WO2020233316A1 - 一种含REFe 2相的晶界扩散铈磁体及其制备方法 - Google Patents

一种含REFe 2相的晶界扩散铈磁体及其制备方法 Download PDF

Info

Publication number
WO2020233316A1
WO2020233316A1 PCT/CN2020/085835 CN2020085835W WO2020233316A1 WO 2020233316 A1 WO2020233316 A1 WO 2020233316A1 CN 2020085835 W CN2020085835 W CN 2020085835W WO 2020233316 A1 WO2020233316 A1 WO 2020233316A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
rare earth
refe
grain boundary
magnet
Prior art date
Application number
PCT/CN2020/085835
Other languages
English (en)
French (fr)
Inventor
冯海波
李安华
李卫
Original Assignee
钢铁研究总院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 钢铁研究总院 filed Critical 钢铁研究总院
Priority to US17/904,060 priority Critical patent/US20220415549A1/en
Publication of WO2020233316A1 publication Critical patent/WO2020233316A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets

Definitions

  • the invention belongs to the technical field of rare earth permanent magnet materials, and relates to a grain boundary diffusion cerium magnet containing REFe 2 phase and a preparation method thereof.
  • Rare earth permanent magnet materials are widely used in the fields of electromechanics, information, robotics and intelligent manufacturing. With the continuous expansion of applications such as wind power generation, new energy vehicles, rail transit, robots, and information, the PrNd rare earth as the main raw material is consumed in large quantities, while the co-occurring high abundance rare earth La and Ce are overstocked.
  • cerium magnets have been successfully industrialized with the development of dual-primary-equal preparation technology, realizing the balanced utilization of rare earth resources, and at the same time the raw material cost of magnets has been significantly reduced. With the expansion of the application range of cerium magnets, cerium magnets are required to have high coercivity and good temperature stability.
  • Grain boundary diffusion technology diffuses heavy rare earth or heavy rare earth compounds such as Dy and Tb into the NdFeB magnet along the grain boundary, which can significantly increase the coercivity and temperature coefficient of the magnet, and has simple process, low cost, and coercivity.
  • the characteristics of large lifting range have been widely used in the mass production of high coercivity NdFeB magnets.
  • the application of grain boundary diffusion technology to the preparation of cerium magnets can significantly improve the coercivity and stability of cerium magnets, and has a good market application prospect.
  • Cerium magnets usually contain more than 20wt% of the rare earth element Ce. Because the CeFe 2 phase in the ternary phase diagram of Ce-Fe-B replaces the Nd phase of the Nd-Fe-B ternary system, the grain boundary phase of the cerium magnet is determined by The CeFe 2 phase and the rare earth-rich phase are composed, and with the increase of Ce content, the CeFe 2 content in the magnet further increases, even completely replacing the rare earth-rich phase. Due to the appearance of CeFe 2 phase in cerium magnets, the process of grain boundary diffusion treatment and the diffusion behavior of rare earth elements are different from neodymium iron boron magnets. In addition, all the rare earth elements except La, Nd, Eu and Yb can form REFe 2 phase.
  • the conventional grain boundary diffusion process has low diffusion efficiency.
  • the increase in the coercivity of the magnet is limited.
  • a need for an high diffusion efficiency a substantial increase in the coercivity of the magnet cerium containing CeFe 2 phase is represented by the grain boundary diffusion technique cerium-containing magnetic phase REFe 2 can be widely used in high-coercivity magnets cerium Batch preparation and industrial production.
  • an object of the present invention is to provide a grain boundary diffusion cerium magnet containing REFe 2 phase, which improves the diffusion efficiency of rare earth elements in the diffusion source by performing grain boundary diffusion near the melting point of REFe 2 phase. Greatly improve the coercivity of the magnet.
  • Another object of the present invention is to provide a method for preparing a grain boundary diffusion cerium magnet containing REFe 2 phase.
  • the present invention provides the following technical solutions:
  • a grain boundary diffusion cerium magnet containing REFe 2 phase The chemical composition of the original cerium magnet is (Ce x ,RE′ 1-x ) a Fe 99-ab B 0.9-1.2 TM b , where 20wt.% ⁇ x ⁇ 85wt .%, 28 ⁇ a ⁇ 35, 0 ⁇ b ⁇ 10, TM is one or more of Co, Al, Cu, Ga, Nb, Mo, Ti, Zr, V, the original cerium magnet is sintered or hot pressed
  • the original cerium magnet contains 2-14-1 main phase, REFe 2 phase and rare earth-rich phase, REFe 2 phase is CeFe 2 phase or (Ce, RE') Fe 2 phase, where RE' is La, One or more of Pr, Nd, Pm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and Y.
  • the RE" element of the rare earth diffusion source diffuses into the original cerium magnet through the grain boundary diffusion treatment, and the diffusion treatment temperature is the melting point temperature of the REFe 2 phase; then it is directly cooled or cooled to room temperature after tempering treatment to obtain the final cerium magnet;
  • the cerium magnet contains a new 2-14-1 main phase, a new reinforced REFe 2 phase and a new rare earth-rich phase, of which: the new 2-14-1 main phase is (Ce, RE′′) 2 Fe 14 B or (Ce, RE′,RE′′) 2 Fe 14 B main phase, the new reinforced REFe 2 phase is (CeRE′′) Fe 2 phase or (Ce, RE′, RE′′) Fe 2 phase; RE′′ is La, Pr, Nd One or more of, Pm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and Y.
  • the RE element forms a core-shell structure (Ce, RE") 2 Fe 14 B or (Ce, RE', RE") 2 Fe 14 B main phase at the crystal grain edge of the main phase.
  • the anisotropy field of RE′′ 2 Fe 14 B phase is larger than that of Ce 2 Fe 14 B phase or (Ce,RE′) 2 Fe 14 B phase.
  • the diffusion treatment temperature is 850°C ⁇ 1000°C, and the grain boundary diffusion treatment time is 0.1 ⁇ 48h.
  • the tempering treatment temperature is the eutectic point temperature of the Ce-RE'-RE"-Fe phase, that is, 400°C to 700°C, and the tempering treatment time is 0.5h to 12h.
  • the types of rare earth diffusion sources containing RE" elements include rare earth metals, rare earth hydrides, rare earth fluorides, rare earth oxides and rare earth alloys.
  • a preparation method of grain boundary diffusion cerium magnet containing REFe 2 phase includes the following steps:
  • RE is La, Pr, Nd, Pm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and Y
  • the grain boundary diffusion treatment temperature is the melting point temperature of the REFe 2 phase, and the grain boundary diffusion treatment is carried out for 0.1 ⁇ 48h;
  • the types of rare earth diffusion sources containing RE" elements include rare earth metals, rare earth hydrides, rare earth fluorides, rare earth oxides and rare earth alloys.
  • the temperature of grain boundary diffusion treatment is 850°C ⁇ 1000°C; tempering treatment is 400°C ⁇ 700°C.
  • the final cerium magnet contains (CeRE") Fe 2 phase + Ce-RE" rich phase or (Ce, RE', RE") Fe 2 phase + Ce-RE'-RE” rich phase.
  • the attachment methods of the rare earth diffusion source include coating, evaporation, electrophoretic deposition and magnetron sputtering.
  • the RE" element is one or two of Tb and Dy.
  • the grain boundary diffusion treatment is performed at 940 to 960°C.
  • the present invention has the following beneficial effects:
  • the grain boundary phase of the magnet is composed of REFe 2 phase and a small amount of rare earth-rich phase or completely REFe 2 phase. Since the melting point of REFe 2 phase is higher than that of rare earth-rich phase, the usual The grain boundary diffusion process has low diffusion efficiency and limited increase in coercivity.
  • the present invention chooses to perform grain boundary diffusion near the melting point of the REFe 2 phase, so that all the grain boundary phases become liquid phases, and the diffusion efficiency of rare earth elements in the grain boundaries is improved.
  • the magnet is directly cooled or tempered near the eutectic point temperature of the Ce-RE'-RE"-Fe phase, a new reinforced REFe 2 phase is formed in the cerium magnet, and inter-diffusion with the main phase
  • the main phase of the core-shell structure is formed to increase the coercivity of the grain boundary diffusion cerium magnet.
  • the optimization of the diffusion process and the tempering process can obtain the grain boundary diffusion cerium magnet with a squareness of more than 95%.
  • Grain boundary diffusion of rare earth elements is not limited to heavy rare earth elements such as Dy and Tb. Through the grain boundary diffusion of rare earth elements such as Pr and Nd, the coercivity and temperature stability of cerium magnets can be improved. SH and UH grades can be prepared The grain boundary diffusion cerium magnet.
  • the grain boundary diffusion technology adopted in the present invention has good compatibility with existing production processes, and can quickly realize batch preparation and production on existing production lines.
  • Fig. 1 is a microstructure diagram of an original cerium magnet according to an embodiment of the present invention
  • Fig. 2 is a microstructure diagram of the grain boundary diffusion Dy element magnet of Fig. 1.
  • a grain boundary diffusion cerium magnet containing REFe 2 phase The chemical composition of the original cerium magnet is (Ce x ,RE′ 1-x ) a Fe 100-abc TM b B c , where 20wt.% ⁇ x ⁇ 85wt.% , 28 ⁇ a ⁇ 35, 0 ⁇ b ⁇ 10, 0.9 ⁇ c ⁇ 1.5 TM is one or more of Co, Al, Cu, Ga, Nb, Mo, Ti, Zr, and V.
  • the original magnet is sintered or It is prepared by hot pressing, and the original cerium magnet contains 2-14-1 main phase, REFe 2 phase and rare earth-rich phase.
  • REFe 2 phase is CeFe 2 phase or (Ce, RE') Fe 2 phase, where RE' is One or more of La, Pr, Nd, Pm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and Y.
  • the RE" element in the rare earth diffusion source diffuses into the original cerium magnet through the grain boundary diffusion treatment, and the diffusion treatment temperature is the melting point temperature of the REFe 2 phase; then it is directly cooled or cooled to room temperature after tempering treatment to obtain the final cerium magnet;
  • the final cerium magnet contains a new 2-14-1 main phase, a new reinforced REFe 2 phase and a new rare earth-rich phase, among which: the new 2-14-1 main phase is (Ce, RE′′) 2 Fe 14 B or (Ce ,RE′,RE′′) 2 Fe 14 B main phase, the new reinforced REFe 2 phase is (CeRE′′) Fe 2 phase or (Ce, RE′, RE′′) Fe 2 phase; RE′′ is La, Pr, One or more of Nd, Pm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and Y.
  • the rare earth diffusion source containing RE" element is attached to the surface of the original cerium magnet, and the grain boundary diffusion treatment temperature is determined to be the melting point temperature of REFe 2 phase according to the type of the diffusion source RE", that is, 850°C ⁇ 1000°C, and the grain boundary diffusion treatment is performed 0.1 ⁇ 48h, so RE "element along CeFe 2 phase and a phase rich CeFe 2 RE 'phase reaction of Ce-RE'-Fe diffusion into the interior of the raw liquid passage cerium magnet formed (CeRE”) Fe 2 phase and Ce-RE'-RE"-Fe phase; then the eutectic point temperature of Ce-RE'-RE"-Fe phase is tempered within the range of 400°C ⁇ 700°C for 0.5h ⁇ 12h and then cooled to room temperature, Form a new enhanced (CeRE”) Fe 2 phase + Ce-RE" rich phase;
  • the RE" element is diffused into the original cerium magnet along the (Ce, RE') Fe 2 phase and the Ce-RE'-Fe liquid phase channel formed by the reaction of the (Ce, RE') Fe 2 phase and the RE-rich phase , Forming (Ce,RE',RE′′)Fe 2 phase and Ce-RE'-RE′′-Fe phase; then at the eutectic point temperature of Ce-RE'-RE′′-Fe phase, that is, 400°C ⁇ 700°C Within the range, perform tempering treatment for 0.5h-12h and then cool to room temperature to form a new enhanced (Ce, RE′, RE′′) Fe 2 phase + rich Ce-RE′-RE′′ phase;
  • RE is one or more of La, Pr, Nd, Pm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and Y.
  • RE element has a strengthening effect on the grain boundary and interdiffusion with the main phase
  • the main phase of the core-shell structure is formed, which improves the coercivity of the grain boundary diffusion cerium magnet.
  • the attachment methods of the rare earth diffusion source include, but are not limited to, coating, evaporation, electrophoretic deposition, and magnetron sputtering.
  • rare earth diffusion sources include, but are not limited to, rare earth metals and rare earth hydrides, rare earth fluorides, rare earth oxides and rare earth alloys.
  • the original cerium magnet is a 38M cerium magnet, and the Ce content accounts for 20wt% of the total rare earth.
  • the alloy composition of the magnet is (Ce 0.2 Nd 0.7 Ho 0.1 ) 31.5 Fe 66.5 B 1.0 Co 0.4 Cu 0.2 Al 0.2 Nb 0.2 .
  • TbH 3 The metal Tb is roughly crushed, and then hydrogen crushed to obtain TbH 3 , ball milled under the protection of ethanol for 12 hours to obtain the diffusion source slurry, and the mass ratio of ethanol to TbH 3 is controlled to be 1:1.
  • the diffusion-treated magnet was tempered at 500°C for 2h to obtain a grain boundary diffusion cerium magnet containing (Ce, Nd, Ho, Tb) Fe 2 phase.
  • the magnet of Comparative Example 1 with the same composition magnet and heavy rare earth coating was diffused through the grain boundary at 840°C for 10 hours, and then tempered at 500°C for 2 hours.
  • the properties of the original cerium magnet, comparative example 1 and example 1 magnet are listed in Table 1.
  • the coercive force of the original cerium magnet is 14.19kOe.
  • Comparative example 1 uses conventional 840°C/10h for grain boundary diffusion treatment.
  • the coercive force of the magnet is increased by 5.20kOe.
  • the magnet of Example 1 is at 940°C/10h at the grain boundary.
  • the coercivity is increased by 7.38kOe, the coercivity of the magnet reaches 21.57kOe, and the remanence is not reduced, which is equivalent to the conventional diffusion magnet, and reaches the requirements of the coercivity and magnetic energy product of the 38SH magnet.
  • the composition of the original cerium magnet is (Ce 0.3 Nd 0.6 Gd 0.1 ) 31 Fe 67 B 1.0 Co 0.2 Cu 0.2 Al 0.4 Nb 0.2 , and the Ce content accounts for 30 wt.% of the total rare earth.
  • the remanence of the magnet is 12.18kGs, the coercivity is 11.86kOe, and the magnetic energy product is 34.96MGOe.
  • the magnet of Comparative Example 2 (the composition and coating are the same as that of Example 2) was subjected to 850°C/48h grain boundary diffusion treatment, and then conventionally tempered at 520°C for 12h.
  • the properties of the magnets in the above three different states are listed in Table 2.
  • Table 2 The properties of the magnets in the above three different states are listed in Table 2.
  • the coercivity of the magnet is increased by 3.77kOe, and the magnet is tempered at the CE-RE′-Gd eutectic temperature (700°C/12h)
  • the coercivity of the grain boundary diffusion cerium magnet is 1.01kOe higher than that of the conventional tempering process, reaching 16.64kOe, and the Hk/Hcj value is greater than 95, and the demagnetization curve can still maintain a good squareness.
  • the microstructure of the original cerium magnet and its grain boundary diffusion Dy element magnet described in Example 2 As shown in Figure 1 and Figure 2, the microstructure of the original cerium magnet and its grain boundary diffusion Dy element magnet described in Example 2.
  • the white grain boundary phase between the main phase grains is the Ce-RE'-rich phase; the gray phase between the grains is the (Ce, RE') Fe 2 phase, as shown in Figure 1.
  • the microstructure of the magnet is shown in Figure 2.
  • Dy element enters the rare earth-rich phase to form a Ce-RE'-Dy rich phase; Dy element diffuses into the (Ce, RE') Fe 2 phase to form (Ce ,RE',Dy)Fe 2 phase, a large amount of (Ce,RE',Dy)Fe 2 phase in the grain boundary diffusion magnet is evenly distributed among the main phase grains.
  • a core-shell structure (Dy, Ce, RE') 2 Fe 14 B phase with a Dy-rich shell layer is formed at the edge of the main phase grains, such as Figure 2 shows the circled part.
  • Figure 2 shows the typical microstructure characteristics of a grain boundary diffusion cerium magnet with REFe 2 phase.
  • the composition of the original cerium magnet is (Ce 0.2 Nd 0.7 Dy 0.1 ) 31.5 Fe 66.5 B 1.0 Co 0.3 Cu 0.2 Al 0.4 , and the Ce content accounts for 20 wt.% of the total rare earth.
  • the remanence of the magnet is 12.15kGs, the coercivity is 16.06kOe, and the magnetic energy product is 34.60MGOe.
  • the surface of the magnet was coated with metal Tb powder by spraying method, and then under vacuum conditions, after 1000°C/0.1h grain boundary diffusion treatment, the magnet of Example 3 was prepared by rapid cooling to room temperature.
  • the magnet of Comparative Example 3 (the composition and coating are the same as those in the example) was treated with 840°C/0.1h grain boundary diffusion.
  • the properties of the magnets in the above three different states are listed in Table 3.
  • the coercivity of the magnet reaches 18.26kOe, which is 2.20kOe higher than the original magnet.
  • the diffusion time of this embodiment is relatively short, because the diffusion treatment temperature is relatively high, and the rare-earth-rich phase and REFe 2 phase are both liquid, the heavy rare-earth Tb can be rapidly diffused into the magnet along the grain boundary at high temperature, thereby obtaining a high coercivity.
  • the magnet of Comparative Example 3 has a low diffusion temperature and only the rare-earth-rich phase is in the liquid state, so there is little diffusion of heavy rare earth into the magnet, and its coercivity is only slightly increased by 0.36 kOe.
  • a high cerium magnet with a Ce content of 85wt.% prepared without PrNd element The alloy composition of the magnet is (Ce 0.85 Nd 0.15 ) 32.3 Fe 65.5 B 1.3 Co 0.2 Al 0.3 Cu 0.2 Zr 0.2 , and the grain boundary phase is all (Ce, Nd) Fe 2 phase.
  • the magnetron sputtering method is used to sputter metal Dy on the surface of the magnet for 60 minutes, and then the grain boundary diffusion treatment is carried out under vacuum conditions. Due to the higher Ce content, the melting point of the (Ce, Nd) Fe 2 phase is reduced. Therefore, the grain boundary diffusion temperature was lowered to 940°C for 10h, and then tempered at 400°C/0.5h to prepare the magnet of Example 4.

Abstract

一种含REFe 2相的晶界扩散铈磁体及其制备方法,原始铈磁体中含有2-14-1主相、REFe 2相和富稀土相,REFe 2相为CeFe 2相或(Ce,RE')Fe 2相,稀土扩散源中的RE"元素通过晶界扩散处理扩散进入原始铈磁体内部,扩散处理温度为REFe 2相的熔点温度;然后直接冷却或经回火处理后冷却至室温获得最终铈磁体;最终铈磁体中含有新2-14-1主相、新的强化型REFe 2相和新富稀土相,新2-14-1主相为(Ce,RE") 2Fe 14B或(Ce,RE',RE") 2Fe 14B主相,新的强化型REFe 2相为(CeRE")Fe 2相或(Ce,RE',RE")Fe 2相;RE'和RE"为La,Pr,Nd,Pm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu和Y中的一种或几种。该铈磁体提高了扩散源中的RE"元素的扩散效率,大幅提高矫顽力。

Description

一种含REFe 2相的晶界扩散铈磁体及其制备方法 技术领域
本发明属于稀土永磁材料技术领域,涉及一种含REFe 2相的晶界扩散铈磁体及其制备方法。
背景技术
稀土永磁材料广泛应用于机电、信息、机器人和智能制造等领域。随着风力发电、新能源汽车、轨道交通、机器人和信息等应用不断扩大,作为主要原材料的PrNd稀土大量消耗,而共伴生的高丰度稀土La和Ce则大量积压。近年来,高丰度稀土永磁材料随着双主相等制备技术的开发,铈磁体成功实现了产业化,实现了稀土资源的平衡利用,同时磁体的原料成本显著降低。随着铈磁体应用范围的扩展,要求铈磁体具有高的矫顽力和良好的温度稳定性。晶界扩散技术将Dy、Tb等重稀土或者重稀土化合物沿晶界扩散至钕铁硼磁体内部,可以显著提高磁体的矫顽力,改善温度系数,并且具有工艺简单、成本低、矫顽力提升幅度大等特点,已经广泛应用于高矫顽力钕铁硼磁体的批量生产。将晶界扩散技术应用于铈磁体的制备,可以显著提高铈磁体的矫顽力和稳定性,具有良好的市场应用前景。
铈磁体中通常含有20wt%以上的稀土元素Ce,由于Ce-Fe-B的三元相图中CeFe 2相替代了Nd-Fe-B三元系的Nd相,因此铈磁体的晶界相由CeFe 2相和富稀土相组成,并且随Ce含量的增加,磁体中CeFe 2含量也进一步增多,甚至完全取代富稀土相。由于铈磁体中CeFe 2相的 出现,导致其晶界扩散处理的工艺、稀土元素的扩散行为都不同于钕铁硼磁体。此外,稀土元素中除La,Nd,Eu和Yb元素以外,都能够形成REFe 2相,由于REFe 2相的熔点高于富稀土相,采用常规的晶界扩散工艺,扩散效率低,而且对铈磁体的矫顽力提升幅度有限。因此,亟需一种扩散效率高,能大幅提高铈磁体矫顽力的以含CeFe 2相为代表的,含REFe 2相铈磁体的晶界扩散技术,可广泛应用于高矫顽力铈磁体的批量制备和产业化生产。
发明内容
针对上述技术问题,本发明的一个目的是提供一种含REFe 2相的晶界扩散铈磁体,通过在REFe 2相熔点附近进行晶界扩散,使扩散源中的稀土元素的扩散效率提高,可大幅提高该磁体的矫顽力。
本发明的另一个目的是提供一种含REFe 2相的晶界扩散铈磁体的制备方法。
为了实现上述目的,本发明提供了如下技术方案:
一种含REFe 2相的晶界扩散铈磁体,原始铈磁体的化学成分为(Ce x,RE′ 1-x) aFe 99-a-bB 0.9-1.2TM b,其中20wt.%≤x≤85wt.%,28≤a≤35,0≤b≤10,TM为Co、Al、Cu、Ga、Nb、Mo、Ti、Zr、V中的一种或几种,原始铈磁体通过烧结或者热压方式制备;且原始铈磁体中含有2-14-1主相、REFe 2相和富稀土相,REFe 2相为CeFe 2相或(Ce,RE′)Fe 2相,其中,RE′为La,Pr,Nd,Pm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu和Y中的一种或几种。
稀土扩散源的RE″元素通过晶界扩散处理扩散进入原始铈磁体内部,扩散处理温度为REFe 2相的熔点温度;然后直接冷却或经回火处理后冷却至室温获得最终铈磁体;所述最终铈磁体中含有新2-14-1主 相、新的强化型REFe 2相和新富稀土相,其中:新2-14-1主相为(Ce,RE″) 2Fe 14B或(Ce,RE′,RE″) 2Fe 14B主相,新的强化型REFe 2相为(CeRE″)Fe 2相或(Ce,RE′,RE″)Fe 2相;RE″为La,Pr,Nd,Pm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu和Y中的一种或几种。
所述RE″元素在主相晶粒边缘形成核壳结构(Ce,RE″) 2Fe 14B或(Ce,RE′,RE″) 2Fe 14B主相。
RE″ 2Fe 14B相的各向异性场大于Ce 2Fe 14B相或(Ce,RE′) 2Fe 14B相的各向异性场。
扩散处理温度850℃~1000℃,晶界扩散处理时间为0.1~48h。
所述回火处理温度为Ce-RE′-RE″-Fe相的共晶点温度,即400℃~700℃,回火处理时间为0.5h~12h。
所述含有RE″元素的稀土扩散源的种类包括稀土金属、稀土氢化物、稀土氟化物、稀土氧化物和稀土合金。
一种含REFe 2相的晶界扩散铈磁体的制备方法,包括如下步骤:
a.通过烧结或者热压方式制备化学成分为(Ce x,RE′ 1-x) aFe 100-a-b-cTM bB c的块状原始铈磁体,其中20wt.%≤x≤85wt.%,28≤a≤35,0≤b≤10,0.9≤c≤1.5;TM为Co、Al、Cu、Ga、Nb、Mo、Ti、Zr、V中的一种或几种,且原始铈磁体中含有2-14-1主相、REFe 2相和富稀土相,REFe 2相为CeFe 2相或(Ce,RE′)Fe 2相,其中,RE′为La,Pr,Nd,Pm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu和Y中的一种或几种;
b.将含有RE″元素的稀土扩散源附着在原始铈磁体表面,RE″为La,Pr,Nd,Pm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu和Y中的一种或几种;晶界扩散处理温度为REFe 2相的熔点温度,进行晶界扩散处理0.1~48h;
c.直接冷却或在Ce-RE′-RE″-Fe相的共晶点温度进行回火处理,回火处理0.5h~12h后冷却至室温,获得最终铈磁体。
所述含有RE″元素的稀土扩散源的种类包括稀土金属、稀土氢化物、稀土氟化物、稀土氧化物和稀土合金。
所述晶界扩散处理达到CeFe 2相或(Ce,RE′)Fe 2相的熔点时,CeFe 2相或(Ce,RE′)Fe 2相成为液相,或者,与CeFe 2相或(Ce,RE′)Fe 2相与富RE′相反应形成Ce-RE′-Fe多元液相;在此温度保温0.1~48h,使RE″元素沿CeFe 2相或(Ce,RE′)Fe 2相或Ce-RE′-Fe多元液相通道扩散进入磁体内部形成(CeRE″)Fe 2相或(Ce,RE′,RE″)Fe 2相或Ce-RE′-RE″-Fe相。
晶界扩散处理温度为850℃~1000℃;回火处理为400℃~700℃。
所述最终铈磁体中含有(CeRE″)Fe 2相+富Ce-RE″相或(Ce,RE′,RE″)Fe 2相+富Ce-RE′-RE″相。
稀土扩散源的附着方式包括涂覆、蒸镀、电泳沉积和磁控溅射。
优选地,RE″元素为Tb、Dy中的一种或两种。
优选地,在940~960℃,进行晶界扩散处理。
与现有技术相比,本发明的有益效果在于:
1、由于铈等REFe 2相形成元素的存在,磁体的晶界相由REFe 2相和少量富稀土相组成或完全为REFe 2相,由于REFe 2相的熔点高于富稀土相,采用通常的晶界扩散工艺,扩散效率低,而且矫顽力提升幅度有限,本发明选择在REFe 2相熔点附近进行晶界扩散,使晶界相全部成为液相,稀土元素在晶界的扩散效率提高。
2、扩散处理后的磁体直接冷却或者在Ce-RE′-RE″-Fe相的共晶点温度附近回火处理,铈磁体中形成新的强化型REFe 2相,且与主相的互扩散形成核壳结构主相,使晶界扩散铈磁体的矫顽力提高。扩散工艺与回火工艺的优化可以获得方形度达95%以上的晶界扩散铈磁 体。
3、晶界扩散稀土元素不仅局限于Dy、Tb等重稀土元素,通过Pr、Nd等稀土元素的晶界扩散,实现对铈磁体矫顽力和温度稳定性的提升,可以制备SH和UH牌号的晶界扩散铈磁体。
4、本发明采用的晶界扩散技术与现有生产工艺兼容性好,可在现有生产线快速实现批量制备和生产。
附图说明
图1为本发明实施例原始铈磁体的微观组织结构图;
图2为图1的晶界扩散Dy元素磁体的微观组织结构图。
具体实施方式
下面结合附图和实施例对本发明进行进一步说明。
一种含REFe 2相的晶界扩散铈磁体,原始铈磁体的化学成分为(Ce x,RE′ 1-x) aFe 100-a-b-cTM bB c,其中20wt.%≤x≤85wt.%,28≤a≤35,0≤b≤10,0.9≤c≤1.5TM为Co、Al、Cu、Ga、Nb、Mo、Ti、Zr、V中的一种或几种,原始磁体通过烧结或者热压方式制备,且原始铈磁体中含有2-14-1主相、REFe 2相和富稀土相,REFe 2相为CeFe 2相或(Ce,RE′)Fe 2相,其中,RE′为La,Pr,Nd,Pm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu和Y中的一种或几种。稀土扩散源中的RE″元素通过晶界扩散处理扩散进入原始铈磁体内部,扩散处理温度为REFe 2相的熔点温度;然后直接冷却或经回火处理后冷却至室温获得最终铈磁体;所述最终铈磁体中含有新2-14-1主相、新的强化型REFe 2相和新富稀土相,其中:新2-14-1主相为(Ce,RE″) 2Fe 14B或(Ce,RE′,RE″) 2Fe 14B主相,新的强化型REFe 2相为(CeRE″)Fe 2相或(Ce,RE′,RE″)Fe 2相;RE″为La,Pr,Nd,Pm,Eu,Gd,Tb,Dy,Ho, Er,Tm,Yb,Lu和Y中的一种或几种。
将含有RE″元素的稀土扩散源附着在原始铈磁体表面,根据扩散源RE″的种类,确定晶界扩散处理温度为REFe 2相的熔点温度,即850℃~1000℃,进行晶界扩散处理0.1~48h,使RE″元素沿CeFe 2相和由CeFe 2相与富RE′相反应生成的Ce-RE′-Fe液相通道扩散进入原始铈磁体内部,形成(CeRE″)Fe 2相和Ce-RE′-RE″-Fe相;然后在Ce-RE′-RE″-Fe相的共晶点温度,即400℃~700℃范围内进行回火处理0.5h~12h后冷却至室温,形成新的强化型(CeRE″)Fe 2相+富Ce-RE″相;
或者,使RE″元素沿(Ce,RE′)Fe 2相和由(Ce,RE′)Fe 2相与富RE′相反应生成的Ce-RE′-Fe液相通道扩散进入原始铈磁体内部,形成(Ce,RE′,RE″)Fe 2相和Ce-RE′-RE″-Fe相;然后在Ce-RE′-RE″-Fe相的共晶点温度,即400℃~700℃范围内,进行回火处理0.5h~12h后冷却至室温,形成新的强化型(Ce,RE′,RE″)Fe 2相+富Ce-RE′-RE″相;
其中,RE″为La,Pr,Nd,Pm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu和Y中的一种或几种。
当RE″ 2Fe 14B相的各向异性场大于Ce 2Fe 14B或(Ce,RE′) 2Fe 14B相时,RE″元素对晶界具有强化作用,且与主相的互扩散形成核壳结构主相,使晶界扩散铈磁体的矫顽力提高。
稀土扩散源的附着方式包括但不限于涂覆、蒸镀、电泳沉积和磁控溅射等方法。
稀土扩散源种类包括但不限于稀土金属及稀土氢化物、稀土氟化物、稀土氧化物和稀土合金等形式。
实施例1
原始铈磁体为38M铈磁体,Ce含量占稀土总量的20wt%,磁体的合金成分为(Ce 0.2Nd 0.7Ho 0.1) 31.5Fe 66.5B 1.0Co 0.4Cu 0.2Al 0.2Nb 0.2
(1)将金属Tb进行粗破碎,然后进行氢破获得TbH 3,在乙醇的保护下球磨12h,获得扩散源浆料,控制乙醇与TbH 3的质量比为1:1。
(2)将上述原始38M铈磁体切成Φ10*5mm 3的圆柱,清洗掉磁体表面的油污,并用砂纸打磨去除表面的氧化层。
(3)将扩散源TbH 3与乙醇混合浆料涂覆于圆柱形磁体表面得到附着扩散源磁体。
(4)附着扩散源的铈磁体在(Ce,Nd,Ho)Fe 2相熔点附近(940℃)进行扩散处理10h。
(5)扩散处理磁体在500℃回火2h,得到含(Ce,Nd,Ho,Tb)Fe 2相的晶界扩散铈磁体。
同样成分磁体和重稀土涂层的对比例1磁体经840℃度晶界扩散10h,然后在500℃回火2h。
原始铈磁体、对比例1和实施例1磁体的性能列于表1。原始铈磁体的矫顽力为14.19kOe,其对比例1为采用常规的840℃/10h进行晶界扩散处理,磁体的矫顽力提升5.20kOe,实施例1的磁体在940℃/10h晶界扩散处理后,矫顽力提升7.38kOe,磁体的矫顽力达到21.57kOe,且剩磁也不降低,与常规扩散的磁体相当,达到38SH磁体的矫顽力和磁能积要求。
表1
Figure PCTCN2020085835-appb-000001
实施例2
原始铈磁体的成分为(Ce 0.3Nd 0.6Gd 0.1) 31Fe 67B 1.0Co 0.2Cu 0.2Al 0.4Nb 0.2, Ce含量占稀土总量的为30wt.%。磁体的剩磁为12.18kGs,矫顽力为11.86kOe,磁能积为34.96MGOe。
采用磁控溅射的方法在上述磁体表面溅射金属Dy,时间40min,随后在真空条件下,经850℃/48h晶界扩散处理后,在Ce-RE′-Gd的共晶温度附近700℃回火12h,快速冷却至室温制得实施例2磁体。
对比例2磁体(成分和涂层与实施例2相同)经850℃/48h晶界扩散处理后,采用常规的520℃回火处理12h。
上述三种不同状态的磁体性能列于表2。采用合理的Dy晶界扩散工艺,然后采用常规(520℃/12h)回火,磁体矫顽力提升3.77kOe,而在CE-RE′-Gd共晶温度(700℃/12h)回火处理的晶界扩散铈磁体矫顽力比采用常规回火工艺的磁体矫顽力提高1.01kOe,达到16.64kOe,且Hk/Hcj值大于95,退磁曲线仍能够保持较好的方形度。
如图1和图2所示,为实施例2所述原始铈磁体及其晶界扩散Dy元素磁体的微观组织结构。原始铈磁体中主相晶粒之间白色的晶界相为富Ce-RE′相;晶粒间灰色的相为(Ce,RE′)Fe 2相,如图1所示。经过晶界扩散Dy元素后,磁体的微观组织结构如图2所示,Dy元素进入富稀土相生成富Ce-RE′-Dy相;Dy元素扩散进入(Ce,RE′)Fe 2相形成(Ce,RE′,Dy)Fe 2相,晶界扩散磁体中有大量的(Ce,RE′,Dy)Fe 2相在主相晶粒之间均匀分布。同时,由于Dy元素在晶界相与主相晶粒之间的扩散,在主相晶粒边缘形成具有富Dy壳层的核壳结构(Dy,Ce,RE′) 2Fe 14B相,如附图2中圆圈部分所示。附图2所示为具有REFe 2相的晶界扩散铈磁体的典型微观组织结构特征。
表2
Figure PCTCN2020085835-appb-000002
实施例3
原始铈磁体的成分为(Ce 0.2Nd 0.7Dy 0.1) 31.5Fe 66.5B 1.0Co 0.3Cu 0.2Al 0.4,Ce含量占稀土总量的为20wt.%。磁体的剩磁为12.15kGs,矫顽力为16.06kOe,磁能积为34.60MGOe。
采用喷涂法在上述磁体表面涂覆金属Tb粉末,随后在真空条件下,经1000℃/0.1h晶界扩散处理后,快速冷却至室温制得实施例3磁体。
对比例3磁体(成分和涂层与实施例相同)经840℃/0.1h晶界扩散处理。
上述三种不同状态的磁体性能列于表3。采用1000℃/0.1h扩散Tb后磁体矫顽力达到18.26kOe,比原始磁体提高2.20kOe。尽管本实施例扩散时间较短,由于扩散处理温度较高,且富稀土相和REFe 2相均为液态,可以在高温下快速实现重稀土Tb沿晶界扩散进入磁体,从而获得矫顽力的提升。对比例3磁体由于扩散温度低,且仅富稀土相为液相状态,因此重稀土扩散进入磁体很少,其矫顽力仅略提升0.36kOe。
表3
Figure PCTCN2020085835-appb-000003
实施例4
采用无PrNd元素的制备Ce含量达85wt.%的高铈磁体,磁体的合金成分为(Ce 0.85Nd 0.15) 32.3Fe 65.5B 1.3Co 0.2Al 0.3Cu 0.2Zr 0.2,晶界相全部为(Ce,Nd)Fe 2相。采用磁控溅射的方法在上述磁体表面溅射金属Dy,时间60min,随后在真空条件下,进行晶界扩散处理,由于Ce含量较高,其(Ce,Nd)Fe 2相的熔点降低,因此降低晶界扩散温度至940℃扩散10h,再经400℃/0.5h回火处理,制得实施例4磁体。如表4所示,经940℃/10h晶界扩散、400℃/0.5h回火处理后,高Ce磁体的矫顽力由2.37kOe提高到6.53kOe,提高175%,且磁体的磁能积显著提高、方形度也由84%提高到90%左右。
表4
Figure PCTCN2020085835-appb-000004
上述的对实施例的描述是为便于该技术领域的技术人员能理解和使用本发明。熟悉本技术领域的人员显然可以容易地对这些实施例作出各种修改,并把在此说明的一般原理应用到其他实施例中,而不必经过创造性的劳动。因此,本发明不限于上述实施例。本技术领域人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。

Claims (14)

  1. 一种含REFe 2相的晶界扩散铈磁体,原始铈磁体的化学成分为(Ce x,RE′ 1-x) aFe 99-a-bB 0.9-1.2TM b,其中20wt.%≤x≤85wt.%,28≤a≤35,0≤b≤10,TM为Co、Al、Cu、Ga、Nb、Mo、Ti、Zr、V中的一种或几种,原始铈磁体通过烧结或者热压方式制备;且原始铈磁体中含有2-14-1主相、REFe 2相和富稀土相,REFe 2相为CeFe 2相或(Ce,RE′)Fe 2相,其中,RE′为La,Pr,Nd,Pm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu和Y中的一种或几种,其特征在于:
    稀土扩散源的RE″元素通过晶界扩散处理扩散进入原始铈磁体内部,扩散处理温度为REFe 2相的熔点温度;然后直接冷却或经回火处理后冷却至室温获得最终铈磁体;所述最终铈磁体中含有新2-14-1主相、新的强化型REFe 2相和新富稀土相,其中:新2-14-1主相为(Ce,RE″) 2Fe 14B或(Ce,RE′,RE″) 2Fe 14B主相,新的强化型REFe 2相为(CeRE″)Fe 2相或(Ce,RE′,RE″)Fe 2相;RE″为La,Pr,Nd,Pm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu和Y中的一种或几种。
  2. 根据权利要求1所述的含REFe 2相的晶界扩散铈磁体,其特征在于:所述RE″元素在主相晶粒边缘形成核壳结构(Ce,RE″) 2Fe 14B或(Ce,RE′,RE″) 2Fe 14B主相。
  3. 根据权利要求1所述的含REFe 2相的晶界扩散铈磁体,其特征在于:RE″ 2Fe 14B相的各向异性场大于Ce 2Fe 14B相或(Ce,RE′) 2Fe 14B相的各向异性场。
  4. 根据权利要求1所述的含REFe 2相的晶界扩散铈磁体,其特征 在于:扩散处理温度850℃~1000℃,晶界扩散处理时间为0.1~48h。
  5. 根据权利要求1所述的含REFe 2相的晶界扩散铈磁体,其特征在于:所述回火处理温度为Ce-RE′-RE″-Fe相的共晶点温度,即400℃~700℃,回火处理时间为0.5h~12h。
  6. 根据权利要求1所述的含REFe 2相的晶界扩散铈磁体,其特征在于:所述含有RE″元素的稀土扩散源的种类包括稀土金属、稀土氢化物、稀土氟化物、稀土氧化物和稀土合金。
  7. 一种如权利要求1所述的含REFe 2相的晶界扩散铈磁体的制备方法,其特征在于:所述方法包括如下步骤:
    a.通过烧结或者热压方式制备化学成分为(Ce x,RE′ 1-x) aFe 100-a-b-cTM bB c的块状原始铈磁体,其中20wt.%≤x≤85wt.%,28≤a≤35,0≤b≤10,0.9≤c≤1.5;TM为Co、Al、Cu、Ga、Nb、Mo、Ti、Zr、V中的一种或几种,且原始铈磁体中含有2-14-1主相、REFe 2相和富稀土相,REFe 2相为CeFe 2相或(Ce,RE′)Fe 2相,其中,RE′为La,Pr,Nd,Pm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu和Y中的一种或几种;
    b.将含有RE″元素的稀土扩散源附着在原始铈磁体表面,RE″为La,Pr,Nd,Pm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu和Y中的一种或几种;晶界扩散处理温度为REFe 2相的熔点温度,进行晶界扩散处理0.1~48h;
    c.直接冷却或在Ce-RE′-RE″-Fe相的共晶点温度进行回火处理,回火处理0.5h~12h后冷却至室温,获得最终铈磁体。
  8. 根据权利要求7所述的方法,其特征在于:所述含有RE″元素的稀土扩散源的种类包括稀土金属、稀土氢化物、稀土氟化物、稀土氧化物和稀土合金。
  9. 根据权利要求7所述的方法,其特征在于:所述晶界扩散处理达到CeFe 2相或(Ce,RE′)Fe 2相的熔点时,CeFe 2相或(Ce,RE′)Fe 2相成为液相,或者,与CeFe 2相或(Ce,RE′)Fe 2相与富RE′相反应形成Ce-RE′-Fe多元液相;在此温度保温0.1~48h,使RE″元素沿CeFe 2相或(Ce,RE′)Fe 2相或Ce-RE′-Fe多元液相通道扩散进入磁体内部形成(CeRE″)Fe 2相或(Ce,RE′,RE″)Fe 2相或Ce-RE′-RE″-Fe相。
  10. 根据权利要求7所述的方法,其特征在于:晶界扩散处理温度为850℃~1000℃;回火处理为400℃~700℃。
  11. 根据权利要求7所述的方法,其特征在于:所述最终铈磁体中含有(CeRE″)Fe 2相+富Ce-RE″相或(Ce,RE′,RE″)Fe 2相+富Ce-RE′-RE″相。
  12. 根据权利要求7所述的方法,其特征在于:稀土扩散源的附着方式包括涂覆、蒸镀、电泳沉积和磁控溅射。
  13. 根据权利要求7所述的方法,其特征在于:RE″元素为Tb、Dy中的一种或两种。
  14. 根据权利要求7所述的方法,其特征在于:在940~960℃,进行晶界扩散处理。
PCT/CN2020/085835 2019-05-23 2020-04-21 一种含REFe 2相的晶界扩散铈磁体及其制备方法 WO2020233316A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/904,060 US20220415549A1 (en) 2019-05-23 2020-04-21 GRAIN BOUNDARY DIFFUSION CERIUM-BASED MAGNET CONTAINING REFe2 PHASE AND PREPARATION METHOD THEREOF

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910434469.9 2019-05-23
CN201910434469.9A CN110148507B (zh) 2019-05-23 2019-05-23 一种含REFe2相的晶界扩散铈磁体及其制备方法

Publications (1)

Publication Number Publication Date
WO2020233316A1 true WO2020233316A1 (zh) 2020-11-26

Family

ID=67592899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/085835 WO2020233316A1 (zh) 2019-05-23 2020-04-21 一种含REFe 2相的晶界扩散铈磁体及其制备方法

Country Status (3)

Country Link
US (1) US20220415549A1 (zh)
CN (1) CN110148507B (zh)
WO (1) WO2020233316A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4332998A1 (en) 2022-08-30 2024-03-06 Yantai Dongxing Magnetic Materials Inc. Ce-containing sintered ndfeb magnet and manufacturing method thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110148507B (zh) * 2019-05-23 2020-10-16 钢铁研究总院 一种含REFe2相的晶界扩散铈磁体及其制备方法
CN112530689A (zh) * 2020-11-27 2021-03-19 中钢天源股份有限公司 一种提高高丰度铈磁体晶界扩散效果的方法
CN113380528B (zh) * 2021-06-15 2022-08-19 中钢天源股份有限公司 一种烧结钕铁硼晶界重塑的方法
CN114783754A (zh) * 2022-04-14 2022-07-22 浙江大学 通过1:2相同时提高混合稀土永磁材料抗蚀性和矫顽力的晶界扩散方法
CN115240944B (zh) * 2022-09-19 2022-12-30 南通正海磁材有限公司 一种烧结钕铁硼永磁体及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104167272A (zh) * 2014-07-28 2014-11-26 宁波韵升股份有限公司 一种含铈的烧结钕铁硼磁体及其制备方法
CN104851583A (zh) * 2015-06-01 2015-08-19 四川省有色冶金研究院有限公司 富铈稀土含量烧结Nd-Fe-B磁体的工艺
CN106128672A (zh) * 2016-06-20 2016-11-16 钢铁研究总院 一种扩散烧结连续化RE‑Fe‑B磁体及其制备方法
JP2019016635A (ja) * 2017-07-04 2019-01-31 大同特殊鋼株式会社 RFeB系磁石の製造方法
CN110148507A (zh) * 2019-05-23 2019-08-20 钢铁研究总院 一种含REFe2相的晶界扩散铈磁体及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120285583A1 (en) * 2011-05-12 2012-11-15 GM Global Technology Operations LLC Cerium based permanent magnet material
CN104575920B (zh) * 2013-10-16 2018-01-19 中国科学院宁波材料技术与工程研究所 稀土永磁体及其制备方法
CN108922709B (zh) * 2018-07-13 2021-01-01 钢铁研究总院 一种抗退磁功能梯度永磁材料及其制备方法
CN108831658A (zh) * 2018-08-28 2018-11-16 中国计量大学 一种恒磁场下晶界扩散制备高矫顽力钕铁硼磁体的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104167272A (zh) * 2014-07-28 2014-11-26 宁波韵升股份有限公司 一种含铈的烧结钕铁硼磁体及其制备方法
CN104851583A (zh) * 2015-06-01 2015-08-19 四川省有色冶金研究院有限公司 富铈稀土含量烧结Nd-Fe-B磁体的工艺
CN106128672A (zh) * 2016-06-20 2016-11-16 钢铁研究总院 一种扩散烧结连续化RE‑Fe‑B磁体及其制备方法
JP2019016635A (ja) * 2017-07-04 2019-01-31 大同特殊鋼株式会社 RFeB系磁石の製造方法
CN110148507A (zh) * 2019-05-23 2019-08-20 钢铁研究总院 一种含REFe2相的晶界扩散铈磁体及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4332998A1 (en) 2022-08-30 2024-03-06 Yantai Dongxing Magnetic Materials Inc. Ce-containing sintered ndfeb magnet and manufacturing method thereof

Also Published As

Publication number Publication date
US20220415549A1 (en) 2022-12-29
CN110148507B (zh) 2020-10-16
CN110148507A (zh) 2019-08-20

Similar Documents

Publication Publication Date Title
WO2020233316A1 (zh) 一种含REFe 2相的晶界扩散铈磁体及其制备方法
KR101624245B1 (ko) 희토류 영구 자석 및 그 제조방법
EP3182423B1 (en) Neodymium iron boron magnet and preparation method thereof
WO2019223431A1 (zh) 一种低成本扩散源合金和晶界扩散磁体及其制备方法
WO2019169875A1 (zh) 一种高矫顽力钕铁硼磁体及其制备方法
US20230207165A1 (en) Neodymium-iron-boron magnet, preparation method and use thereof
WO2021249159A1 (zh) 重稀土合金、钕铁硼永磁材料、原料和制备方法
CN108154986B (zh) 一种含y高丰度稀土永磁体及其制备方法
CN112941457B (zh) 一种钕铁硼磁体用合金复合晶界扩散剂及其制备方法与应用
WO2019029000A1 (zh) 一种耐高温钕铁硼磁体及其制备方法
CN111261352B (zh) R-t-b系永磁体的制造方法
CN110931197B (zh) 一种用于高丰度稀土永磁体的扩散源
CN104505247A (zh) 一种改善钕铁硼磁体性能的固体扩散工艺
CN102610346B (zh) 一种新型无稀土纳米复合永磁材料及其制备方法
CN112489914A (zh) 一种复合扩散制备高矫顽力钕铁硼磁体的方法
CN112563013A (zh) 一种晶界扩散制备高内禀矫顽力钕铁硼永磁材料的方法
CN110060833B (zh) 一种高剩磁、高矫顽力r-t-b永磁材料及其制备方法
WO2024077966A1 (zh) 一种高温环境用具有富Gd核的核壳结构R-T-B稀土永磁体及其制备方法
CN113593873A (zh) 一种高矫顽力混合稀土永磁材料及其制备方法
WO2023124688A1 (zh) 钕铁硼磁体及其制备方法和应用
CN116612956A (zh) 一种具有核壳结构的含铈钕铁硼磁体及其制备方法和应用
JP2023177261A (ja) 希土類磁性体及びその製造方法
JP2023177262A (ja) 希土類磁性体及びその製造方法
CN108515177B (zh) 一种具有多主相结构的纳米晶复合稀土永磁材料及其制备
CN109979743B (zh) 一种钕铁硼磁体晶界扩散的方法及稀土磁体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20808636

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20808636

Country of ref document: EP

Kind code of ref document: A1