CN114835480B - 一种超低介电常数且近零谐振频率温度系数的堇青石系微波介电材料及其制备方法 - Google Patents

一种超低介电常数且近零谐振频率温度系数的堇青石系微波介电材料及其制备方法 Download PDF

Info

Publication number
CN114835480B
CN114835480B CN202210497470.8A CN202210497470A CN114835480B CN 114835480 B CN114835480 B CN 114835480B CN 202210497470 A CN202210497470 A CN 202210497470A CN 114835480 B CN114835480 B CN 114835480B
Authority
CN
China
Prior art keywords
temperature
sintering
treatment
cordierite
ball milling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210497470.8A
Other languages
English (en)
Other versions
CN114835480A (zh
Inventor
赖元明
余俊杰
丁宁
王凡硕
韦舟扬
贾勇
蒋刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Univeristy of Technology
Original Assignee
Chengdu Univeristy of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Univeristy of Technology filed Critical Chengdu Univeristy of Technology
Priority to CN202210497470.8A priority Critical patent/CN114835480B/zh
Publication of CN114835480A publication Critical patent/CN114835480A/zh
Application granted granted Critical
Publication of CN114835480B publication Critical patent/CN114835480B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/20Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in magnesium oxide, e.g. forsterite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Abstract

本发明公开了一种超低介电常数且近零谐振频率温度系数的堇青石系微波介电材料,属于微波电子陶瓷材料技术领域,该材料的化学组成为Mg2‑x Li2x Al4Si5O18,0<x≤0.08,其制备方法为将MgO、Al2O3、Li2CO3和SiO2原料根据前述化学式的计量比进行称量,然后通过球磨、烘干、煅烧、二次球磨、烘干、造粒成型、排胶以及烧结等一系列工艺,采用固相反应法制备得到;根据x的不同,该材料含有Mg2Al4Si5O18和MgAl2O4两相;该材料具有介于4.22~4.76之间的可调介电常数,以及近零谐振温度系数(‑7.0 ppm/℃),使其在5G通信、物联网及毫米波通信等领域具有广阔应用前景。

Description

一种超低介电常数且近零谐振频率温度系数的堇青石系微波 介电材料及其制备方法
技术领域
本发明涉及微波电子陶瓷材料领域,特别涉及一种具有超低介电常数和近零谐振频率温度系数特性的堇青石系微波材料以及其制备方法。
背景技术
随着新一代移动通信的快速发展,对信号传输速度提出了更高的要求。相比传统材料,超低介电常数(ε r < 5)的微波介质陶瓷由于具有使用频率高且传输速度快的优势,成为毫米波的重要基础材料。信号传输延迟时间与介电常数的关系为
Figure DEST_PATH_IMAGE001
,式中,T d为信号延迟时间,l为信号传输距离,c为光速,由式可以看出介电常数越小,传输延迟时间越短。近零τf值有利于系统的温度稳定性。
堇青石(Mg2Al4Si5O18)属于硅酸盐系,具有非常低的介电常数ε r (4~ 6),是5G通信、物联网及毫米波通信的理想材料之一。
目前堇青石系微波介电陶瓷一般烧结温度较高(~ 1450 ℃),且纯相堇青石的致密化温度范围较窄,一般情况下很难实现致密化烧结。同时,堇青石微波介电陶瓷还具有较大的负谐振频率温度系数τ f ,为 -32 ppm/℃左右。这些缺点限制了堇青石系微波介电陶瓷的应用。因此,现有的堇青石系微波陶瓷亟需进行改进。
发明内容
本发明的目的,在于提供一种超低介电常数且近零谐振频率温度系数的堇青石系微波介电材料,以解决上述问题。
为了实现上述目的,本发明采取了如下技术方案:
其化学组成为:Mg2-x Li2x Al4Si5O18,其中,0 <x≤0.08。
针对堇青石系微波陶瓷面临的问题,发明人提出了通过Li+离子替代,调控Mg2Al4Si5O18键价,最终获得一种原料廉价、制备过程简易、超低介且近零τ f 值的堇青石系微波陶瓷。
上述材料的制备方法为,包括下述步骤:
(1)根据Mg2-x Li2x Al4Si5O18配比,其中,0 <x≤0.08,对原料MgO、Al2O3、Li2CO3和SiO2进行称量、一次球磨、烘料处理,得到均混后烘干粉料;
(2)将均混后烘干粉料进行磨碎,通过预烧后得到预烧料;
(3)对预烧料进行二次球磨处理,球磨后烘干备用;
(4)将二次球磨后粉料与粘结剂溶液混合进行造粒,并压制成型;
(5)对压制成型后的样品进行排胶处理得生坯,然后将生坯进行烧结,即得。
作为优选的技术方案,步骤(1)中,将称取的原料置于球磨罐,以去离子水为球磨介质,粉料和去离子水质量比在1:0.8~1.5,四个球磨罐最大质量与最小质量之差不大于2g,球磨转速为250~300 rpm,球磨时间为4~12 h,进行一次球磨使原料混合均匀,球磨完将粉料烘干至恒重备用。
作为优选的技术方案,步骤(2)所述的预烧处理的具体条件:预烧温度为1200~1400 ℃,预烧处理升温速率为2~10 ℃/min,保温时间为3~6 h;预烧处理降温速率为5℃/min,降温至500 ℃后随炉冷却至室温。
作为优选的技术方案,步骤(4)所述的粘结剂溶液为PVA溶液,其浓度为5~10wt%,添加的质量百分比为5 wt%~20 wt%,所述压制具体条件为:压力为10~20 MPa,压制成型圆柱的直径为12 mm,厚度为5~7 mm。
步骤(3)中,二次球磨工艺参数与步骤(1)中一次球磨一致。
作为优选的技术方案,步骤(5)所述的排胶处理具体条件为:处理温度为400~600℃,排胶处理的升温速率为2~5 ℃/min,保温时间为3~6 h。
作为优选的技术方案,步骤(5)所述的烧结处理具体条件为:烧结温度为1200~1400 ℃,升温速率为2~5 ℃/min,保温时间为3~6 h;烧结反应降温速率为5 ℃/min,降温至500 m后冷却至室温。
本发明基于Mg2-x Li2x Al4Si5O18化学计量比,当Li2CO3与MgO,Al2O3和SiO2按照相应配比混合反应后,生成物为MgAl2O4杂相和与堇青石有相同晶体结构Cccm(66)的Mg2- x Li2x Al4Si5O18主相。由于Li+离子自身性质及对堇青石结构的调控,使得主相Mg2- x Li2x Al4Si5O18有利于获得低介电常数并改善体系谐振频率温度系数,而杂相MgAl2O4有利于提高体系的Qf值。
与现有技术相比,本发明的优点在于:本发明的材料具有超低的介电常数,介于4.22~4.76之间且连续可调,其烧结温度范围为1360~1400 ℃,同时大幅降改善了谐振温度系数,最优值可达7.0 ppm/℃,且突出优势在于通过微结构调控谐振频率温度系数,不需要添加正谐振频率温度系数的材料,消除正谐振频率温度系数的材料对堇青石介电常数和品质因素的不利影响。因为现有的添加正谐振频率温度系数的材料的方法虽然能调节堇青石近零τf值,但这种方式一方面容易恶化εr值和Qf值;另一方面,正负相反τf值的两种微波陶瓷复合容易发生化学反应并生成新的物相,从而导致其τf值调节能力降低,新物相也会对复合体系微波介电性能产生不可预知的影响。因此,本发明所使用的方法使堇青石在5G通信、物联网及毫米波通信等领域具有更广阔应用前景。申请号202010260085.2的中国专利公布了添加TiO2、ZrO2、CoO等添加剂调节其频率温度系数,但是其介电常数范围大部分介于5~6,相较而言,本发明的Mg2-x Li2x Al4Si5O18微波陶瓷具有更低的介电常数,对信号延迟时间也更短。而在申请号202010260085.2的专利中,最低的介电常数为4.92时,烧结温度为1450℃,相较而言,本发明具有更低的烧结温度(1380℃),更满足节能要求。此外,申请号201610142779.X的中国专利公布了添加TiO2调节Mg2Al4Si5O18微波陶瓷的谐振频率温度系数体系中,其介电常数也普遍比本发明更大。
附图说明
图1为实施例1中1380 ℃下不同Li含量(不同x取值)的烧结样品的X-射线衍射(XRD)图谱;图中的“PDF-#84-0377”为晶相标准卡片号;
图2为实施例2中1380 ℃烧结时,材料不同Li含量(x取值)的介电常数和负谐振温度系数。
具体实施方式
下面将结合附图对本发明作进一步说明。
实施例1:
一种超低介电常数且近零谐振频率温度系数的堇青石系微波介电材料,其制备方法包括下述步骤:
步骤1:按照摩尔比SiO2:Al2O3:Li2CO3:MgO=5:2:x:(2-x)称取原料(x = 0~0.08),以万分之一电子天平作为称取原料,确保称量值与理论计算值误差不大于0.0005g;将称好的原料置于球磨罐,以锆球为研磨球,以去离子水为球磨介质,在250 rpm的转速下球磨4 h,球磨结束后将料浆置于恒温干燥箱,烘干至恒重备用。
步骤2:将步骤1所得的烘干后结块的混合粉料在研钵中捣碎,放入坩埚中压实,按2 ℃/min的升温速率升至100 ℃,再以10 ℃/min升至1000 ℃,然后再以5 ℃/min升至1350 ℃并保温4 h,以5 ℃/min降至500 ℃,再随炉冷却至室温,获得Mg2-x Li2x Al4Si5O18预烧料,进一步将预烧料放入球磨罐中进行二次球磨,球磨工艺同第一次球磨,球磨完成后烘干至恒重备用。
步骤3:将步骤2所得的烘干后结块的预烧料在研钵中捣碎,加入10 wt%的PVA溶液作为粘结剂,研磨造粒后同时过40目和120目筛,取中间(即120目筛中)的造粒料在20 MPa下单轴干压成直径12mm、厚度6 mm的圆柱形生坯。
步骤4:将步骤3所得圆柱形生坯样品放入高温烧结炉中,按2 ℃/min的升温速率升至100 ℃,再以10 ℃/min升温至600 ℃并保温4 h,以排除PVA有机粘结剂,然后以5 ℃/min降至500 ℃后随炉冷却至室温,获得排胶后的生坯样品;
步骤5:将步骤4所得排胶后的生坯样品再次放入高温烧结炉中,按2 ℃/min的升温速率升至100 ℃,再以10 ℃/min升至1000 ℃,然后以5 ℃/min升至1380 ℃并保温4 h进行烧结,保温结束后以5 ℃/min降至500 ℃再随炉冷却至室温,获得超低介且近零谐振频率温度系数的堇青石系微波介电陶瓷。
不同x取值的材料的XRD图谱如图1所示,从图1中可以看出样品含有Mg2Al4Si5O18和MgAl2O4的特征峰,分别是主相Mg2Al4Si5O18和杂相MgAl2O4
所得样品x不同取值对应的ɛ r 值和τ f 值如图2所示,从图2中可以看出,x = 0~0.08时,εr = 4.22~4.62,τ f = -28~+7 ppm/℃。且当x = 0.04时,ɛ r = 4.43、τ f = 7.0 ppm/℃
实施例2:
本实施例与实施例1相比,仅步骤5的烧结温度由1380℃改为1400℃,其余均与实施例1相同,所得样品其ɛ r 值和τ f 值,x = 0.02~0.08时,ɛr = 4.44~4.60,τ f = -43~- 7ppm/℃。
实施例3
本实施例与实施例1相比,固定x=0.04,改变烧结温度的值1380~1400℃。其余均与实施例1相同,所得样品其ɛ r 值和τ f 值,ɛr = 4.42~4.55,τ f = -36~+ 7 ppm/℃。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.一种超低介电常数且近零谐振频率温度系数的堇青石系微波介电材料,其特征在于,其化学组成为:Mg2-x Li2x Al4Si5O18,其中,0 <x≤0.08,所述材料为MgAl2O4杂相和与堇青石有相同晶体结构的Mg2-x Li2x Al4Si5O18主相。
2.权利要求1所述的超低介电常数且近零谐振频率温度系数的堇青石系微波介电材料的制备方法,其特征在于,包括下述步骤:
(1)根据Mg2-x Li2x Al4Si5O18配比,对原料MgO、Al2O3、Li2CO3和SiO2进行称量、一次球磨、烘料处理,得到均混后烘干粉料;
(2)将均混后烘干粉料进行磨碎,通过预烧后得到预烧料;
(3)对预烧料进行二次球磨处理,球磨后烘干备用;
(4)将二次球磨后粉料与粘结剂溶液混合进行造粒,并压制成型;
(5)对压制成型后的样品进行排胶处理得生坯,然后将生坯进行烧结,即得。
3.根据权利要求2所述的制备方法,其特征在于,步骤(2)所述的预烧处理的具体条件:预烧温度为1200~1400 ℃,预烧处理升温速率为2~10 ℃/min,保温时间为3~6 h;预烧处理降温速率为5 ℃/min,降温至500 ℃后随炉冷却至室温。
4.根据权利要求2所述的制备方法,其特征在于,步骤(4)所述的粘结剂溶液为PVA溶液,其浓度为5~10 wt%,添加的质量百分比为5 wt%~20 wt%,所述压制具体条件为:压力为10~20 MPa,压制成型圆柱的直径为12 mm,厚度为5~7 mm。
5.根据权利要求2所述的制备方法,其特征在于,步骤(5)所述的排胶处理具体条件为:
处理温度为400~600 ℃,排胶处理的升温速率为2~5 ℃/min,保温时间为3~6 h。
6. 根据权利要求2所述的制备方法,其特征在于,步骤(5)所述的烧结处理具体条件为:烧结温度为1200~1400 ℃,升温速率为2~5 ℃/min,保温时间为3~6 h;烧结反应降温速率为5 ℃/min,降温至500 m后冷却至室温。
CN202210497470.8A 2022-05-09 2022-05-09 一种超低介电常数且近零谐振频率温度系数的堇青石系微波介电材料及其制备方法 Active CN114835480B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210497470.8A CN114835480B (zh) 2022-05-09 2022-05-09 一种超低介电常数且近零谐振频率温度系数的堇青石系微波介电材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210497470.8A CN114835480B (zh) 2022-05-09 2022-05-09 一种超低介电常数且近零谐振频率温度系数的堇青石系微波介电材料及其制备方法

Publications (2)

Publication Number Publication Date
CN114835480A CN114835480A (zh) 2022-08-02
CN114835480B true CN114835480B (zh) 2023-03-21

Family

ID=82571106

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210497470.8A Active CN114835480B (zh) 2022-05-09 2022-05-09 一种超低介电常数且近零谐振频率温度系数的堇青石系微波介电材料及其制备方法

Country Status (1)

Country Link
CN (1) CN114835480B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002173367A (ja) * 1999-10-27 2002-06-21 Ngk Spark Plug Co Ltd 低温焼成磁器組成物及びその製造方法並びにそれを用いた配線基板
CN111423225A (zh) * 2020-05-12 2020-07-17 电子科技大学 一种堇青石微波介质陶瓷材料及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3623152A1 (de) * 1985-07-13 1987-01-22 Murata Manufacturing Co Dielektrische keramische zusammensetzung fuer hohe frequenzen
JP2778815B2 (ja) * 1990-07-25 1998-07-23 日本碍子株式会社 誘電体磁器組成物及びその製造法並びにそれを用いた配線基板
JP2740689B2 (ja) * 1990-07-25 1998-04-15 日本碍子株式会社 誘電体磁器組成物及びその製造法並びにそれを用いた配線基板
CN102992755B (zh) * 2012-12-17 2014-08-13 北京元六鸿远电子技术有限公司 MgO-CoO-TiO2系微波陶瓷介质材料的制备方法
CN104310980B (zh) * 2014-09-30 2016-02-24 杭州电子科技大学 一种微波介质陶瓷材料及其制备方法
CN111574212A (zh) * 2020-04-28 2020-08-25 电子科技大学 一种低温烧结低介微波陶瓷材料及制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002173367A (ja) * 1999-10-27 2002-06-21 Ngk Spark Plug Co Ltd 低温焼成磁器組成物及びその製造方法並びにそれを用いた配線基板
CN111423225A (zh) * 2020-05-12 2020-07-17 电子科技大学 一种堇青石微波介质陶瓷材料及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Dong Zou.Sol–gel synthesisandinfraredradiationproperty of Li-substitutedcordierite.2012,第3585–3589页. *
Kaixin Song.Symmetry of hexagonal ring and microwave dielectric properties of(Mg1−xLnx)2Al4Si5O18+x(Ln = La, Sm) cordierite-type ceramics.2015,第1167–1175页. *
宋开新.(Mg1–xCax)2Al4Si5O18 陶瓷的相演变与微波介电性能.2012,第300-305页. *

Also Published As

Publication number Publication date
CN114835480A (zh) 2022-08-02

Similar Documents

Publication Publication Date Title
CN105254293B (zh) 一种微波介质陶瓷材料及其制备方法
CN101260001A (zh) 新型高q微波介质陶瓷材料及其制备方法
CN111635222B (zh) 一种基于单斜相的低介微波介质陶瓷材料及其制备方法
CN112851344B (zh) 一种中介电常数微波介质陶瓷及其制备方法
CN104860672A (zh) 一种高介微波陶瓷介质材料及其制备方法
CN111470864B (zh) 一种硅基温度稳定型微波介质陶瓷材料及其制备方法
CN115196945A (zh) 一种基于冷烧结辅助低温致密化制备微波陶瓷块体的方法
WO2023093221A1 (zh) 一种高稳定低损耗的微波介质陶瓷材料的制备方法及应用其制得的微波介质陶瓷材料
Ding et al. Low-temperature-sintering characteristic and microwave dielectric properties of (Zn0. 7Mg0. 3) TiO3 ceramics with LBSCA glass
CN110483042B (zh) 一种新型的单相微波介质陶瓷材料及其制备方法
CN116854472B (zh) 一种微波介质材料及其制备方法
CN107805067B (zh) 一种零频率温度系数及超低损耗的低介电常数微波介质陶瓷及其制备方法
US20210179497A1 (en) Dense lead metaniobate piezoelectric ceramic material and preparation method thereof
CN105060878A (zh) 低介电常数高品质因数微波介质陶瓷及其制备方法
CN114835480B (zh) 一种超低介电常数且近零谐振频率温度系数的堇青石系微波介电材料及其制备方法
CN110759733B (zh) 一种Y0.5Dy0.5Ta0.5Nb0.5O4钽系陶瓷材料及其制备方法
CN110903078A (zh) 一种超低介ltcc微波陶瓷材料及其制备方法
CN111925207A (zh) 一种Mg3B2O6-Ba3(VO4)2复合陶瓷材料及制备方法
CN110372347A (zh) 一种低损耗低介电常数微波陶瓷材料及其制备方法
CN112079631B (zh) 一种近零温度系数低介ltcc材料及其制备方法
CN112266238B (zh) 一种微波器件用的低介电常数陶瓷材料及其制备方法
CN115057698A (zh) 一种低介电石榴石型微波介质陶瓷材料及其制备方法
CN114736012A (zh) 具有超高q值的低介微波介质陶瓷及其ltcc材料
CN105906340B (zh) 采用固相氮气烧结法制备二氧化钛基巨介电陶瓷材料的方法
CN117447202B (zh) 单相微波介质陶瓷粉体、微波介质陶瓷材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant