CN114864259B - 通过1:2相提高混合稀土永磁材料抗蚀性的多元晶界重构方法 - Google Patents

通过1:2相提高混合稀土永磁材料抗蚀性的多元晶界重构方法 Download PDF

Info

Publication number
CN114864259B
CN114864259B CN202210393701.0A CN202210393701A CN114864259B CN 114864259 B CN114864259 B CN 114864259B CN 202210393701 A CN202210393701 A CN 202210393701A CN 114864259 B CN114864259 B CN 114864259B
Authority
CN
China
Prior art keywords
rare earth
grain boundary
equal
permanent magnet
magnet material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210393701.0A
Other languages
English (en)
Other versions
CN114864259A (zh
Inventor
金佳莹
陈望
周良
俞钧耀
严密
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN202210393701.0A priority Critical patent/CN114864259B/zh
Publication of CN114864259A publication Critical patent/CN114864259A/zh
Application granted granted Critical
Publication of CN114864259B publication Critical patent/CN114864259B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/058Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IVa elements, e.g. Gd2Fe14C
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

本发明公开一种通过1:2相提高混合稀土永磁材料抗蚀性的多元晶界重构方法。本发明使用多合金工艺,其中主合金富Ce,辅合金为稀土氢化物和稀土金属多元合金,旨在通过多元晶界重构方法,在烧结和热处理过程中形成高化学稳定性的1:2晶界相,取代低化学稳定性的传统富稀土晶界相,提高混合稀土永磁材料的抗蚀性。本发明提供了一种适用于低成本混合稀土永磁材料的多元晶界重构方法,充分利用不同稀土元素的扩散和偏析行为,在大幅降低原材料成本的同时,解决了长期以来混合稀土永磁材料的低抗蚀性难题。

Description

通过1:2相提高混合稀土永磁材料抗蚀性的多元晶界重构 方法
技术领域
本发明涉及稀土永磁材料领域,具体涉及通过1:2相提高混合稀土永磁材料抗蚀性的多元晶界重构方法。
背景技术
钕铁硼稀土永磁材料具有优异的综合磁性能,广泛应用于能源、信息、交通和国防等领域,是最重要的稀土功能材料和国民经济的关键基础材料。钕铁硼具有多相结构,除了提供内禀铁磁性的Nd2Fe14B主相,富Nd晶界相的形态和分布也显著影响磁体性能。富Nd相电极电位远低于主相,在腐蚀介质中作为阳极优先溶解,呈现“小阳极大阴极”晶间腐蚀,磁体抗蚀性因而很差。近年来,钕铁硼年消耗稀土总用量的40%,导致我国稀土资源的利用极不平衡,Nd/Pr/Dy/Tb等需求量大,价格昂贵,而La/Ce/Y等高丰度稀土极少使用,大量积压。上述问题难以解决,长期制约了钕铁硼的发展和应用。
(La/Ce/Y)2Fe14B四方相内禀磁性远低于Nd2Fe14B,富La/Ce/Y磁体磁稀释效应显著,是限制La/Ce/Y应用的主要问题。针对高丰度稀土永磁磁性能和廉价稀土用量偏低的现状,通过NdHx和NdPrHx等晶界重构,在Nd-Ce-Fe-B磁体主相晶粒边界层形成富Pr/Nd的硬磁壳层,增强局域磁晶各向异性,可改善磁体的矫顽力,如公告号为CN106252009A的中国发明专利。但引入大量非磁性富稀土晶界相后,不仅降低了剩磁和最大磁能积,而且形成了更多的腐蚀通道,磁体的抗腐蚀性能严重恶化。因此,如何解决矫顽力和抗腐蚀性能之间的矛盾,不以牺牲抗蚀性为代价提高矫顽力,已成为限制高丰度稀土永磁材料发展的关键难题。
发明内容
有鉴于此,为解决现有技术中存在的不足,本发明提供了一种通过1:2相提高混合稀土永磁材料抗蚀性的多元晶界重构方法,充分利用多元晶界重构过程中不同稀土元素的扩散和偏析行为,充分发挥混合稀土永磁材料体系中1:2相的作用,实现抗蚀性的提高。
为实现上述目的,本发明提供了如下的技术方案:
通过1:2相提高混合稀土永磁材料抗蚀性的多元晶界重构方法,包括如下步骤:
1)制备主合金粉末,粒径为2.0~3.8μm;
2)制备辅合金粉末,包括稀土氢化物粉末和稀土金属多元合金粉末;
3)主合金粉末和辅合金粉末均匀混合后进行磁场取向压型和等静压,得到生坯,其中,辅合金粉末占磁体总重量的0.2~8%;
4)对生坯进行真空烧结和热处理;
5)最终得到高1:2相含量的高抗蚀混合稀土永磁材料;
其中主合金富Ce,以质量百分数计,成分为(CeaNdbREcRE’1-a-b-c)xFe100-x-y-zMyBz,Ce为铈元素,Nd为钕元素,RE为La、Y、Gd、Pr中的一种或者几种,RE’为除去Ce、Nd、La、Y、Gd、Pr以外的其它镧系元素或者Sc中的一种或者几种,Fe为铁元素,M为Al、C、Co、Cr、Cu、F、Ga、Mn、Mo、N、Nb、Ni、P、Pb、S、Si、Ta、Ti、V、W、Zn、Zr元素中的一种或几种,B为硼元素;a、b、c、x、y、z分别满足以下关系:0.3≤a≤0.9,0≤b≤0.6,0.1≤c≤0.7,26≤x≤35,0.5≤y≤2.5,0.75≤z≤1.35;
其中辅合金中稀土氢化物以质量百分数计,成分为RE”1-uHu,RE”为镧系元素或者Sc或者Y中的一种或者几种,H为氢元素,0<u≤0.05;辅合金中稀土金属多元合金以质量百分数计,成分为R1-vM’v,R为Nd、Pr、Dy、Tb、Ho、Gd、Ce、La、Y中的一种或者几种,M’为Fe、Ga、Cu、Co、Ni、Al元素中的一种或者几种,0.05≤v<1。
优选地:主合金富Ce,为单一成分的主合金,或多种不同成分的主合金。
优选地:多种不同成分的主合金,其平均成分与单一成分的主合金的成分相同。
优选地:步骤4)中的真空烧结温度为900~1100℃,烧结时间为2~5h;热处理温度为400~900℃,热处理时间为0~12h。
优选地:步骤4)中的热处理为一级热处理,或多级循环热处理。
本发明与现有技术相比的有益效果:
1)主合金富Ce,利用高丰度、廉价的Ce取代紧缺的Nd/Pr/Dy/Tb等稀土元素,不仅大幅降低原材料成本,更重要的是,充分利用了CeFeB与NdFeB等体系成相规律的差异。发明人经过大量实验发现,本发明成分区间富Ce稀土永磁材料中会形成1:2相,1:2相的电极电位较高,与2:14:1主相电位更相近,因此引入1:2相可提高富Ce磁体的抗蚀性。
2)进一步地,主合金成分设计中除了Ce和Nd,还包括La、Y、Gd、Pr中的一种或者几种等,即多元稀土共存,这种混合稀土永磁材料的成分设计,关乎不同稀土元素的占位和成相,可充分发挥稀土元素间的交互效应,以及稀土元素-合金元素间的交互效应,在多元晶界重构过程中促进1:2晶界相的形成。
3)更进一步地,本发明创新提出了多元晶界重构方法,稀土氢化物高温脱氢活化后加速稀土元素的互扩散,稀土金属多元合金在本发明中起关键作用,一方面调控各相间的成分梯度,另一方面提供有效的扩散通道,在烧结和热处理过程中为1:2晶界相的形成提供大的驱动力,更多1:2相凝固析出。
4)新形成的1:2晶界相化学稳定性高,取代低化学稳定性的传统富稀土晶界相,延缓了腐蚀介质沿晶界向磁体内部渗入,抑制了裂纹的沿晶扩展,提高了混合稀土永磁材料的抗蚀性。即使磁体表层的富稀土晶界相全部被腐蚀,未被腐蚀的1:2连续晶界相仍可连接相邻的主相晶粒,使其不分离不脱落,从而维持磁体的完整性。最终本发明提供了1:2晶界相含量更高的高抗蚀混合稀土永磁材料。
5)本发明提供了一种适用于低成本混合稀土永磁材料的多元晶界重构方法,充分利用不同稀土元素的扩散和偏析行为,在大幅降低原材料成本的同时,解决了长期以来混合稀土永磁材料的低抗蚀性难题。这对于高丰度混合稀土永磁材料的商业化推广应用,尤其是在海洋船舶等腐蚀环境中的应用具有重要意义。
具体实施方式
下面结合具体实施例对本发明做进一步说明,但本发明并不仅仅局限于以下实施例:
实施例1:
1)制备主合金粉末,粒径为3.0μm,以质量百分数计,成分为(Ce0.3Nd0.6La0.1)30.1Febal(Al0.4Cu0.3Zr0.15Mo0.1Cr0.05)1.4B1.02
2)制备辅合金粉末,其中稀土氢化物粉末,以质量百分数计,成分为(Pr0.8Nd0.2)0.98H0.02;稀土金属多元合金粉末,以质量百分数计,成分为(Pr0.8Nd0.2)0.7Cu0.25Fe0.05
3)主合金粉末和辅合金粉末均匀混合后进行磁场取向压型和等静压,得到生坯,其中,辅合金粉末占磁体总重量的2%;
4)对生坯进行真空烧结和热处理,真空烧结温度为1050℃,烧结时间为4h;热处理温度为660℃,热处理时间为4h;
5)最终得到高抗蚀混合稀土永磁材料。慢扫XRD精修结果显示,磁体的1:2相含量为4.6wt.%。在湿热环境中(100%相对湿度,两个大气压,120℃)暴露96h后,磁体的质量损失为1.1mg/cm3
对比例1:
与实施例1的不同之处在于,磁体未经多元晶界重构处理。慢扫XRD精修结果显示,未处理磁体的1:2相含量为2.4wt.%,小于实施例1。在湿热环境中(100%相对湿度,两个大气压,120℃)暴露96h后,未处理磁体的质量损失为11.5mg/cm3,远大于实施例1。
对比例2:
与实施例1的不同之处在于,磁体经稀土氢化物晶界重构处理,即辅合金仅为(Nd0.8Pr0.2)0.98H0.02。慢扫XRD精修结果显示,磁体的1:2相含量为2.1wt.%,小于实施例1。在湿热环境中(100%相对湿度,两个大气压,120℃)暴露96h后,磁体的质量损失为38.2mg/cm3,远大于实施例1。
对比例3:
与实施例1的不同之处在于,磁体经稀土金属多元合金晶界重构处理,即辅合金仅为(Nd0.8Pr0.2)0.7Cu0.25Fe0.05。慢扫XRD精修结果显示,磁体的1:2相含量为2.8wt.%,小于实施例1。在湿热环境中(100%相对湿度,两个大气压,120℃)暴露96h后,磁体的质量损失为13.5mg/cm3,远大于实施例1。
实施例2:
1)制备主合金粉末,粒径为3.3μm,以质量百分数计,成分为(Ce0.5Nd0.25Y0.15La0.05Gd0.05)31.0Febal(Co0.35Cu0.3Nb0.2Al0.1Si0.05)1.5B1.05
2)制备辅合金粉末,其中稀土氢化物粉末,以质量百分数计,成分为(Pr0.65Y0.35)0.97H0.03;稀土金属多元合金粉末,以质量百分数计,成分为(Pr0.65Y0.35)0.5Cu0.25Fe0.25
3)主合金粉末和辅合金粉末均匀混合后进行磁场取向压型和等静压,得到生坯,其中,辅合金粉末占磁体总重量的3%;
4)对生坯进行真空烧结和热处理,真空烧结温度为1030℃,烧结时间为5h;一级热处理温度为820℃,一级热处理时间为3h;二级热处理温度为520℃,二级热处理时间为4h;
5)最终得到高抗蚀混合稀土永磁材料。慢扫XRD精修结果显示,磁体的1:2相含量为8.7wt.%。在湿热环境中(100%相对湿度,两个大气压,120℃)暴露96h后,磁体的质量损失为0.8mg/cm3
对比例4:
与实施例2的不同之处在于,磁体未经多元晶界重构处理。慢扫XRD精修结果显示,未处理磁体的1:2相含量为5.4wt.%,小于实施例2。在湿热环境中(100%相对湿度,两个大气压,120℃)暴露96h后,未处理磁体的质量损失为15.5mg/cm3,远大于实施例2。
实施例3:
1)制备主合金粉末,粒径为3.4μm,以质量百分数计,成分为(Ce0.65Nd0.15La0.1Ho0.1)30.5Febal(Al0.3Ga0.3Zr0.15Cu0.1Ti0.1Ta0.05)2.0B0.95
2)制备辅合金粉末,其中稀土氢化物粉末,以质量百分数计,成分为(Pr0.75Ce0.25)0.98H0.02;稀土金属多元合金粉末,以质量百分数计,成分为(Pr0.75Ce0.25)0.45Fe0.45Al0.1
3)主合金粉末和辅合金粉末均匀混合后进行磁场取向压型和等静压,得到生坯,其中,辅合金粉末占磁体总重量的5%;
4)对生坯进行真空烧结和热处理,真空烧结温度为1000℃,烧结时间为3.5h;热处理温度为650℃,热处理时间为6h;
5)最终得到高抗蚀混合稀土永磁材料。慢扫XRD精修结果显示,磁体的1:2相含量为16.8wt.%。在湿热环境中(100%相对湿度,两个大气压,120℃)暴露96h后,磁体的质量损失为0.5mg/cm3
对比例5:
与实施例3的不同之处在于,磁体未经多元晶界重构处理。慢扫XRD精修结果显示,未处理磁体的1:2相含量为11.0wt.%,小于实施例3。在湿热环境中(100%相对湿度,两个大气压,120℃)暴露96h后,未处理磁体的质量损失为9.6mg/cm3,远大于实施例3。

Claims (4)

1.通过1:2相提高混合稀土永磁材料抗蚀性的多元晶界重构方法,其特征在于,包括如下步骤:
1) 制备主合金粉末,粒径为2.0~3.8μm;
2)制备辅合金粉末,包括稀土氢化物粉末和稀土金属多元合金粉末;
3)主合金粉末和辅合金粉末均匀混合后进行磁场取向压型和等静压,得到生坯,其中,辅合金粉末占磁体总重量的0.2~8%;
4) 对生坯进行真空烧结和热处理;
5) 最终得到高1:2相含量的高抗蚀混合稀土永磁材料;
其中主合金富Ce,以质量百分数计,成分为(CeaNdbREcRE’1-a-b-c)xFe100-x-y-zMyBz,Ce为铈元素,Nd为钕元素,RE为La、Y、Gd、Pr中的一种或者几种,RE’为除去Ce、Nd、La、Y、Gd、Pr以外的其它镧系元素或者Sc中的一种或者几种,Fe为铁元素,M为Al、C、Co、Cr、Cu、F、Ga、Mn、Mo、N、Nb、Ni、P、Pb、S、Si、Ta、Ti、V、W、Zn、Zr元素中的一种或几种,B为硼元素;a、b、c、x、y、z分别满足以下关系:0.3≤a≤0.9,0≤b≤0.6,0.1≤c≤0.7,26≤x≤35,0.5≤y≤2.5,0.75≤z≤1.35;
其中辅合金中稀土氢化物以质量百分数计,成分为RE’’1-uHu,RE’’为镧系元素或者Sc或者Y中的一种或者几种,H为氢元素,0<u≤0.05;辅合金中稀土金属多元合金以质量百分数计,成分为R1-vM’v,R为Nd、Pr、Dy、Tb、Ho、Gd、Ce、La、Y中的一种或者几种,M’为Fe、Ga、Cu、Co、Ni、Al元素中的一种或者几种,0.05≤v<1。
2.根据权利要求1所述通过1:2相提高混合稀土永磁材料抗蚀性的多元晶界重构方法,其特征在于:主合金富Ce,为单一成分的主合金,或多种不同成分的主合金。
3.根据权利要求1所述通过1:2相提高混合稀土永磁材料抗蚀性的多元晶界重构方法,其特征在于:步骤4)中的真空烧结温度为900~1100℃,烧结时间为2~5h;热处理温度为400~900℃,热处理时间为0~12h。
4.根据权利要求3所述通过1:2相提高混合稀土永磁材料抗蚀性的多元晶界重构方法,其特征在于:步骤4)中的热处理为一级热处理,或多级循环热处理。
CN202210393701.0A 2022-04-14 2022-04-14 通过1:2相提高混合稀土永磁材料抗蚀性的多元晶界重构方法 Active CN114864259B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210393701.0A CN114864259B (zh) 2022-04-14 2022-04-14 通过1:2相提高混合稀土永磁材料抗蚀性的多元晶界重构方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210393701.0A CN114864259B (zh) 2022-04-14 2022-04-14 通过1:2相提高混合稀土永磁材料抗蚀性的多元晶界重构方法

Publications (2)

Publication Number Publication Date
CN114864259A CN114864259A (zh) 2022-08-05
CN114864259B true CN114864259B (zh) 2023-09-12

Family

ID=82630976

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210393701.0A Active CN114864259B (zh) 2022-04-14 2022-04-14 通过1:2相提高混合稀土永磁材料抗蚀性的多元晶界重构方法

Country Status (1)

Country Link
CN (1) CN114864259B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101996721A (zh) * 2009-08-11 2011-03-30 中国科学院宁波材料技术与工程研究所 一种提高烧结钕铁硼矫顽力的方法
CN103065787A (zh) * 2012-12-26 2013-04-24 宁波韵升股份有限公司 一种制备烧结钕铁硼磁体的方法
CN103093912A (zh) * 2013-01-30 2013-05-08 浙江大学 一种应用高丰度稀土La生产的稀土永磁体及其制备方法
CN110047636A (zh) * 2019-04-17 2019-07-23 南京理工大学 一种高矫顽力富La/Ce烧结磁体的制备方法
WO2019212101A1 (ko) * 2018-04-30 2019-11-07 성림첨단산업(주) 희토류 영구자석의 제조방법
CN114171275A (zh) * 2021-12-06 2022-03-11 浙江中杭新材料科技有限公司 一种多元合金钕铁硼磁性材料及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4902677B2 (ja) * 2009-02-02 2012-03-21 株式会社日立製作所 希土類磁石

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101996721A (zh) * 2009-08-11 2011-03-30 中国科学院宁波材料技术与工程研究所 一种提高烧结钕铁硼矫顽力的方法
CN103065787A (zh) * 2012-12-26 2013-04-24 宁波韵升股份有限公司 一种制备烧结钕铁硼磁体的方法
CN103093912A (zh) * 2013-01-30 2013-05-08 浙江大学 一种应用高丰度稀土La生产的稀土永磁体及其制备方法
WO2019212101A1 (ko) * 2018-04-30 2019-11-07 성림첨단산업(주) 희토류 영구자석의 제조방법
CN110047636A (zh) * 2019-04-17 2019-07-23 南京理工大学 一种高矫顽力富La/Ce烧结磁体的制备方法
CN114171275A (zh) * 2021-12-06 2022-03-11 浙江中杭新材料科技有限公司 一种多元合金钕铁硼磁性材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Jiaying Jin."Grain boundary engineering towards high-figure-of-merit Nd-Ce-Fe-B sintered magnets: Synergetic effects of (Nd, Pr)Hx and Cu co-dopants".《Acta Materialia 》.2020, *

Also Published As

Publication number Publication date
CN114864259A (zh) 2022-08-05

Similar Documents

Publication Publication Date Title
US20210166847A1 (en) Manufacturing method of sintered nd-fe-b permanent magnet
WO2019169875A1 (zh) 一种高矫顽力钕铁硼磁体及其制备方法
CN110853856B (zh) 一种高矫顽力含铈磁体及其制备方法
EP3355319B1 (en) Corrosion-resistant sintered neodymium-iron-boron magnet rich in lanthanum and cerium, and manufacturing method
CN101521068A (zh) 稀土永磁体及其制备方法
CN112863848B (zh) 高矫顽力烧结钕铁硼磁体的制备方法
WO2020233316A1 (zh) 一种含REFe 2相的晶界扩散铈磁体及其制备方法
CN103456451A (zh) 一种室温高磁能积耐腐蚀烧结钕铁硼的制备方法
CN103794323A (zh) 一种应用高丰度稀土生产的商用稀土永磁体及其制备方法
CN1019245B (zh) 耐腐蚀稀土金属磁铁
CN109087768B (zh) 用于磁悬浮系统的钕铁硼永磁材料及其制备方法
CN114334416B (zh) 一种固液相分离扩散工艺制备高性能钕铁硼磁体的方法
CN105931784A (zh) 一种耐腐蚀含铈稀土永磁材料及其制备方法
CN101719405A (zh) 低能耗耐腐蚀铝合金与钕铁硼型稀土永磁的双相复合材料
CN113593873A (zh) 一种高矫顽力混合稀土永磁材料及其制备方法
CN114864259B (zh) 通过1:2相提高混合稀土永磁材料抗蚀性的多元晶界重构方法
CN105118649A (zh) 一种改善钕铁硼磁体晶界相的方法
CN116612956A (zh) 一种具有核壳结构的含铈钕铁硼磁体及其制备方法和应用
CN114420439B (zh) 高温氧化处理提高高丰度稀土永磁抗蚀性的方法
CN109979743B (zh) 一种钕铁硼磁体晶界扩散的方法及稀土磁体
CN114464443B (zh) 一种同时提高多主相LaCe基烧结永磁材料矫顽力和耐腐蚀性的方法
US20220005637A1 (en) Method for preparing high-performance sintered NdFeB magnets and sintered NdFeB magnets
CN111748783A (zh) 一种用于磁性材料镀膜的多元系重稀土金属靶材
CN1061163C (zh) 双相稀土-铁-硼磁粉及其制备方法
CN114678182A (zh) 一种低成本高性能多主相稀土永磁材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant