培养3-4天,将长出的单菌落分别在SC-Ura、YPD固体培养基上点板验证,仅在YPD培养基上生长的单菌落已脱去质粒pROS10-YPT1p。将其命名为酿酒酵母YX3。
1.5将KIN1的启动子替换为强启动子TEF1p,强化其表达
过表达KIN1过程如下:
(1)构建质粒pROS10-KIN1p
以质粒pROS10为模板,采用引物gKIN1p扩增得到带有20bp靶向KIN1启动子的gRNA序列(核苷酸序列如SEQ ID NO.10所示);
利用Gibson组装技术,将以该片段同实施例1中4088bp核苷酸序列(SEQ ID NO.2)拼接起来,构建所得质粒命名为pROS10-KIN1p。
(2)PCR扩增KIN1启动子替换片段
以IMX581基因组为模板,采用引物TEF1-KIN1p1、TEF1-KIN1p2扩增得到启动子TEF1p片段,再以该片段为模板,采用引物TEF1-KIN1p3、TEF1-KIN1p4扩增得到上下游各有60bp与KIN1同源的TEF1p片段(核苷酸序列如SEQ ID NO.11所示)。
(3)通过醋酸锂转化法,将质粒pROS10-KIN1p和TEF1p片段同时转化至Y2感受态细胞,涂布至SC-Ura固体培养基于30℃培养3-4天,使用引物TEF1-KIN1p1、TEF1-KIN1p4进行单菌落PCR验证,筛选得到阳性转化子。
(4)将该阳性菌株接种到3mL YPD液体培养基中于30℃培养3-4天,划线至YPD固体培养基中于30℃培养3-4天,将长出的单菌落分别在SC-Ura、YPD固体培养基上点板验证,仅在YPD培养基上生长的单菌落已脱去质粒pROS10-KIN1p。将其命名为酿酒酵母YX4。
1.6增加HAC1 mRNA的3’BE元件
HAC1 mRNA的3’BE元件增加过程如下:
(1)构建质粒pROS10-BE
以质粒pROS10为模板,采用引物gBE扩增得到带有20bp靶向HAC1的3’端非编码区的gRNA序列(核苷酸序列如SEQ ID NO.12所示);
利用Gibson组装技术,将以该片段同实施例1中4088bp核苷酸序列(SEQ ID NO.2)拼接起来,构建所得质粒命名为pROS10-BE。
(2)PCR扩增2×3’BE修复片段
质粒p416-HAC1构建:以酵母基因组为模板,使用引物对HacF1、HacR4进行PCR扩增,得到带有HAC1启动子及终止子的HAC1基因序列;以质粒p416-GPD为模板,使用引物对p416G1F、p416G2R进行PCR扩增,得到上下游各带有约30bp与HAC1基因序列同源的4854bp质粒框架,两种序列经Gibson组装后,得到质粒p416-HAC1。
质粒p416-2×BE构建:通过引物对NheV1、XbaV2;XbaF3、NheF4及其模板p416-HAC1经PCR扩增分别得到7057bp质粒框架序列以及172bp带有3’BE的基因序列,两种基因序列的末端均带有NheI、XbaI酶切位点,这两种序列经限制性内切酶NheI、XbaI消化纯化回收后,经T4连接酶连接,获得带有一对同尾酶XbaI、NheI的p416-HAC1质粒。所得带有同尾酶的p416-HAC1质粒分别经NheI&KpnI、XbaI&KpnI消化后,经凝胶电泳分别回收6786bp框架序列以及579bp插入序列,再经T4连接酶连接得到带有2×3’BE的p416-HAC1质粒,将该质粒命名为p416-2×BE。
以p416-2×BE为模板,采用引物对RBEp1、RBEp2进行PCR扩增,得到2×3’BE修复片段(核苷酸序列如SEQ ID NO.13所示)。
(3)通过醋酸锂转化法,将质粒pROS10-BE同2×3’BE修复片段同时转化至Y2感受态细胞,涂布至SC-Ura固体培养基于30℃培养3-4天,使用引物RBEp1、RBEp2进行单菌落PCR验证,筛选得到阳性转化子。
(4)将该阳性菌株接种到3mL YPD液体培养基中于30℃培养3-4天,划线至YPD固体培养基中于30℃培养3-4天,将长出的单菌落分别在SC-Ura、YPD固体培养基上点板验证,仅在YPD培养基上生长的单菌落已脱去质粒pROS10-BE。将其命名为酿酒酵母YX5。
1.7多个靶点的整合
将前述CBC1、RRP6、YPT1、KIN1、HAC1基因中3’UTR区域的3’BE等多个靶点进行组合,详细如下:
CBC1、RRP6的敲除过程如下:
(1)构建质粒pROS10-CBC1-RRP6
以质粒PROS10为模板,采用引物gCBC1、pROS_2μp1F扩增得到带有20bp靶向CBC1CDS的gRNA序列(核苷酸序列如SEQ ID NO.4所示);
以质粒PROS10为模板,采用引物gRRP6、pROS_2μp2R扩增得到带有20bp靶向RRP6CDS的gRNA序列(核苷酸序列如SEQ ID NO.5所示);
利用Gibson组装技术,将以上两种片段同实施例1中4088bp核苷酸序列(SEQ IDNO.2)拼接起来,构建所得质粒命名为pROS10-CBC1-RRP6。
(2)PCR扩增CBC1、RRP6修复片段
以IMX581基因组为模板,采用引物RCBC1p1、RCBC1p2扩增得到与CBC1基因上游约300bp同源的片段;采用引物RCBC1p3、RCBC1p4扩增得到与CBC1基因下游约400bp同源的片段;上下游同源片段经融合PCR得到677bp的CBC1修复片段(核苷酸序列如SEQ ID NO.6所示)。
以IMX581基因组为模板,采用引物RRRP6p1、RRRP6p2扩增得到与RRP6基因上游约300bp同源的片段;采用引物RRRP6p3、RRRP6p4扩增得到与RRP6基因下游约250bp同源的片段;上下游同源片段经融合PCR得到572bp的RRP6基因修复片段(核苷酸序列如SEQ ID NO.7所示)。
(3)将酵母菌株Y2制备成感受态,通过醋酸锂转化法,将质粒pROS10-CBC1-RRP6同CBC1、RRP6修复片段同时转化至Y2感受态细胞,涂布至SC-Ura固体培养基于30℃培养3-4天,使用引物RCBC1p1、RCBC1p4以及RRRP6p1、RRRP6p4进行单菌落PCR验证,筛选得到阳性转化子。
(4)将该阳性菌株接种到3mL YPD液体培养基中于30℃培养3-4天,划线至YPD固体培养基中于30℃培养3-4天,将长出的单菌落分别在SC-Ura、YPD固体培养基上点板验证,仅在YPD培养基上生长的单菌落已脱去质粒pROS10-CBC1-RRP6。将其命名为酿酒酵母Y3。
弱化YPT1的表达过程如下:
(1)构建质粒pROS10-YPT1p
以质粒pROS10为模板,采用引物gYPT1p扩增得到带有20bp靶向YPT1启动子的gRNA序列(核苷酸序列如SEQ ID NO.8所示);
利用Gibson组装技术,将以该片段同实施例1中4088bp核苷酸序列(SEQ ID NO.2)拼接起来,构建所得质粒命名为pROS10-YPT1p。
(2)PCR扩增YPT1启动子替换片段
以IMX581基因组为模板,采用引物CYC1-YPT1p1、CYC1-YPT1p2扩增得到启动子CYC1p片段,再以该片段为模板,采用引物CYC1-YPT1p3、CYC1-YPT1p4扩增得到上下游各有60bp与YPT1同源的CYC1p片段(核苷酸序列如SEQ ID NO.9所示)。
(3)通过醋酸锂转化法,将质粒pROS10-YPT1p和CYC1p片段同时转化至Y3感受态细胞,涂布至SC-Ura固体培养基于30℃培养3-4天,使用引物vYPT1F1p、vYPT1R2p进行单菌落PCR验证,筛选得到阳性转化子。
(4)将该阳性菌株接种到3mL YPD液体培养基中于30℃培养3-4天,划线至YPD固体培养基中于30℃培养3-4天,将长出的单菌落分别在SC-Ura、YPD固体培养基上点板验证,仅在YPD培养基上生长的单菌落已脱去质粒pROS10-YPT1p。将其命名为酿酒酵母Y4。
过表达KIN1过程如下:
(1)构建质粒pROS10-KIN1p
以质粒pROS10为模板,采用引物gKIN1p扩增得到带有20bp靶向KIN1启动子的gRNA序列(核苷酸序列如SEQ ID NO.10所示);
利用Gibson组装技术,将以该片段同实施例1中4088bp核苷酸序列(SEQ ID NO.2)拼接起来,构建所得质粒命名为pROS10-KIN1p。
(2)PCR扩增KIN1启动子替换片段
以IMX581基因组为模板,采用引物TEF1-KIN1p1、TEF1-KIN1p2扩增得到启动子TEF1p片段,再以该片段为模板,采用引物TEF1-KIN1p3、TEF1-KIN1p4扩增得到上下游各有60bp与KIN1同源的TEF1p片段(核苷酸序列如SEQ ID NO.11所示)。
(3)通过醋酸锂转化法,将质粒pROS10-KIN1p和TEF1p片段同时转化至Y4感受态细胞,涂布至SC-Ura固体培养基于30℃培养3-4天,使用引物TEF1-KIN1p1、TEF1-KIN1p4进行单菌落PCR验证,筛选得到阳性转化子。
(4)将该阳性菌株接种到3mL YPD液体培养基中于30℃培养3-4天,划线至YPD固体培养基中于30℃培养3-4天,将长出的单菌落分别在SC-Ura、YPD固体培养基上点板验证,仅在YPD培养基上生长的单菌落已脱去质粒pROS10-KIN1p。将其命名为酿酒酵母Y5。
HAC1 mRNA的3’BE元件增加过程如下:
(1)构建质粒pROS10-BE
以质粒pROS10为模板,采用引物gBE扩增得到带有20bp靶向HAC1的3’端非编码区的gRNA序列(核苷酸序列如SEQ ID NO.12所示);
利用Gibson组装技术,将以该片段同实施例1中4088bp核苷酸序列(SEQ ID NO.2)拼接起来,构建所得质粒命名为pROS10-BE。
(2)PCR扩增2×3’BE修复片段
质粒p416-HAC1构建:以酵母基因组为模板,使用引物对HacF1、HacR4进行PCR扩增,得到带有HAC1启动子及终止子的HAC1基因序列;以质粒p416-GPD为模板,使用引物对p416G1F、p416G2R进行PCR扩增,得到上下游各带有约30bp与HAC1基因序列同源的4854bp质粒框架,两种序列经Gibson组装后,得到质粒p416-HAC1。
质粒p416-2×BE构建:通过引物对NheV1、XbaV2;XbaF3、NheF4及其模板p416-HAC1经PCR扩增分别得到7057bp质粒框架序列以及172bp带有3’BE的基因序列,两种基因序列的末端均带有NheI、XbaI酶切位点,这两种序列经限制性内切酶NheI、XbaI消化纯化回收后,经T4连接酶连接,获得带有一对同尾酶XbaI、NheI的p416-HAC1质粒。所得带有同尾酶的p416-HAC1质粒分别经NheI&KpnI、XbaI&KpnI消化后,经凝胶电泳分别回收6786bp框架序列以及579bp插入序列,再经T4连接酶连接得到带有2×3’BE的p416-HAC1质粒,将该质粒命名为p416-2×BE。
以p416-2×BE为模板,采用引物对RBEp1、RBEp2进行PCR扩增,得到2×3’BE修复片段(核苷酸序列如SEQ ID NO.13所示)。
(3)通过醋酸锂转化法,将质粒pROS10-BE同2×3’BE修复片段同时转化至Y5感受态细胞,涂布至SC-Ura固体培养基于30℃培养3-4天,使用引物RBEp1、RBEp2进行单菌落PCR验证,筛选得到阳性转化子。
(4)将该阳性菌株接种到3mL YPD液体培养基中于30℃培养3-4天,划线至YPD固体培养基中于30℃培养3-4天,将长出的单菌落分别在SC-Ura、YPD固体培养基上点板验证,仅在YPD培养基上生长的单菌落已脱去质粒pROS10-BE。将其命名为酿酒酵母Y6。
1.8HAC1 mRNA翻译有效性提升
过表达VPS34过程如下:
(1)构建质粒pROS10-VPS34p
以质粒pROS10为模板,采用引物gVPS34p扩增得到带有20bp靶向VPS34启动子的gRNA序列(核苷酸序列如SEQ ID NO.14所示);
利用Gibson组装技术,将以该片段同实施例1中4088bp核苷酸序列(SEQ ID NO.2)拼接起来,构建所得质粒命名为pROS10-VPS34p。
(2)PCR扩增VPS34启动子替换片段
以IMX581基因组为模板,采用引物TEF1-VPS34p1、TEF1-VPS34p2扩增得到启动子TEF1p片段,再以该片段为模板,采用引物TEF1-VPS34p3、TEF1-VPS34p4扩增得到上下游各有60bp与VPS34同源的TEF1p片段(核苷酸序列如SEQ ID NO.15所示)。
(3)通过醋酸锂转化法,将质粒pROS10-VPS34p同TEF1p片段同时转化至Y6感受态细胞,涂布至SC-Ura固体培养基于30℃培养3-4天,使用引物TEF1-VPS34p1、TEF1-VPS34p4进行单菌落PCR验证,筛选得到阳性转化子。
(4)将该阳性菌株接种到3mL YPD液体培养基中于30℃培养3-4天,划线至YPD固体培养基中于30℃培养3-4天,将长出的单菌落分别在SC-Ura、YPD固体培养基上点板验证,仅在YPD培养基上生长的单菌落已脱去质粒pROS10-VPS34p。将其命名为酿酒酵母Y7。
1.5优化HAC1表达下协同过表达UPR基因
协同过表达PDI1、STE24过程如下:
(1)构建质粒pROS10-CBC1del
以质粒pROS10为模板,采用引物gCBC1del扩增得到带有20bp靶向CBC1所在基因座上下游序列的gRNA序列(核苷酸序列如SEQ ID NO.16所示);
利用Gibson组装技术,将以该片段同实施例1中4088bp核苷酸序列(SEQ ID NO.2)拼接起来,构建所得质粒命名为pROS10-CBC1del。
(2)PCR扩增修复片段
质粒pGM-PDI1-STE24构建:以酵母基因组为模板,由引物对Ste24p1、Ste24p2 PCR扩增获得STE24基因片段,其上下游分别带有BamHI、KpnI限制性酶切位点及保护碱基。STE24基因扩增片段与质粒pGM-PDI1(PNAS,2018,115(47):E11025-E11032.)经限制性内切酶BamHI、KpnI消化、回收纯化后,经T4连接酶连接获得质粒pGM-PDI1-STE24。
以质粒pGM-PDI1-STE24为模板,利用引物对PDI1-STE24p1、PDI1-STE24p2及其进行PCR扩增,获得ADH1t-PDI1-TEF1p-PGK1p-STE24-CYC1t序列,并以该序列为模板,由引物对PDI1-STE24p3、PDI1-STE24p4进行扩增,获得上下游分别与CBC1基因座上下游同源的基因片段(核苷酸序列如SEQ ID NO.17所示)。
(3)通过醋酸锂转化法,将质粒pROS10-CBC1del同修复片段ADH1t-PDI1-TEF1p-PGK1p-STE24-CYC1t同时转化至Y7感受态细胞,涂布至SC-Ura固体培养基于30℃培养3-4天,使用引物对pPGK1F1、Ste24p2,PDI1-STE24p1、pTEF2R进行单菌落PCR验证,筛选得到阳性转化子。
(4)将该阳性菌株接种到3mL YPD液体培养基中于30℃培养3-4天,划线至YPD固体培养基中于30℃培养3-4天,将长出的单菌落分别在SC-Ura、YPD固体培养基上点板验证,仅在YPD培养基上生长的单菌落已脱去质粒pROS10-CBC1del。将其命名为酿酒酵母Y8。
实施例2工程菌株发酵生产重组蛋白α-淀粉酶
2.1工程菌株试管发酵高产α-淀粉酶
(1)分别将上述酿酒酵母菌株YX1、YX2、YX3、YX4、YX5、Y2、Y3、Y4、Y5、Y6、Y7和Y8从平板接种至3mL SD-2×SCAA+Ura发酵培养基,在30℃、200rpm条件下培养96h,制备得到发酵液。其中Y2是对照菌。
(2)取发酵液稀释50倍后使用紫外分光光度计测量OD600nm
(3)取发酵液离心后取上清液用于测定工程菌株分泌生产的α-淀粉酶含量。
(4)由图2可知,敲除CBC1基因或敲除RRP6基因均可提升重组蛋白α-淀粉酶产量。由图3可知,弱化表达YPT1可提升重组蛋白α-淀粉酶产量。由图4可知,强化表达KIN1可提升重组蛋白α-淀粉酶产量。由图5可知,增加HAC1基因的3’BE片段可提升重组蛋白α-淀粉酶产量。由图6可知,通过对出发菌株进行选定靶点基因的组合改造,所得工程菌株(Y8)的重组蛋白α-淀粉酶生产能力进一步得到大幅提升,相对于Y2,Y8的重组蛋白α-淀粉酶产量提高约2.5倍。
2.2摇瓶发酵连续取样测定酵母工程菌株α-淀粉酶的产量
(1)分别将上述酿酒酵母菌株Y2、Y4、Y7、Y8从平板接种至3mL YPD培养基,在30℃,200rpm条件下过夜培养,制备得到种子液,将制备得到的种子液接种于装有40mL SD-2×SCAA+Ura发酵培养基的250mL锥形瓶中,使其初始发酵液接种浓度为OD600nm=0.01-0.05,在30℃,200rpm条件下培养,制备得到发酵液。
(2)连续取发酵液,稀释后,使用紫外分光光度计测量OD600nm
(3)连续取发酵液,离心后取上清用于测定α-淀粉酶产量。
(4)由图3可知,所得工程菌株Y8在摇瓶发酵135小时后,α-淀粉酶产量可达22U/mL,相较对照菌株Y2提高约3.3倍。
实施例3工程菌株发酵高产其它重组蛋白
(1)质粒pCP-Aamylase的脱除
将菌株Y8接种于3mL YPE液体培养基中于30℃培养3-4天,划线至YPE固体培养基中于30℃培养3-4天,将长出的单菌落分别在YPE、YPD固体培养基上点板验证,在YPE中生长良好,而在YPD中生长较差(整体菌落小或几乎不长)的单菌落为已脱去质粒pCP-Aamylase。将其命名为酿酒酵母Y9。
(2)通过醋酸锂转化法,将质粒pCP-Acutinase(表达角质酶)、pCP-Apectinase(表达果胶酶)、pCP-AHSA(表达人血清白蛋白)(Nature Communications,2017,8:1131.)分别转化至菌株Y1、Y9,并涂布至YPD培养基于30℃培养3-4天,所得菌株分别命名为Y1c、Y1p、Y1H及Y9c、Y9p、Y9H。
(3)分别将上述酿酒酵母菌株Y1c、Y9c、Y1p、Y9p、Y1H及Y9H从平板接种至3mL SD-2×SCAA+Ura发酵培养基,在30℃、200rpm条件下培养96h,制备得到发酵液。
(4)取发酵液稀释50倍后使用紫外分光光度计测量OD600nm
(5)取发酵液离心后取上清液,进行SDS-PAGE分析。由结果可知(图4、图5),角质酶、果胶酶和人血清白蛋白三种重组蛋白的产量分别提高30%、60%、1000%,说明本发明构建得到的酵母工程菌株用于重组蛋白表达具有较好的普适性,具有广阔的产业化应用前景。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。
序列表
<110> 华南理工大学
<120> 一株高产重组蛋白的酵母基因工程菌及其构建方法和应用
<160> 17
<170> SIPOSequenceListing 1.0
<210> 1
<211> 1569
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 1
tcggcgttcg aaacttctcc gcagtgaaag ataaatgatc gtataagatt ctcaattcgc 60
gttttagagc tagaaatagc aagttaaaat aaggctagtc cgttatcaac ttgaaaaagt 120
ggcaccgagt cggtggtgct ttttttgttt tttatgtctt cgagtcatgt aattagttat 180
gtcacgctta cgttcacgcc ctccacgcat ttaagcataa acacgcacta tgccgttctt 240
ctcatgtata tatatataca ggcaacacgc agatataggt gcgacgtgaa cagtgagctg 300
tatgtgcgca gctcgcgttg cattttcgga agcgctcgtt ttcggaaacg ctttgaagtt 360
cctattccga agttcctatt ctgtagaaag tataggaacc tcagagcgct tttgaaaacc 420
aaaagcgctc tgaagacgca ctttcaaaaa accaaaaacg caccggactg taacgagcta 480
ctaaaatatt gcgaataccg cttccacaaa cattgctcaa aagtatctct ttgctatata 540
tctctgtgct atatccctat ataacctacc catccacctt tcgctccttg aacttgcatc 600
taaactcgac ctctacattt tttatgttta tctctagtat tactctttag acaaaaaaat 660
tgtagtaaga actattcata gagtgaatcg aaaacaatac gaaaatgtaa acatttccta 720
tacgtagtat atagagacaa aatagaagaa accgttcata attttctgac caatgaagaa 780
tcatcaacgc tatcactttc tgttcacaaa gtatgcgcaa tccacatcgg tatagaatat 840
aatcggggat gcctttatct tgaaaaaatg cacccgcagc ttcgctagta atcagtaaac 900
gcgggaagtg gagtcaggct ttttttatgg aagagaaaat agacaccaaa gtagccttct 960
tctaacctta acggacctac agtgcaaaaa gttatcaaga gactgcatta tagagcgcac 1020
aaaggagaaa aaaagtaatc taagatgctt tgttagaaaa atagcgctct cgggatgcat 1080
ttttgtagaa caaaaaagaa gtatagattc tttgttggta aaatagcgct ctcgcgttgc 1140
atttctgttc tgtaaaaatg cagctcagat tctttgtttg aaaaattagc gctctcgcgt 1200
tgcatttttg ttttacaaaa atgaagcaca gattcttcgt tggtaaaata gcgctttcgc 1260
gttgcatttc tgttctgtaa aaatgcagct cagattcttt gtttgaaaaa ttagcgctct 1320
cgcgttgcat ttttgttcta caaaatgaag cacagatgct tcgttggagg gcgtgaacgt 1380
aagcgtgaca taactaatta catgactcga agacataaaa aacaaaaaaa gcaccaccga 1440
ctcggtgcca ctttttcaag ttgataacgg actagcctta ttttaacttg ctatttctag 1500
ctctaaaacg cgaattgaga atcttatacg atcatttatc tttcactgcg gagaagtttc 1560
gaacgccga 1569
<210> 2
<211> 4088
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 2
gatcatttat ctttcactgc ggagaagttt cgaacgccga aacatgcgca ccaactttca 60
cttctacagc gtttgaccaa aatcttttga acagaacatt gtagggtgtg aaaaaatgcg 120
cacctttacc gctagcccaa gagggcacta caaaatctag agttgtactt caaacgtaca 180
tgtaatcacc ttgtatatac tcgaaagaaa acatcaagtt tctgtataaa tatgagtgaa 240
agcataatca tacattatct tttcaaagaa gctccagctt ttgttccctt tagtgagggt 300
attcacgtag acggataggt atagccagac atcagcagca tacttcggga accgtaggct 360
ctagagagag gcggtttgcg tattgggcgc tcttccgctt cctcgctcac tgactcgctg 420
cgctcggtcg ttcggctgcg gcgagcggta tcagctcact caaaggcggt aatacggtta 480
tccacagaat caggggataa cgcaggaaag aacatgtgag caaaaggcca gcaaaaggcc 540
aggaaccgta aaaaggccgc gttgctggcg tttttccata ggctccgccc ccctgacgag 600
catcacaaaa atcgacgctc aagtcagagg tggcgaaacc cgacaggact ataaagatac 660
caggcgtttc cccctggaag ctccctcgtg cgctctcctg ttccgaccct gccgcttacc 720
ggatacctgt ccgcctttct cccttcggga agcgtggcgc tttctcatag ctcacgctgt 780
aggtatctca gttcggtgta ggtcgttcgc tccaagctgg gctgtgtgca cgaacccccc 840
gttcagcccg accgctgcgc cttatccggt aactatcgtc ttgagtccaa cccggtaaga 900
cacgacttat cgccactggc agcagccact ggtaacagga ttagcagagc gaggtatgta 960
ggcggtgcta cagagttctt gaagtggtgg cctaactacg gctacactag aaggacagta 1020
tttggtatct gcgctctgct gaagccagtt accttcggaa aaagagttgg tagctcttga 1080
tccggcaaac aaaccaccgc tggtagcggt ggtttttttg tttgcaagca gcagattacg 1140
cgcagaaaaa aaggatctca agaagatcct ttgatctttt ctacggggtc tgacgctcag 1200
tggaacgaaa actcacgtta agggattttg gtcatgagat tatcaaaaag gatcttcacc 1260
tagatccttt taaattaaaa atgaagtttt aaatcaatct aaagtatata tgagtaaact 1320
tggtctgaca gttaccaatg cttaatcagt gaggcaccta tctcagcgat ctgtctattt 1380
cgttcatcca tagttgcctg actccccgtc gtgtagataa ctacgatacg ggagggctta 1440
ccatctggcc ccagtgctgc aatgataccg cgagacccac gctcaccggc tccagattta 1500
tcagcaataa accagccagc cggaagggcc gagcgcagaa gtggtcctgc aactttatcc 1560
gcctccatcc agtctattaa ttgttgccgg gaagctagag taagtagttc gccagttaat 1620
agtttgcgca acgttgttgc cattgctaca ggcatcgtgg tgtcacgctc gtcgtttggt 1680
atggcttcat tcagctccgg ttcccaacga tcaaggcgag ttacatgatc ccccatgttg 1740
tgcaaaaaag cggttagctc cttcggtcct ccgatcgttg tcagaagtaa gttggccgca 1800
gtgttatcac tcatggttat ggcagcactg cataattctc ttactgtcat gccatccgta 1860
agatgctttt ctgtgactgg tgagtactca accaagtcat tctgagaata gtgtatgcgg 1920
cgaccgagtt gctcttgccc ggcgtcaata cgggataata ccgcgccaca tagcagaact 1980
ttaaaagtgc tcatcattgg aaaacgttct tcggggcgaa aactctcaag gatcttaccg 2040
ctgttgagat ccagttcgat gtaacccact cgtgcaccca actgatcttc agcatctttt 2100
actttcacca gcgtttctgg gtgagcaaaa acaggaaggc aaaatgccgc aaaaaaggga 2160
ataagggcga cacggaaatg ttgaatactc atactcttcc tttttcaata ttattgaagc 2220
atttatcagg gttattgtct catgagcgga tacatatttg aatgtattta gaaaaataaa 2280
caaatagggg ttccgcgcac tcgagactat atgtgaaggc atggctatgg cacggcagac 2340
attccgccag atcatcaata ggcacgcggc cgccctgatg cggtattttc tccttacgca 2400
tctgtgcggt atttcacacc gcatagggta ataactgata taattaaatt gaagctctaa 2460
tttgtgagtt tagtatacat gcatttactt ataatacagt tttttagttt tgctggccgc 2520
atcttctcaa atatgcttcc cagcctgctt ttctgtaacg ttcaccctct accttagcat 2580
cccttccctt tgcaaatagt cctcttccaa caataataat gtcagatcct gtagagacca 2640
catcatccac ggttctatac tgttgaccca atgcgtctcc cttgtcatct aaacccacac 2700
cgggtgtcat aatcaaccaa tcgtaacctt catctcttcc acccatgtct ctttgagcaa 2760
taaagccgat aacaaaatct ttgtcgctct tcgcaatgtc aacagtaccc ttagtatatt 2820
ctccagtaga tagggagccc ttgcatgaca attctgctaa catcaaaagg cctctaggtt 2880
cctttgttac ttcttctgcc gcctgcttca aaccgctaac aatacctggg cccaccacac 2940
cgtgtgcatt cgtaatgtct gcccattctg ctattctgta tacacccgca gagtactgca 3000
atttgactgt attaccaatg tcagcaaatt ttctgtcttc gaagagtaaa aaattgtact 3060
tggcggataa tgcctttagc ggcttaactg tgccctccat ggaaaaatca gtcaagatat 3120
ccacatgtgt ttttagtaaa caaattttgg gacctaatgc ttcaactaac tccagtaatt 3180
ccttggtggt acgaacatcc aatgaagcac acaagtttgt ttgcttttcg tgcatgatat 3240
taaatagctt ggcagcaaca ggactaggat gagtagcagc acgttcctta tatgtagctt 3300
tcgacatgat ttatcttcgt ttcctgcagg tttttgttct gtgcagttgg gttaagaata 3360
ctgggcaatt tcatgtttct tcaacactac atatgcgtat atataccaat ctaagtctgt 3420
gctccttcct tcgttcttcc ttctgttcgg agattaccga atcaaaaaaa tttcaaagaa 3480
accgaaatca aaaaaaagaa taaaaaaaaa atgatgaatt gaattgaaaa gctgtggtat 3540
ggtgcactct cagtacaatc tgctctgatg ccgcatagtt aagccagccc cgacacccgc 3600
caacacccgc tgacgcgccc tgacgggctt gtctgctccc ggcatccgct tacagacaag 3660
ctgtgaccgt ctccgggagc tgcatgtgtc agaggttttc accgtcatca ccgaaacgcg 3720
cgacagctgc acctttcgag aggacgatgc ccgtgtctaa atgattcgac cagcctaaga 3780
atgttcaacc cctcactaaa gggaacaaaa gctggagctt ctttgaaaag ataatgtatg 3840
attatgcttt cactcatatt tatacagaaa cttgatgttt tctttcgagt atatacaagg 3900
tgattacatg tacgtttgaa gtacaactct agattttgta gtgccctctt gggctagcgg 3960
taaaggtgcg cattttttca caccctacaa tgttctgttc aaaagatttt ggtcaaacgc 4020
tgtagaagtg aaagttggtg cgcatgtttc ggcgttcgaa acttctccgc agtgaaagat 4080
aaatgatc 4088
<210> 3
<211> 140
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 3
tgtttgtatt cttttcttgc ttaaatctat aactacaaaa aacacataca taaactaaaa 60
tggagagtat atgatggtac gattaatata attatataaa aatattatct tcttttcttt 120
atatctagtg ttatgtaaaa 140
<210> 4
<211> 1098
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 4
aacgagctac taaaatattg cgaataccgc ttccacaaac attgctcaaa agtatctctt 60
tgctatatat ctctgtgcta tatccctata taacctaccc atccaccttt cgctccttga 120
acttgcatct aaactcgacc tctacatttt ttatgtttat ctctagtatt actctttaga 180
caaaaaaatt gtagtaagaa ctattcatag agtgaatcga aaacaatacg aaaatgtaaa 240
catttcctat acgtagtata tagagacaaa atagaagaaa ccgttcataa ttttctgacc 300
aatgaagaat catcaacgct atcactttct gttcacaaag tatgcgcaat ccacatcggt 360
atagaatata atcggggatg cctttatctt gaaaaaatgc acccgcagct tcgctagtaa 420
tcagtaaacg cgggaagtgg agtcaggctt tttttatgga agagaaaata gacaccaaag 480
tagccttctt ctaaccttaa cggacctaca gtgcaaaaag ttatcaagag actgcattat 540
agagcgcaca aaggagaaaa aaagtaatct aagatgcttt gttagaaaaa tagcgctctc 600
gggatgcatt tttgtagaac aaaaaagaag tatagattct ttgttggtaa aatagcgctc 660
tcgcgttgca tttctgttct gtaaaaatgc agctcagatt ctttgtttga aaaattagcg 720
ctctcgcgtt gcatttttgt tttacaaaaa tgaagcacag attcttcgtt ggtaaaatag 780
cgctttcgcg ttgcatttct gttctgtaaa aatgcagctc agattctttg tttgaaaaat 840
tagcgctctc gcgttgcatt tttgttctac aaaatgaagc acagatgctt cgttggaggg 900
cgtgaacgta agcgtgacat aactaattac atgactcgaa gacataaaaa acaaaaaaag 960
caccaccgac tcggtgccac tttttcaagt tgataacgga ctagccttat tttaacttgc 1020
tatttctagc tctaaaacgt gaataatgat tgatagtaga tcatttatct ttcactgcgg 1080
agaagtttcg aacgccga 1098
<210> 5
<211> 525
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 5
tcggcgttcg aaacttctcc gcagtgaaag ataaatgatc tcaattgtga aagtttttca 60
gttttagagc tagaaatagc aagttaaaat aaggctagtc cgttatcaac ttgaaaaagt 120
ggcaccgagt cggtggtgct ttttttgttt tttatgtctt cgagtcatgt aattagttat 180
gtcacgctta cgttcacgcc ctccacgcat ttaagcataa acacgcacta tgccgttctt 240
ctcatgtata tatatataca ggcaacacgc agatataggt gcgacgtgaa cagtgagctg 300
tatgtgcgca gctcgcgttg cattttcgga agcgctcgtt ttcggaaacg ctttgaagtt 360
cctattccga agttcctatt ctgtagaaag tataggaacc tcagagcgct tttgaaaacc 420
aaaagcgctc tgaagacgca ctttcaaaaa accaaaaacg caccggactg taacgagcta 480
ctaaaatatt gcgaataccg cttccacaaa cattgctcaa aagta 525
<210> 6
<211> 677
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 6
aggacgttta cagtagatga atgatgtatt ttattgtata tatcgcttag tgcaccaaaa 60
tcatactacg taagtataaa atcactttac acgtagaaga tgcattttca gattgttctt 120
gaaaaagttg aaaaaaatat aattcacact cagcaacagg tgaaagtgta taatgggtaa 180
aaaaggaagg acagaaggta tattgctaat caaaacgact ttggtatacg cgtttggggc 240
tacaattgca ttttaaatat atttaagaaa gattcggagg atggactaca ttcgttatca 300
ctccgctttt taattttcaa tcaatgttac atacctagcg taattttcct atatataaaa 360
tatcagcttt atataaatat attattgaaa ctgtacctat aataataaat ttaaaattaa 420
gtaaatacaa atgcttcaaa atttgttagt attgttttct tcaatcatct ttacttaatt 480
gtcatcgcaa taattaaatt aatattttat tgttgttgcg tatataatac aacctgaatg 540
gtatgctaca ctatgttaca ctatgctatt gatcagagtt tctaatgacg aattacactt 600
ctataactat ccgctttgga aagtttgaga cgaagggcgt tacaatcaga atccgtatcc 660
aaaggatgtt cttcaga 677
<210> 7
<211> 572
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 7
tagtggaaaa atactgaaca atgaaatttc aatatcgcat ataataattt ttgttatcaa 60
atatatattt ttcggaagtc atatacatta aataattaaa acattatttt taaaaattaa 120
aaaaatatat tttagcaaat agtttttact tttttttaaa tgcaaaataa gttcacgtga 180
tattattaat aatattttac ccaaaaatat gagggcatcg gaaaattttt cagtaatgaa 240
tattaatgtt catctgaaga tagacgaaat aggaacaaca aacagcttat aagcacccaa 300
taagtggtaa aacaagcgta tttttttatt tataaattat ggtaattttc atttaagacc 360
tctaaattca tctaatcgaa tatctgtgtc atggagttat ggctccccca tgcacaccat 420
tttctctttt tttgtttctg tgtttccctt catctccttt attatgaaaa gtacaagttt 480
tatataattt caacgtcgga ggttatccgg aaatctatag ttgaattttt gcaggattat 540
acttcgctcg aatattgtgc gtgttaaata ct 572
<210> 8
<211> 1569
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 8
tcggcgttcg aaacttctcc gcagtgaaag ataaatgatc actatcagga atttggcgcc 60
gttttagagc tagaaatagc aagttaaaat aaggctagtc cgttatcaac ttgaaaaagt 120
ggcaccgagt cggtggtgct ttttttgttt tttatgtctt cgagtcatgt aattagttat 180
gtcacgctta cgttcacgcc ctccacgcat ttaagcataa acacgcacta tgccgttctt 240
ctcatgtata tatatataca ggcaacacgc agatataggt gcgacgtgaa cagtgagctg 300
tatgtgcgca gctcgcgttg cattttcgga agcgctcgtt ttcggaaacg ctttgaagtt 360
cctattccga agttcctatt ctgtagaaag tataggaacc tcagagcgct tttgaaaacc 420
aaaagcgctc tgaagacgca ctttcaaaaa accaaaaacg caccggactg taacgagcta 480
ctaaaatatt gcgaataccg cttccacaaa cattgctcaa aagtatctct ttgctatata 540
tctctgtgct atatccctat ataacctacc catccacctt tcgctccttg aacttgcatc 600
taaactcgac ctctacattt tttatgttta tctctagtat tactctttag acaaaaaaat 660
tgtagtaaga actattcata gagtgaatcg aaaacaatac gaaaatgtaa acatttccta 720
tacgtagtat atagagacaa aatagaagaa accgttcata attttctgac caatgaagaa 780
tcatcaacgc tatcactttc tgttcacaaa gtatgcgcaa tccacatcgg tatagaatat 840
aatcggggat gcctttatct tgaaaaaatg cacccgcagc ttcgctagta atcagtaaac 900
gcgggaagtg gagtcaggct ttttttatgg aagagaaaat agacaccaaa gtagccttct 960
tctaacctta acggacctac agtgcaaaaa gttatcaaga gactgcatta tagagcgcac 1020
aaaggagaaa aaaagtaatc taagatgctt tgttagaaaa atagcgctct cgggatgcat 1080
ttttgtagaa caaaaaagaa gtatagattc tttgttggta aaatagcgct ctcgcgttgc 1140
atttctgttc tgtaaaaatg cagctcagat tctttgtttg aaaaattagc gctctcgcgt 1200
tgcatttttg ttttacaaaa atgaagcaca gattcttcgt tggtaaaata gcgctttcgc 1260
gttgcatttc tgttctgtaa aaatgcagct cagattcttt gtttgaaaaa ttagcgctct 1320
cgcgttgcat ttttgttcta caaaatgaag cacagatgct tcgttggagg gcgtgaacgt 1380
aagcgtgaca taactaatta catgactcga agacataaaa aacaaaaaaa gcaccaccga 1440
ctcggtgcca ctttttcaag ttgataacgg actagcctta ttttaacttg ctatttctag 1500
ctctaaaacg gcgccaaatt cctgatagtg atcatttatc tttcactgcg gagaagtttc 1560
gaacgccga 1569
<210> 9
<211> 372
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 9
ctgttttttt cctttttcct tgtggcgtcg cctaggtcac tgtacacgta tatcgtgacc 60
cctcgagcag atccgccagg cgtgtatata tagcgtggat ggccaggcaa ctttagtgct 120
gacacataca ggcatatata tatgtgtgcg acgacacatg atcatatggc atgcatgtgc 180
tctgtatgta tataaaactc ttgttttctt cttttctcta aatattcttt ccttatacat 240
taggtccttt gtagcataaa ttactatact tctatagaca cgcaaacaca aatacacaca 300
ctaaattaat aatgaatagc gagtacgatt acctgttcaa actgctgttg atcgggaatt 360
ccggtgtcgg ga 372
<210> 10
<211> 1569
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 10
tcggcgttcg aaacttctcc gcagtgaaag ataaatgatc gaaagaccga tagggtaggg 60
gttttagagc tagaaatagc aagttaaaat aaggctagtc cgttatcaac ttgaaaaagt 120
ggcaccgagt cggtggtgct ttttttgttt tttatgtctt cgagtcatgt aattagttat 180
gtcacgctta cgttcacgcc ctccacgcat ttaagcataa acacgcacta tgccgttctt 240
ctcatgtata tatatataca ggcaacacgc agatataggt gcgacgtgaa cagtgagctg 300
tatgtgcgca gctcgcgttg cattttcgga agcgctcgtt ttcggaaacg ctttgaagtt 360
cctattccga agttcctatt ctgtagaaag tataggaacc tcagagcgct tttgaaaacc 420
aaaagcgctc tgaagacgca ctttcaaaaa accaaaaacg caccggactg taacgagcta 480
ctaaaatatt gcgaataccg cttccacaaa cattgctcaa aagtatctct ttgctatata 540
tctctgtgct atatccctat ataacctacc catccacctt tcgctccttg aacttgcatc 600
taaactcgac ctctacattt tttatgttta tctctagtat tactctttag acaaaaaaat 660
tgtagtaaga actattcata gagtgaatcg aaaacaatac gaaaatgtaa acatttccta 720
tacgtagtat atagagacaa aatagaagaa accgttcata attttctgac caatgaagaa 780
tcatcaacgc tatcactttc tgttcacaaa gtatgcgcaa tccacatcgg tatagaatat 840
aatcggggat gcctttatct tgaaaaaatg cacccgcagc ttcgctagta atcagtaaac 900
gcgggaagtg gagtcaggct ttttttatgg aagagaaaat agacaccaaa gtagccttct 960
tctaacctta acggacctac agtgcaaaaa gttatcaaga gactgcatta tagagcgcac 1020
aaaggagaaa aaaagtaatc taagatgctt tgttagaaaa atagcgctct cgggatgcat 1080
ttttgtagaa caaaaaagaa gtatagattc tttgttggta aaatagcgct ctcgcgttgc 1140
atttctgttc tgtaaaaatg cagctcagat tctttgtttg aaaaattagc gctctcgcgt 1200
tgcatttttg ttttacaaaa atgaagcaca gattcttcgt tggtaaaata gcgctttcgc 1260
gttgcatttc tgttctgtaa aaatgcagct cagattcttt gtttgaaaaa ttagcgctct 1320
cgcgttgcat ttttgttcta caaaatgaag cacagatgct tcgttggagg gcgtgaacgt 1380
aagcgtgaca taactaatta catgactcga agacataaaa aacaaaaaaa gcaccaccga 1440
ctcggtgcca ctttttcaag ttgataacgg actagcctta ttttaacttg ctatttctag 1500
ctctaaaacc cctaccctat cggtctttcg atcatttatc tttcactgcg gagaagtttc 1560
gaacgccga 1569
<210> 11
<211> 548
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 11
cttcgttatt agaaggacat acggtaacct aggctagtta atataattag ttgtcaccct 60
tcgcccccac acaccatagc ttcaaaatgt ttctactcct tttttactct tccagatttt 120
ctcggactcc gcgcatcgcc gtaccacttc aaaacaccca agcacagcat actaaatttc 180
ccctctttct tcctctaggg tgtcgttaat tacccgtact aaaggtttgg aaaagaaaaa 240
agagaccgcc tcgtttcttt ttcttcgtcg aaaaaggcaa taaaaatttt tatcacgttt 300
ctttttcttg aaaatttttt tttttgattt ttttctcttt cgatgacctc ccattgatat 360
ttaagttaat aaacggtctt caatttctca agtttcagtt tcatttttct tgttctatta 420
caactttttt tacttcttgc tcattagaaa gaaagcatag caatctaatc taagttttaa 480
ttacaaaatg gatgattatc acgtaaatac tgccttctca atgggcagag gtaaccagca 540
ggatgatg 548
<210> 12
<211> 1569
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 12
tcggcgttcg aaacttctcc gcagtgaaag ataaatgatc gcaaggagca agactggctg 60
gttttagagc tagaaatagc aagttaaaat aaggctagtc cgttatcaac ttgaaaaagt 120
ggcaccgagt cggtggtgct ttttttgttt tttatgtctt cgagtcatgt aattagttat 180
gtcacgctta cgttcacgcc ctccacgcat ttaagcataa acacgcacta tgccgttctt 240
ctcatgtata tatatataca ggcaacacgc agatataggt gcgacgtgaa cagtgagctg 300
tatgtgcgca gctcgcgttg cattttcgga agcgctcgtt ttcggaaacg ctttgaagtt 360
cctattccga agttcctatt ctgtagaaag tataggaacc tcagagcgct tttgaaaacc 420
aaaagcgctc tgaagacgca ctttcaaaaa accaaaaacg caccggactg taacgagcta 480
ctaaaatatt gcgaataccg cttccacaaa cattgctcaa aagtatctct ttgctatata 540
tctctgtgct atatccctat ataacctacc catccacctt tcgctccttg aacttgcatc 600
taaactcgac ctctacattt tttatgttta tctctagtat tactctttag acaaaaaaat 660
tgtagtaaga actattcata gagtgaatcg aaaacaatac gaaaatgtaa acatttccta 720
tacgtagtat atagagacaa aatagaagaa accgttcata attttctgac caatgaagaa 780
tcatcaacgc tatcactttc tgttcacaaa gtatgcgcaa tccacatcgg tatagaatat 840
aatcggggat gcctttatct tgaaaaaatg cacccgcagc ttcgctagta atcagtaaac 900
gcgggaagtg gagtcaggct ttttttatgg aagagaaaat agacaccaaa gtagccttct 960
tctaacctta acggacctac agtgcaaaaa gttatcaaga gactgcatta tagagcgcac 1020
aaaggagaaa aaaagtaatc taagatgctt tgttagaaaa atagcgctct cgggatgcat 1080
ttttgtagaa caaaaaagaa gtatagattc tttgttggta aaatagcgct ctcgcgttgc 1140
atttctgttc tgtaaaaatg cagctcagat tctttgtttg aaaaattagc gctctcgcgt 1200
tgcatttttg ttttacaaaa atgaagcaca gattcttcgt tggtaaaata gcgctttcgc 1260
gttgcatttc tgttctgtaa aaatgcagct cagattcttt gtttgaaaaa ttagcgctct 1320
cgcgttgcat ttttgttcta caaaatgaag cacagatgct tcgttggagg gcgtgaacgt 1380
aagcgtgaca taactaatta catgactcga agacataaaa aacaaaaaaa gcaccaccga 1440
ctcggtgcca ctttttcaag ttgataacgg actagcctta ttttaacttg ctatttctag 1500
ctctaaaacc agccagtctt gctccttgcg atcatttatc tttcactgcg gagaagtttc 1560
gaacgccga 1569
<210> 13
<211> 700
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 13
ctcgttatta tcgctgttgg tgggtttttt cttttcatat atttcttttt cgcttagtgg 60
tttctactgt tctgtctcta gatagtgtgt gctacttcaa ccgaagaaga agaggctttt 120
caagaatgca aacgtgaggt tggcgcgccc tcctacaatt atttgtggcg actgggcagc 180
gacactgaac atagctcttg aacaagaccc ttttttggct gcaaggagca agactggcta 240
gatagtgtgt gctacttcaa ccgaagaaga agaggctttt caagaatgca aacgtgaggt 300
tggcgcgccc tcctacaatt atttgtggcg actgggcagc gacactgaac atagctcttg 360
aacaagaccc ttttttggct gcaaggagca agactggcta gcgttccacc tcaaagagcc 420
acgctctgct ttttttctat ctgtttgtgt catatctatc tgtctattta tctatatata 480
tattttttta tataaaacta taaagaattc ttgatgtatg cccttaggtt gggcagcttt 540
tcaaccttag acttgatgct aacgccgctc tgttccttct cccgtgctcc cgcaagcgaa 600
catctccccc taactccggg ccaatgagtg ataactatat caaatacctt cgaaaggacc 660
ttagtcatca tatcactctc actctcacgg ctctctgtag 700
<210> 14
<211> 1652
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 14
tcggcgttcg aaacttctcc gcagtgaaag ataaatgatc tccgtgaagc attgagggaa 60
gttttagagc tagaaatagc aagtcggcgt tcgaaacttc tccgcagtga aagataaatg 120
atctccgtga agcattgagg gaagttttag agctagaaat agcaagttaa aataaggcta 180
gtccgttatc aacttgaaaa agtggcaccg agtcggtggt gctttttttg ttttttatgt 240
cttcgagtca tgtaattagt tatgtcacgc ttacgttcac gccctccacg catttaagca 300
taaacacgca ctatgccgtt cttctcatgt atatatatat acaggcaaca cgcagatata 360
ggtgcgacgt gaacagtgag ctgtatgtgc gcagctcgcg ttgcattttc ggaagcgctc 420
gttttcggaa acgctttgaa gttcctattc cgaagttcct attctgtaga aagtatagga 480
acctcagagc gcttttgaaa accaaaagcg ctctgaagac gcactttcaa aaaaccaaaa 540
acgcaccgga ctgtaacgag ctactaaaat attgcgaata ccgcttccac aaacattgct 600
caaaagtatc tctttgctat atatctctgt gctatatccc tatataacct acccatccac 660
ctttcgctcc ttgaacttgc atctaaactc gacctctaca ttttttatgt ttatctctag 720
tattactctt tagacaaaaa aattgtagta agaactattc atagagtgaa tcgaaaacaa 780
tacgaaaatg taaacatttc ctatacgtag tatatagaga caaaatagaa gaaaccgttc 840
ataattttct gaccaatgaa gaatcatcaa cgctatcact ttctgttcac aaagtatgcg 900
caatccacat cggtatagaa tataatcggg gatgccttta tcttgaaaaa atgcacccgc 960
agcttcgcta gtaatcagta aacgcgggaa gtggagtcag gcttttttta tggaagagaa 1020
aatagacacc aaagtagcct tcttctaacc ttaacggacc tacagtgcaa aaagttatca 1080
agagactgca ttatagagcg cacaaaggag aaaaaaagta atctaagatg ctttgttaga 1140
aaaatagcgc tctcgggatg catttttgta gaacaaaaaa gaagtataga ttctttgttg 1200
gtaaaatagc gctctcgcgt tgcatttctg ttctgtaaaa atgcagctca gattctttgt 1260
ttgaaaaatt agcgctctcg cgttgcattt ttgttttaca aaaatgaagc acagattctt 1320
cgttggtaaa atagcgcttt cgcgttgcat ttctgttctg taaaaatgca gctcagattc 1380
tttgtttgaa aaattagcgc tctcgcgttg catttttgtt ctacaaaatg aagcacagat 1440
gcttcgttgg agggcgtgaa cgtaagcgtg acataactaa ttacatgact cgaagacata 1500
aaaaacaaaa aaagcaccac cgactcggtg ccactttttc aagttgataa cggactagcc 1560
ttattttaac ttgctatttc tagctctaaa acttccctca atgcttcacg gagatcattt 1620
atctttcact gcggagaagt ttcgaacgcc ga 1652
<210> 15
<211> 544
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 15
cactttttca agaaagtttg agtcaaaagg attaaaggat aaagtaaaac aacaataaca 60
tcccacacac catagcttca aaatgtttct actccttttt tactcttcca gattttctcg 120
gactccgcgc atcgccgtac cacttcaaaa cacccaagca cagcatacta aatttcccct 180
ctttcttcct ctagggtgtc gttaattacc cgtactaaag gtttggaaaa gaaaaaagag 240
accgcctcgt ttctttttct tcgtcgaaaa aggcaataaa aatttttatc acgtttcttt 300
ttcttgaaaa tttttttttt tgattttttt ctctttcgat gacctcccat tgatatttaa 360
gttaataaac ggtcttcaat ttctcaagtt tcagtttcat ttttcttgtt ctattacaac 420
tttttttact tcttgctcat tagaaagaaa gcatagcaat ctaatctaag ttttaattac 480
aaaatgtcac tgaacaacat aacattctgt gtctcacagg atctggatgt tcccctgaaa 540
gtga 544
<210> 16
<211> 1652
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 16
tcggcgttcg aaacttctcc gcagtgaaag ataaatgatc tatatttaag aaagattcgg 60
gttttagagc tagaaatagc aagtcggcgt tcgaaacttc tccgcagtga aagataaatg 120
atctatattt aagaaagatt cgggttttag agctagaaat agcaagttaa aataaggcta 180
gtccgttatc aacttgaaaa agtggcaccg agtcggtggt gctttttttg ttttttatgt 240
cttcgagtca tgtaattagt tatgtcacgc ttacgttcac gccctccacg catttaagca 300
taaacacgca ctatgccgtt cttctcatgt atatatatat acaggcaaca cgcagatata 360
ggtgcgacgt gaacagtgag ctgtatgtgc gcagctcgcg ttgcattttc ggaagcgctc 420
gttttcggaa acgctttgaa gttcctattc cgaagttcct attctgtaga aagtatagga 480
acctcagagc gcttttgaaa accaaaagcg ctctgaagac gcactttcaa aaaaccaaaa 540
acgcaccgga ctgtaacgag ctactaaaat attgcgaata ccgcttccac aaacattgct 600
caaaagtatc tctttgctat atatctctgt gctatatccc tatataacct acccatccac 660
ctttcgctcc ttgaacttgc atctaaactc gacctctaca ttttttatgt ttatctctag 720
tattactctt tagacaaaaa aattgtagta agaactattc atagagtgaa tcgaaaacaa 780
tacgaaaatg taaacatttc ctatacgtag tatatagaga caaaatagaa gaaaccgttc 840
ataattttct gaccaatgaa gaatcatcaa cgctatcact ttctgttcac aaagtatgcg 900
caatccacat cggtatagaa tataatcggg gatgccttta tcttgaaaaa atgcacccgc 960
agcttcgcta gtaatcagta aacgcgggaa gtggagtcag gcttttttta tggaagagaa 1020
aatagacacc aaagtagcct tcttctaacc ttaacggacc tacagtgcaa aaagttatca 1080
agagactgca ttatagagcg cacaaaggag aaaaaaagta atctaagatg ctttgttaga 1140
aaaatagcgc tctcgggatg catttttgta gaacaaaaaa gaagtataga ttctttgttg 1200
gtaaaatagc gctctcgcgt tgcatttctg ttctgtaaaa atgcagctca gattctttgt 1260
ttgaaaaatt agcgctctcg cgttgcattt ttgttttaca aaaatgaagc acagattctt 1320
cgttggtaaa atagcgcttt cgcgttgcat ttctgttctg taaaaatgca gctcagattc 1380
tttgtttgaa aaattagcgc tctcgcgttg catttttgtt ctacaaaatg aagcacagat 1440
gcttcgttgg agggcgtgaa cgtaagcgtg acataactaa ttacatgact cgaagacata 1500
aaaaacaaaa aaagcaccac cgactcggtg ccactttttc aagttgataa cggactagcc 1560
ttattttaac ttgctatttc tagctctaaa acccgaatct ttcttaaata tagatcattt 1620
atctttcact gcggagaagt ttcgaacgcc ga 1652
<210> 17
<211> 5032
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 17
agaaggtata ttgctaatca aaacgacttt ggtatacgcg tttggggcta caattgcatt 60
ttaaatatat ttaagagagc gacctcatgc tatacctgag aaagcaacct gacctacagg 120
aaagagttac tcaagaataa gaattttcgt tttaaaacct aagagtcact ttaaaatttg 180
tatacactta ttttttttat aacttattta ataataaaaa tcataaatca taagaaattc 240
gcttatttag aagtgtcaac aacgtatcta ccaacgattt gacccttttc catcttttcg 300
taaatttctg gcaaggtaga caagccgaca accttgattg gagacttgac caaacctctg 360
gcgaagaatt gttaattaag agctcttaca attcatcgtg aatggcatct tcttcgtcag 420
ccaattcagc gtcagcatcg gcttcctcag cagctttttc ctgggcttct tcgtacaagg 480
ccttaccgtc gacgtcgaag tgaccgtttt ccttgatgaa gtcgaataaa gagtccaagg 540
atcttgaacc ttggtacaca acagattcgg acttcttacc acctgggtat aagacgattg 600
ttgggtaacc ttcaattacg acgcctctga catcgttttc agtgtggtct agtttagcaa 660
tcaaaacgtc ggatgtggcg ttggcgtagg tatcagctag ttcttggtaa gttggggcca 720
atctcttaca gtgaccacac catggggcat agtacaaaac aagaacgtcc ttctttgggt 780
cgttgacgat ttcgtcatgg ttcttaccga ccaattggaa gacagaggaa tcttggttct 840
cgaagatctc ttgggacttc acgattgggg aggcatcacc tttcaagaag tccttaacca 900
aagattcaat agccttagac tccaacacga tcttgtcgct caattcgtca aacgcctctt 960
cagagagttg aggcaaaccg tacttcaagt cttcagtcat gtcgtggatg gcaaatagag 1020
ggaattgttc cttcatgttc aagttgccgg cgtgtctgcc gaattttctg gcatcgatgc 1080
taacaaagtt cattagacct ctgttctttt tggccaactc ggtaaagaga ggcttgtatt 1140
cttccaattc ttcctcgtca ttgtagaata agtaacccaa aggcaaaccg ctttcgacgt 1200
attgggcgaa aacggaaccg tcgatttcac caaagtaggg caaggcttcc acttgcaacc 1260
atttttcaaa aacatcagcg tcagcgatat cggctttctt accgttgtat actacaggct 1320
cgtccatggc ggagggcaag taaatagaaa gcttgaaatc atcgtctgcg ttttcagcgg 1380
agacaaagtc gtagtcgttg aagtgtttgt tggccatgga gtaaaaggtg gcgttgaagt 1440
cggcgtcaat cttaccggat tggacgataa ctggagtgac aaaagtctcg ttagcaaggt 1500
aagctggtag atcagcaaca acggcgacag ccggttggct ttgcttgatc atgaattgga 1560
caatggcctc ggcagttcta ggtccctcgt aatcgatcga gttgttaaca tcgctgtttt 1620
tgaaaatctt caagcttggg aaccctggaa tgttgtgttc catacacaga tcctggtttt 1680
cagtacagtc gatctgggcc aaggtaatgt ttttctcaac taaagtctcg gcggctttaa 1740
cgtattcagg agccatgttc ttacagtggc cacaccatgg agcaaaaaac tccgcaagca 1800
ccaagtcgtg cgactgaatg tactcattga aggagtcggt ggccaactta acgacagcgg 1860
agtcttcagg ggccacagcc tcttgttggg cgaaaacaga ggaggcgagc agcagggagg 1920
accatgacag gacggcacca gcagaaaact tcattttgtt gcggccgctt gtaattaaaa 1980
cttagattag attgctatgc tttctttcta atgagcaaga agtaaaaaaa gttgtaatag 2040
aacaagaaaa atgaaactga aacttgagaa attgaagacc gtttattaac ttaaatatca 2100
atgggaggtc atcgaaagag aaaaaaatca aaaaaaaaaa ttttcaagaa aaagaaacgt 2160
gataaaaatt tttattgcct ttttcgacga agaaaaagaa acgaggcggt ctcttttttc 2220
ttttccaaac ctttagtacg ggtaattaac gacaccctag aggaagaaag aggggaaatt 2280
tagtatgctg tgcttgggtg ttttgaagtg gtacggcgat gcgcggagtc cgagaaaatc 2340
tggaagagta aaaaaggagt agaaacattt tgaagctatg gtgtgtgcgg ccggcctgga 2400
agtaccttca aagaatgggg tcttatcttg ttttgcaagt accactgagc aggataataa 2460
tagaaatgat aatatactat agtagagata acgtcgatga cttcccatac tgtaattgct 2520
tttagttgtg tatttttagt gtgcaagttt ctgtaaatcg attaattttt ttttctttcc 2580
tctttttatt aaccttaatt tttattttag attcctgact tcaactcaag acgcacagat 2640
attataacat ctgcataata ggcatttgca agaattactc gtgagtaagg aaagagtgag 2700
gaactatcgc atacctgcat ttaaagatgc cgatttgggc gcgaatcctt tattttggct 2760
tcaccctcat actattatca gggccagaaa aaggaagtgt ttccctcctt cttgaattga 2820
tgttaccctc ataaagcacg tggcctctta tcgagaaaga aattaccgtc gctcgtgatt 2880
tgtttgcaaa aagaacaaaa ctgaaaaaac ccagacacgc tcgacttcct gtcttcctat 2940
tgattgcagc ttccaatttc gtcacacaac aaggtcctag cgacggctca caggttttgt 3000
aacaagcaat cgaaggttct ggaatggcgg gaaagggttt agtaccacat gctatgatgc 3060
ccactgtgat ctccagagca aagttcgttc gatcgtactg ttactctctc tctttcaaac 3120
agaattgtcc gaatcgtgtg acaacaacag cctgttctca cacactcttt tcttctaacc 3180
aagggggtgg tttagtttag tagaacctcg tgaaacttac atttacatat atataaactt 3240
gcataaattg gtcaatgcaa gaaatacata tttggtcttt tctaattcgt agtttttcaa 3300
gttcttagat gctttctttt tctctttttt acagatcatc aaggaagtaa ttatctactt 3360
tttacaacaa atataaaaca aggatccatg tttgatctta agacgattct cgaccatcct 3420
aatatcccgt ggaaattaat catttctggg ttctcgattg cccaattttc tttcgaatct 3480
tacttgacgt acagacagta ccagaagcta tctgaaacaa agttgccacc tgtgctggaa 3540
gacgaaattg atgatgaaac ttttcataaa tcaaggaact actcccgggc caaggccaag 3600
ttctccattt tcggtgacgt ctataaccta gcccaaaagc tagttttcat caaatacgac 3660
ctcttcccta aaatctggca catggccgtt tctttattga atgcagtcct gccagtcaga 3720
tttcatatgg tctccactgt cgcacagagt ttatgcttct tgggtctctt atccagtttg 3780
tctaccttgg ttgatttgcc actctcttac tatagccatt ttgtcctgga agaaaaattt 3840
ggtttcaata aattgaccgt ccaactatgg atcaccgata tgatcaagag tctgactttg 3900
gcgtatgcta ttggtggccc aatcctttac ctgttcctta agatctttga taaattccct 3960
actgatttcc tttggtacat tatggtcttc ttgttcgttg tccaaatctt agccatgaca 4020
atcattccag tcttcatcat gcccatgttt aataagttca ctccattgga ggacggtgaa 4080
ctgaaaaaat ctattgaaag tttggccgat agagttgggt tccctctaga taagattttt 4140
gtcattgacg gctcaaaaag atcttctcat tcaaacgcat atttcacagg tttgccattc 4200
acctccaaga gaattgtttt gttcgacact ttagtgaaca gtaattctac tgatgaaatt 4260
acggctgttt tggcccatga aatcggtcac tggcaaaaaa accacatcgt taatatggtc 4320
atctttagtc aattgcacac cttcctcatt ttctcccttt tcaccagcat ctacagaaat 4380
acatcatttt acaacacctt cggctttttc ttagagaagt ccactggcag ttttgttgat 4440
cccgttatca ctaaggaatt ccccattatc attggattta tgttatttaa cgacttatta 4500
actccactcg aatgtgccat gcaattcgtg atgagtttaa tttccagaac tcatgaatat 4560
caagctgatg cttatgctaa aaaattgggc tacaagcaaa atctatgtag ggctctaatt 4620
gatctacaaa tcaaaaacct ttccaccatg aatgtagatc ctctgtattc tagctatcat 4680
tattcccatc caactctagc tgaaagattg accgctctag actatgttag tgaaaagaag 4740
aaaaactaag gtaccgcggc tagctaagat ccgctctaac cgaaaaggaa ggagttagac 4800
aacctgaagt ctaggtccct atttattttt ttatagttat gttagtatta agaacgttat 4860
ttatatttca aatttttctt ttttttctgt acagacgcgt gtacgcatgt aacattatac 4920
tgaaaacctt gcttgagaag gttttgggac gctcgaagaa agattcggag gatggattac 4980
attcgttatc actccgcttt ttaattttca atcaatgtta catacctagc gt 5032

Claims (10)

1.一株酵母基因工程菌,其特征在于:是对酵母出发菌株进行以下一种以上的操作后得到:
1、敲除CBC1基因;
2、敲除RRP6基因;
3、弱化Ypt1p的表达;
4、强化蛋白激酶Kin1p的表达;
5、增加HAC1 mRNA 3’BE元件数量。
2.根据权利要求1所述的酵母基因工程菌,其特征在于:
所述弱化Ypt1p的表达是将YPT1的启动子替换为弱启动子;
所述强化蛋白激酶Kin1p的表达,是将KIN1的启动子替换为强启动子。
3.根据权利要求1所述的酵母基因工程菌,其特征在于:所述的酵母基因工程菌还强化磷酸肌醇3-激酶Vps34p的表达。
4.根据权利要求3所述的酵母基因工程菌,其特征在于:所述的酵母基因工程菌还强化二硫键异构酶Pdi1p和内质网金属蛋白酶Ste24p的表达。
5.根据权利要求1所述的酵母基因工程菌,其特征在于:所述的酵母基因工程菌还含有重组蛋白的表达质粒。
6.根据权利要求1所述的酵母基因工程菌,其特征在于:所述的酵母出发菌株为酿酒酵母IMX581。
7.权利要求1或2所述酵母基因工程菌的构建方法,其特征在于包括以下步骤:
(1)敲除酵母出发菌株上编码磷酸丙糖异构酶的基因TPI1,构建得到菌株Y1;将重组蛋白的表达质粒转化菌株Y1,得到菌株Y2;
(2)进行以下的一种以上操作,得到所述的酵母基因工程菌:
1、敲除菌株Y2上的CBC1基因;
2、敲除菌株Y2上的RRP6基因;
3、将菌株Y2基因组上YPT1的启动子替换为弱启动子;
4、将菌株Y2基因组上KIN1的启动子替换为强启动子;
5、将从酵母基因组中HAC1基因的3’UTR部分克隆得到的3’BE片段,整合至菌株IMX581ΔTPI1基因组HAC1 3’UTR上。
8.权利要求3所述酵母基因工程菌的构建方法,其特征在于包括以下步骤:
将权7所得酵母重组菌基因组上VPS34的启动子替换为强启动子,得到所述的酵母基因工程菌。
9.权利要求4所述酵母基因工程菌的构建方法,其特征在于包括以下步骤:
将基因序列ADH1t-PDI1-TEF1p-PGK1p-STE24-CYC1t整合至权8所得酵母重组菌CBC1基因座上,得到所述的酵母基因工程菌。
10.权利要求1-6任一项所述的酵母基因工程菌在表达重组蛋白中的应用。
CN202210361480.9A 2022-04-07 2022-04-07 一株高产重组蛋白的酵母基因工程菌及其构建方法和应用 Active CN114874927B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210361480.9A CN114874927B (zh) 2022-04-07 2022-04-07 一株高产重组蛋白的酵母基因工程菌及其构建方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210361480.9A CN114874927B (zh) 2022-04-07 2022-04-07 一株高产重组蛋白的酵母基因工程菌及其构建方法和应用

Publications (2)

Publication Number Publication Date
CN114874927A true CN114874927A (zh) 2022-08-09
CN114874927B CN114874927B (zh) 2023-08-18

Family

ID=82669797

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210361480.9A Active CN114874927B (zh) 2022-04-07 2022-04-07 一株高产重组蛋白的酵母基因工程菌及其构建方法和应用

Country Status (1)

Country Link
CN (1) CN114874927B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116283476A (zh) * 2023-02-28 2023-06-23 态创生物科技(广州)有限公司 一种提取角鲨烯的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2014200726A1 (en) * 2007-12-11 2014-03-06 The Scripps Research Institute In vivo unnatural amino acid expression in the methylotrophic yeast pichia pastoris
CN106754610A (zh) * 2017-03-29 2017-05-31 华东理工大学 表面展示表达谷氨酸脱羧酶的重组工程菌及其构建方法与应用
WO2019100456A1 (zh) * 2017-11-24 2019-05-31 康码(上海)生物科技有限公司 一种通过对核酸酶系统敲除以调控体外生物合成活性的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2014200726A1 (en) * 2007-12-11 2014-03-06 The Scripps Research Institute In vivo unnatural amino acid expression in the methylotrophic yeast pichia pastoris
CN106754610A (zh) * 2017-03-29 2017-05-31 华东理工大学 表面展示表达谷氨酸脱羧酶的重组工程菌及其构建方法与应用
WO2019100456A1 (zh) * 2017-11-24 2019-05-31 康码(上海)生物科技有限公司 一种通过对核酸酶系统敲除以调控体外生物合成活性的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BISWADIP DAS ET AL.: "Degradation of Normal mRNA in the Nucleus of Saccharomyces cerevisiae", MOLECULAR AND CELLULAR BIOLOGY, vol. 23, no. 16, pages 5502 - 5515 *
BISWADIP DAS ET AL.: "Mutant LYS2 mRNAs retained and degraded in the nucleus of Saccharomyces cerevisiae", PROC NATL ACAD SCI U S A, vol. 103, no. 29, pages 10871 - 10876 *
华慧 ET AL.: "外源基因在巴斯德毕赤酵母中的表达", 国外医学.生物医学工程分册, vol. 26, no. 3, pages 112 - 117 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116283476A (zh) * 2023-02-28 2023-06-23 态创生物科技(广州)有限公司 一种提取角鲨烯的方法

Also Published As

Publication number Publication date
CN114874927B (zh) 2023-08-18

Similar Documents

Publication Publication Date Title
AU2016361421A1 (en) Genetically modified yeasts and fermentation processes using genetically modified yeasts
CN106559996A (zh) 一种利用遗传工程改造的酵母发酵生产糖的方法
CN114874927B (zh) 一株高产重组蛋白的酵母基因工程菌及其构建方法和应用
CN113025512A (zh) 一种可动态调控7-脱氧胆固醇及维生素d3的酿酒酵母菌的构建方法及应用
CN110042067A (zh) 一种提高重组酿酒酵母菌株木糖利用能力的方法及其突变株
CN110093277A (zh) 弓形虫腺苷酸琥珀酸裂解酶基因敲除虫株的构建方法及用途
CN114957448B (zh) 一种高效表达α-乳白蛋白的酵母菌株和α-乳白蛋白及其应用
CN110484517A (zh) 一种用于制备弱毒的裂谷热病毒的组合物及制备方法,rvfv减毒疫苗
CN114736893B (zh) 一种可以实现线粒体dna上a/t到g/c编辑的方法
CN108060175B (zh) 诱导型酵母转化重组系统的构建及其应用
CN112553098B (zh) 一种咖啡酸的生物制备方法
CN1156572C (zh) 筛选天然产物和其它化学物质的体外转录方法
US20040161756A1 (en) Substrate linked directed evolution (slide)
CN114015723B (zh) 一种鸭坦布苏病毒质粒载体、弱毒株及其制备方法和应用
CN102703474A (zh) 一种新布尼亚病毒np蛋白的编码序列及其应用
KR101146335B1 (ko) 알파태아단백 인헨서 및 프로모터의 조절을 받아 리포터 단백질을 발현하는 형질 전환 마우스, 그의 제조 방법 및 이를 이용한 알파태아단백 발현의 증가 또는 감소 유도 물질을 스크리닝하는 방법
CN101481703A (zh) 禽源启动子表达载体及其构建方法与应用
CN101659967A (zh) 用于生产转基因猪的piggyBac转座载体及其构建方法
Walter et al. Method for multiplexed integration of synergistic alleles and metabolic pathways in yeasts via CRISPR-Cas9
CN102002510A (zh) 一种新型链霉菌分泌表达质粒及应用
CN113493855B (zh) 一种基于RAA-CRISPR-cas13a检测HBV cccDNA的试剂盒
CN106754756B (zh) 一种用于非人灵长类神经细胞快速标记的西门利克森林病毒复制子及应用
CN113151028A (zh) 一种酿酒酵母基因工程菌株及其构建方法和应用
CN114149975B (zh) 一种特定hbv序列插入到特定基因区域的细胞模型及其构建方法与应用
CN115521880A (zh) 一种用于生物合成增值产品的甲基营养型酵母的无甲醇培养方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant