CN114759196B - 一种负载金属纳米颗粒的共轭微孔高分子电催化剂及其制备方法和应用 - Google Patents

一种负载金属纳米颗粒的共轭微孔高分子电催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN114759196B
CN114759196B CN202210492104.3A CN202210492104A CN114759196B CN 114759196 B CN114759196 B CN 114759196B CN 202210492104 A CN202210492104 A CN 202210492104A CN 114759196 B CN114759196 B CN 114759196B
Authority
CN
China
Prior art keywords
microporous polymer
conjugated microporous
nano particles
metal nano
electrocatalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210492104.3A
Other languages
English (en)
Other versions
CN114759196A (zh
Inventor
龙晓静
李道浩
游志虎
王兵兵
张立杰
夏延致
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University
Original Assignee
Qingdao University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University filed Critical Qingdao University
Priority to CN202210492104.3A priority Critical patent/CN114759196B/zh
Publication of CN114759196A publication Critical patent/CN114759196A/zh
Application granted granted Critical
Publication of CN114759196B publication Critical patent/CN114759196B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/10Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aromatic carbon atoms, e.g. polyphenylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/125Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one oxygen atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/312Non-condensed aromatic systems, e.g. benzene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3221Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more nitrogen atoms as the only heteroatom, e.g. pyrrole, pyridine or triazole
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3222Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more oxygen atoms as the only heteroatom, e.g. furan
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3229Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing nitrogen and sulfur as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/411Suzuki reactions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种负载金属纳米颗粒的共轭微孔高分子电催化剂及其制备方法和应用,属于燃料电池技术领域。将有机分子结构单元通过交叉偶联反应制备得到具有多样化杂环结构的共轭微孔高分子载体,然后负载金属纳米颗粒,得到负载金属纳米颗粒的共轭微孔高分子电催化剂。利用共轭微孔高分子中的单元结构可调,活性位点可控的特点,可有效调控载体与金属纳米颗粒之间的界面效应,进一步作为阳极催化剂直接应用在直接醇类燃料电池。本发明的电催化剂在电化学性能测试中表现出优秀的电催化活性,良好的反应动力学特性和长期的稳定性,将其作为直接醇类燃料电池的阳极催化材料获得了优异的器件性能。

Description

一种负载金属纳米颗粒的共轭微孔高分子电催化剂及其制备 方法和应用
技术领域
本发明属于燃料电池技术领域,具体涉及一种负载金属纳米颗粒的共轭微孔高分子电催化剂及其制备方法和在直接醇类燃料电池中的应用。
背景技术
由于不可再生能源的广泛消费和日益严重的环境污染问题,对清洁可再生能源的需求也日趋增加。直接醇类燃料电池以其醇类燃料的广泛可用性、比氢燃料电池更方便的储存和运输以及环境友好而备受关注。而大量研究证实,钯(Pd)基电催化剂以其来源丰富、耐久性好等优势,已被证明是直接醇类燃料电池阳极电催化剂最有希望的替代品之一。但是,Pd基电催化剂仍存在许多缺陷,如电极表面中毒、化学活性低、Pd纳米粒子易团聚等。为了克服上述障碍,调控界面效应来调控负载型Pd催化剂被认为是一种有效的策略。界面效应不仅通过金属与载体之间形成良好的共价键来控制金属纳米粒子的分散和稳定,而且通过电子转移可引起电荷的重新分布。电荷再分布可调节负载金属的d带结构,降低了能垒,还能促进速率限制步骤,提高电催化活性。
近年来,科研人员研究了杂原子在载体中对界面效应的影响,如氮掺杂碳纳米管、硼氮掺杂多孔碳、氮硫掺杂石墨烯、氮硫共掺杂碳纳米片,掺杂氮、硫、硼等杂原子是一种由于碳材料电子结构变化而暴露其表面活性位点从而提高其电化学性能的有效方法。然而,传统的Pd基类杂原子掺杂碳基催化剂的载体是通过高温热解、水热合成、溶剂热合成等方法制备获得,很难在碳基催化剂载体中生成单一类型活性位点,这限制了对活性位点的深入了解。
发明内容
本发明的目的是:提出采用杂原子界面工程策略可控性调节催化活性位点,设计合成一类无碳化、结构可调、活性位点可控的共轭微孔高分子催化载体材料,通过负载金属来开发高效的直接醇类燃料电池催化材料体系。
为了实现上述目的,本发明的技术方案如下:
一种负载金属纳米颗粒的共轭微孔高分子电催化剂,所述共轭微孔高分子电催化剂以杂环单元构建的共轭微孔高分子为载体,载体表面负载有金属纳米颗粒;
所述共轭微孔高分子的结构通式M如下:
其中,选自如下结构中的一种:
其中,X为O、S、Se、Te中的任一种;R为H或C1~C40的或支链或烷氧链或氟代烷基链。
进一步的,所述为/>
进一步的,所述金属为钯、银、镍、锌或钴。
本发明还提供了上述的负载金属纳米颗粒的共轭微孔高分子电催化剂的制备方法,具体步骤如下:
步骤1:通过化学方法合成结构式M所示的共轭微孔高分子
合成路线:
上述产物M的制备方法具体步骤如下:
在氩气环境下,分别加入原料1和原料2以及有机溶剂,加入催化剂和碱溶液,在100-180℃条件下回流24-72小时进行suzuki交叉偶联反应,得到共轭微孔高分子;
所述原料1为1,3,5-苯三硼酸三频哪醇酯,所述原料2的结构式为其中如上所述;
步骤2:负载金属纳米颗粒的共轭微孔高分子电催化剂的制备
(1)将步骤1得到的共轭微孔高分子分散在溶剂(优选为乙醇)中形成悬浊液(优选为用超声搅拌0.5-2小时将其均匀分散在溶液中后形成悬浊液);
(2)将金属化合物的溶液加入到步骤(1)中的悬浊液中,在室温下搅拌至均匀,过滤、洗涤、干燥后,在紫外灯下照射1-5小时(优选为在功率为8瓦,主谱线为254nm的紫外灯下照射2小时)得到负载金属纳米颗粒的共轭微孔高分子电催化剂;
所述金属化合物为氯化钯、氯化银、氯化镍、硝酸锌或硝酸钴。
进一步的,所述原料2为2,5-二溴噻唑、2,5-二溴呋喃、2,5-二溴噻吩、2,5-二溴吡啶或1,4-二溴苯。
进一步的,所述有机溶剂为N,N-二甲基甲酰胺;所述碱溶液为碳酸钾溶液。
进一步的,所述原料1和原料2的摩尔量比为1:(0.75~2)。
进一步的,所述催化剂为原料1物质的量的2%-10%的四(三苯基膦)钯。
进一步的,所述干燥条件为在40-100℃下真空干燥6-12小时。
本发明还提供了负载金属纳米颗粒的共轭微孔高分子电催化剂在直接醇类燃料电池催化中的应用。
上述负载金属纳米颗粒的共轭微孔高分子电催化剂可以作为阳极催化剂直接应用在直接醇类燃料电池中。
本发明的技术方案与现有技术相比,具有以下优势:
(1)利用共轭微孔高分子作为金属基催化剂载体,避免了传统方法中高温热解、水热合成等费时费力的合成方法,本发明合成方法环保绿色,安全性好,可重复性高。
(2)以共轭微孔高分子为载体的金属基催化剂在醇氧化性能测试中表现出较高的催化活性,可广泛利用在直接醇类燃料电池中。
(3)通过在共轭微孔高分子中引入不同的杂环结构单元,通过调节载体与金属的界面相互作用,开发出高活性的直接醇类燃料电池催化材料体系,这对促进研发高活性的金属基催化剂具有重要的意义。
附图说明
图1中a,b,c分别为Pd/SNC催化剂的扫描电镜图,透射电镜图,高分辨率透射电镜图。
图2中a,b,c分别为Pd/OC催化剂的扫描电镜图,透射电镜图,高分辨率透射电镜图。
图3中a,b,c分别为Pd/SC催化剂的扫描电镜图,透射电镜图,高分辨率透射电镜图。
图4中a,b,c分别为Pd/NC催化剂的扫描电镜图,透射电镜图,高分辨率透射电镜图。
图5中a,b,c分别为Pd/Ph催化剂的扫描电镜图,透射电镜图,高分辨率透射电镜图。
图6为实施例1-5所得催化剂的傅立叶变换红外光谱图。
图7为实施例1-5所得催化剂的X射线光电子能谱图。
图8为Pd/SNC催化剂的循环伏安曲线;电解液为1摩尔每升甲醇和1摩尔每升氢氧化钾的共混体系,电解液中的气氛为氮气。
图9为Pd/OC催化剂的循环伏安曲线;电解液为1摩尔每升甲醇和1摩尔每升氢氧化钾的共混体系,电解液中的气氛为氮气。
图10为Pd/SC催化剂的循环伏安曲线;电解液为1摩尔每升甲醇和1摩尔每升氢氧化钾的共混体系,电解液中的气氛为氮气。
图11为Pd/NC催化剂的循环伏安曲线;电解液为1摩尔每升甲醇和1摩尔每升氢氧化钾的共混体系,电解液中的气氛为氮气。
图12为Pd/Ph催化剂的循环伏安曲线;电解液为1摩尔每升甲醇和1摩尔每升氢氧化钾的共混体系,电解液中的气氛为氮气。
图13为Pd/SNC催化剂的循环伏安曲线;电解液为1摩尔每升乙醇和1摩尔每升氢氧化钾的共混体系,电解液中的气氛为氮气。
图14为Pd/OC催化剂的循环伏安曲线;电解液为1摩尔每升乙醇和1摩尔每升氢氧化钾的共混体系,电解液中的气氛为氮气。
图15为Pd/SC催化剂的循环伏安曲线;电解液为1摩尔每升乙醇和1摩尔每升氢氧化钾的共混体系,电解液中的气氛为氮气。
图16为Pd/NC催化剂的循环伏安曲线;电解液为1摩尔每升乙醇和1摩尔每升氢氧化钾的共混体系,电解液中的气氛为氮气。
图17为Pd/Ph催化剂的循环伏安曲线;电解液为1摩尔每升乙醇和1摩尔每升氢氧化钾的共混体系,电解液中的气氛为氮气。
具体实施方式
实施例1:硫氮碳基共轭微孔高分子(SNC)的制备:
1,3,5-苯三硼酸三频哪醇酯(200毫克,0.44毫摩尔)、2,5-二溴噻唑(160.3毫克,0.66毫摩尔)和四(三苯基膦)钯(6毫克,0.00528毫摩尔)与10毫升N,N-二甲基甲酰胺和碳酸钾水溶液(2摩尔每升,2毫升)混合。在氩气气氛下,在150℃下搅拌48小时,接着冷却至室温后,将所得混合物取出,依次用超纯水、甲醇和二氯甲烷洗涤两次,去除Pd残留物和低聚物,经过滤、真空120℃干燥8小时后得到硫氮碳基共轭微孔高分子(SNC)(18毫克),收率约为21%。
实施例2:氧碳基共轭微孔高分子(OC)的制备:
1,3,5-苯三硼酸三频哪醇酯(200毫克,0.44毫摩尔)、2,5-二溴呋喃(149.1毫克,0.66毫摩尔)和四(三苯基膦)钯(6毫克,0.00528毫摩尔)与10毫升N,N-二甲基甲酰胺和碳酸钾水溶液(2摩尔每升,2毫升)混合。在氩气气氛下,在150℃下搅拌48小时,接着冷却至室温后,将混合物取出,依次用超纯水、甲醇和二氯甲烷洗涤两次,去除Pd残留物和低聚物。产品经过滤、真空120℃干燥8小时后,得到氧碳基共轭微孔高分子(OC)(65毫克),得率约为85%。
实施例3:硫碳基共轭微孔高分子(SC)的制备:
1,3,5-苯三硼酸三频哪醇酯(200毫克,0.44毫摩尔)、2,5-二溴噻吩(159.7毫克,0.66毫摩尔)和四(三苯基膦)钯(6毫克,0.00528毫摩尔)与10毫升N,N-二甲基甲酰胺和碳酸钾水溶液(2摩尔每升,2毫升)混合。在氩气气氛下,在150℃下搅拌48小时。冷却至室温后,将混合物取出,依次用超纯水、甲醇和二氯甲烷洗涤两次,去除Pd残留物和低聚物。产品经过滤、真空120℃干燥8小时后,得到硫碳基共轭微孔高分子(SC)(76毫克),得率约为88%。
实施例4:氮碳基共轭微孔高分子(NC)的制备:
1,3,5-苯三硼酸三频哪醇酯(200毫克,0.44毫摩尔)、2,5-二溴吡啶(156.3毫克,0.66毫摩尔)和四(三苯基膦)钯(6毫克,0.00528毫摩尔)与10毫升N,N-二甲基甲酰胺和碳酸钾水溶液(2摩尔每升,2毫升)混合。在氩气气氛下,在150℃下搅拌48小时。冷却至室温后,将混合物取出,依次用超纯水、甲醇和二氯甲烷洗涤两次,去除Pd残留物和低聚物。产品经过滤、干燥真空120℃干燥8小时后,得到氮碳基共轭微孔高分子(NC)(77毫克),得率约为92%。
实施例5:纯碳基共轭微孔高分子(Ph)的制备:
1,3,5-苯三硼酸三频哪醇酯(200毫克,0.44毫摩尔)、1,4-二溴苯(155.7毫克,0.66毫摩尔)和四(三苯基膦)钯(6毫克,0.00528毫摩尔)与10毫升N,N-二甲基甲酰胺和碳酸钾水溶液(2摩尔每升,2毫升)混合。在氩气气氛下,在150℃下搅拌48小时。冷却至室温后,将混合物取出,用超纯水、甲醇和二氯甲烷洗涤两次,去除Pd残留物和低聚物。经过滤、真空120℃干燥8小时后,得到纯碳基共轭微孔高分子(Ph)(73毫克),得率约为88%。
实施例6:负载金属纳米颗粒的共轭微孔高分子电催化剂(Pd/SNC,Pd/OC,Pd/SC,Pd/NC,Pd/Ph)的制备:
1、分别取上述实施例1-5的高分子产物分散在30毫升的乙醇溶液中,超声搅拌0.5小时将其均匀分散在溶液中形成悬浊液;
2、再将2毫升的氯化钯乙醇溶液(1毫克每毫升)加入到步骤1中的悬浊液中,在室温下搅拌过夜后过滤,并将所得固体用乙醇和水多次洗涤至无钯离子残留,过滤后在60℃真空下干燥12小时,然后在功率为8瓦,主谱线为254纳米的紫外灯下照射2小时,分别得到混合催化剂备用,混合催化剂分别标记为Pd/SNC,Pd/OC,Pd/SC,Pd/NC,Pd/Ph,上述混合催化剂的扫描电镜图,透射电镜图,高分辨率透射电镜依次见图1-图5;
3、分别将得到的混合催化剂与一定比例的乙炔黑(催化剂与乙炔黑质量比为1:1)在玛瑙研钵中碾磨半小时。
4、取1毫克步骤3研磨后的混合物,向其中加入200微升异丙醇、25微升的5%全氟磺酸树脂溶液,超声至均匀后,取5微升均匀滴涂到玻碳电极上,涂抹厚度0.3微米,吹干后进行醇氧化性能测试。
本申请实施例的电化学测试使用三电极体系的半电池进行,以涂有催化剂的玻碳电极为工作电极,其中催化剂分别为Pd/SNC,Pd/OC,Pd/SC,Pd/NC,Pd/Ph,辅助电极和参比电极分别为铂电极和银/氯化银/氯化钾饱和溶液参比电极,电化学工作站参数设置:工作模式CV,扫描速度50mV/s,扫描电压0.3V~1V,扫描循环5,电解液分别为1摩尔每升甲醇加上1摩尔每升氢氧化钾的水溶液以及1摩尔每升乙醇加上1摩尔每升氢氧化钾的水溶液,结果见图8-17。
对数据测试图的分析:
本发明所制得的钯基催化剂具有良好的醇氧化催化活性,从图6,7中可以看出我们将钯基催化剂载体成功合成,并将钯金属颗粒锚定在载体上。在图1-5的扫描电镜图,透射电镜图和高分辨率透射电镜图中可以看到催化剂载体呈现由亚微米颗粒相互连接形成的多孔网络,可以提供电荷传输通道,同时钯纳米颗粒均匀分布在载体表面,暴露出更多的活性位点。图8-17为钯基催化剂在醇溶液中的循环伏安曲线图,电流密度越大说明催化活性越好。在甲醇氧化反应中,循环伏安曲线电流密度排序为:Pd/SNC(1575.0毫安每毫克钯)>Pd/OC(1108.8毫安每毫克钯)>Pd/SC(252.0毫安每毫克钯)>Pd/NC(214.2毫安每毫克钯)>Pd/Ph(126.0毫安每毫克钯)。在乙醇氧化反应中,循环伏安曲线电流密度排序为:Pd/SNC(1071.0毫安每毫克钯)>Pd/OC(667.8毫安每毫克钯)>Pd/SC(88.2毫安每毫克钯)>Pd/NC(63.0毫安每毫克钯)>Pd/Ph:25.2毫安每毫克钯)。通过含有不同杂环单元的共轭微孔高分子构建的钯基催化剂在醇氧化中的性能比较,结果证明了本发明创造性制备出了性能优异的负载金属纳米颗粒的共轭微孔高分子电催化剂。其中Pd/SNC和Pd/OC在醇溶液中的催化活性较为突出,这有助于我们研究钯基催化剂在醇氧化反应中的构效关系,为设计优良的金属基催化剂载体材料提供了一种新的研究思路。

Claims (5)

1.一种负载金属纳米颗粒的共轭微孔高分子电催化剂的制备方法,所述共轭微孔高分子电催化剂以杂环单元构建的共轭微孔高分子为载体,所述载体表面负载有金属纳米颗粒;
所述共轭微孔高分子的结构通式M如下:
所述为/>
所述制备方法的具体步骤如下:
步骤1:通过化学方法合成结构式M所示的共轭微孔高分子:
在氩气环境下,在反应容器中分别加入原料1和原料2以及有机溶剂,然后加入催化剂和碱溶液,在100-180℃条件下回流24-72小时进行suzuki交叉偶联反应,得到共轭微孔高分子;
所述原料1为1,3,5-苯三硼酸三频哪醇酯,所述原料2为2,5-二溴噻唑、2,5-二溴呋喃、2,5-二溴噻吩、2,5-二溴吡啶或1,4-二溴苯;
步骤2:负载金属纳米颗粒的共轭微孔高分子电催化剂的制备:
(1)将步骤1得到的共轭微孔高分子分散在溶剂中形成悬浊液;
(2)将金属化合物的溶液加入到步骤(1)中的悬浊液中,在室温下搅拌至均匀,过滤、洗涤、干燥后,在紫外灯下照射1-5小时得到负载金属纳米颗粒的共轭微孔高分子电催化剂;
所述金属化合物为氯化钯、氯化银、氯化镍、硝酸锌或硝酸钴。
2.根据权利要求1所述的制备方法,其特征在于,所述金属为钯、银、镍、锌或钴。
3.根据权利要求1所述的制备方法,其特征在于,所述有机溶剂为N,N-二甲基甲酰胺;所述碱溶液为碳酸钾溶液;所述催化剂为原料1物质的量2%-10%的四(三苯基膦)钯。
4.根据权利要求1所述的制备方法,其特征在于,所述原料1和原料2的摩尔量比为1:(0.75~2);所述干燥条件为在40-100℃下真空干燥6-12小时。
5.权利要求1-4任意一项所述制备方法得到的共轭微孔高分子电催化剂在直接醇类燃料电池催化中的应用。
CN202210492104.3A 2022-05-07 2022-05-07 一种负载金属纳米颗粒的共轭微孔高分子电催化剂及其制备方法和应用 Active CN114759196B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210492104.3A CN114759196B (zh) 2022-05-07 2022-05-07 一种负载金属纳米颗粒的共轭微孔高分子电催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210492104.3A CN114759196B (zh) 2022-05-07 2022-05-07 一种负载金属纳米颗粒的共轭微孔高分子电催化剂及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN114759196A CN114759196A (zh) 2022-07-15
CN114759196B true CN114759196B (zh) 2023-08-29

Family

ID=82334610

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210492104.3A Active CN114759196B (zh) 2022-05-07 2022-05-07 一种负载金属纳米颗粒的共轭微孔高分子电催化剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN114759196B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114759196B (zh) * 2022-05-07 2023-08-29 青岛大学 一种负载金属纳米颗粒的共轭微孔高分子电催化剂及其制备方法和应用

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005190726A (ja) * 2003-12-24 2005-07-14 Nissan Motor Co Ltd 触媒担持電極、燃料電池用meaおよび燃料電池
JP2010149008A (ja) * 2008-12-24 2010-07-08 Toyota Motor Corp 電極触媒
CN103367748A (zh) * 2013-07-17 2013-10-23 兰州理工大学 微孔共轭聚合物炭化物锂离子电池负极材料制备方法
WO2014073114A1 (en) * 2012-11-07 2014-05-15 Toyota Jidosha Kabushiki Kaisha Method for producing a catalyst for fuel cells
WO2017180062A1 (en) * 2016-04-13 2017-10-19 National University Of Singapore Porous polymer and production methods thereof
CN107335458A (zh) * 2017-07-06 2017-11-10 华东师范大学 一种氮掺杂碳和铁氮磷共掺杂碳电催化材料的制备方法
CN109187687A (zh) * 2018-10-22 2019-01-11 西北师范大学 共轭有机微孔材料修饰电极的制备及作为过氧亚硝基阴离子电化学传感器的应用
CN110152732A (zh) * 2019-07-01 2019-08-23 苏州大学 基于共轭微孔聚合物的复合催化剂及其制备和应用
CN111545249A (zh) * 2020-04-27 2020-08-18 齐齐哈尔大学 一种共轭微孔聚合物/钯镍双金属催化剂的制备方法
WO2021097314A1 (en) * 2019-11-15 2021-05-20 Shengqian Ma Covalent organic frameworks and applications thereof in chemical reactions
CN113241431A (zh) * 2021-05-10 2021-08-10 益诺鑫电气(深圳)有限公司 一种ZnS纳米花@NC的锂离子电池负极材料的制法和应用
CN113413915A (zh) * 2021-08-03 2021-09-21 齐齐哈尔大学 一种手性共轭微孔聚合物负载钯不对称催化剂的制备方法
CN114335558A (zh) * 2021-12-07 2022-04-12 西安交通大学 一种共轭微孔聚苯胺改性电池集流体的制备方法及其在锂硫电池中的应用
CN114759196A (zh) * 2022-05-07 2022-07-15 青岛大学 一种负载金属纳米颗粒的共轭微孔高分子电催化剂及其制备方法和应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10490825B2 (en) * 2016-12-06 2019-11-26 Savannah River Nuclear Solutions, Llc Non-platinum group oxygen reduction reaction catalysts
US10396329B2 (en) * 2017-05-01 2019-08-27 Dioxide Materials, Inc. Battery separator membrane and battery employing same
US10147974B2 (en) * 2017-05-01 2018-12-04 Dioxide Materials, Inc Battery separator membrane and battery employing same

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005190726A (ja) * 2003-12-24 2005-07-14 Nissan Motor Co Ltd 触媒担持電極、燃料電池用meaおよび燃料電池
JP2010149008A (ja) * 2008-12-24 2010-07-08 Toyota Motor Corp 電極触媒
WO2014073114A1 (en) * 2012-11-07 2014-05-15 Toyota Jidosha Kabushiki Kaisha Method for producing a catalyst for fuel cells
CN103367748A (zh) * 2013-07-17 2013-10-23 兰州理工大学 微孔共轭聚合物炭化物锂离子电池负极材料制备方法
WO2017180062A1 (en) * 2016-04-13 2017-10-19 National University Of Singapore Porous polymer and production methods thereof
CN107335458A (zh) * 2017-07-06 2017-11-10 华东师范大学 一种氮掺杂碳和铁氮磷共掺杂碳电催化材料的制备方法
CN109187687A (zh) * 2018-10-22 2019-01-11 西北师范大学 共轭有机微孔材料修饰电极的制备及作为过氧亚硝基阴离子电化学传感器的应用
CN110152732A (zh) * 2019-07-01 2019-08-23 苏州大学 基于共轭微孔聚合物的复合催化剂及其制备和应用
WO2021097314A1 (en) * 2019-11-15 2021-05-20 Shengqian Ma Covalent organic frameworks and applications thereof in chemical reactions
CN111545249A (zh) * 2020-04-27 2020-08-18 齐齐哈尔大学 一种共轭微孔聚合物/钯镍双金属催化剂的制备方法
CN113241431A (zh) * 2021-05-10 2021-08-10 益诺鑫电气(深圳)有限公司 一种ZnS纳米花@NC的锂离子电池负极材料的制法和应用
CN113413915A (zh) * 2021-08-03 2021-09-21 齐齐哈尔大学 一种手性共轭微孔聚合物负载钯不对称催化剂的制备方法
CN114335558A (zh) * 2021-12-07 2022-04-12 西安交通大学 一种共轭微孔聚苯胺改性电池集流体的制备方法及其在锂硫电池中的应用
CN114759196A (zh) * 2022-05-07 2022-07-15 青岛大学 一种负载金属纳米颗粒的共轭微孔高分子电催化剂及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Meiyun Xu et.al."De Novo Design of a Pt Nanocatalyst on a Conjugated Microporous Polymer-Coated Honeycomb Carrier for Oxidation of Hydrogen Isotopes".《ACS Applied Materials & Interfaces》.2022,第7826−7835页. *

Also Published As

Publication number Publication date
CN114759196A (zh) 2022-07-15

Similar Documents

Publication Publication Date Title
CN107346826B (zh) 一种单原子铁分散的氧还原电催化剂的制备方法
CN111710878A (zh) 一种金属有机框架衍生Co嵌入氮掺杂碳纳米管修饰介孔碳负载铂催化剂的制备方法
CN110010911B (zh) 一种双掺杂多孔石墨烯阴极非铂催化剂及其制备方法
CN113571713B (zh) 一种PtZn负载氮掺杂碳催化剂及其制备方法,以及氢氧燃料电池
CN113235104A (zh) 一种基于zif-67的镧掺杂氧化钴催化剂及其制备方法与应用
CN112968184B (zh) 一种三明治结构的电催化剂及其制备方法和应用
CN112968185A (zh) 植物多酚改性的超分子网络框架结构锰基纳米复合电催化剂的制备方法
CN110767914A (zh) 一种Co-N掺杂多孔碳包覆碳纳米管核壳结构催化剂及其制备方法与应用
CN110504456A (zh) 一种基于氮氧掺杂球/片多孔碳材料的氧还原电极及其制备方法和应用
CN114759196B (zh) 一种负载金属纳米颗粒的共轭微孔高分子电催化剂及其制备方法和应用
CN113594479A (zh) 一种Fe、N共掺杂多孔碳锌空电池催化剂的制备方法
CN114351185B (zh) 具有异质结构镍钴氮化物纳米片阵列的双功能电催化剂及其制备和应用
CN113422070B (zh) 基于铁基多巴胺超分子修饰的氢氧化铜二维纳米复合材料的制备方法
Niu et al. Electrocatalytic water splitting using organic polymer materials-based hybrid catalysts
Wang et al. Optimizing electronic and geometrical structure of vanadium doped cobalt phosphides for enhanced electrocatalytic hydrogen evolution
US20120077672A1 (en) Porous Catalyst for a Fuel Cell and Method for Producing the Catalyst Thereof
CN115155554B (zh) 一种纳米中空介孔碳球负载铂纳米颗粒催化剂及制备方法
CN112701307B (zh) 用于质子膜燃料电池的双mof连接结构纳米复合电催化剂及其制备方法
CN114620712A (zh) 一种用于直接甲醇燃料电池阳极催化剂载体的制备方法
KR20220027437A (ko) 전이금속 질화물-탄소 촉매복합체, 이의 제조방법, 상기 전이금속 질화물-탄소 촉매복합체를 포함하는 연료전지용 전극촉매, 상기 전극촉매를 포함하는 연료전지
Yaldagard et al. Fabrication of platinum/polypyrol-carbon nanofiber nanocomposite electrocatalyst for direct methanol fuel cells
CN116926957B (zh) 一种镝掺杂镍-金属有机框架复合材料的制备方法及应用
CN116581306B (zh) 一种植物纤维衍生过渡金属多孔氮掺杂碳催化剂及其制备方法和应用
CN116377473B (zh) 一种氮掺杂中空碳纳米环负载金属单原子材料、制备方法及其应用
LIANG et al. Influences of Morphology and Nitrogen Doping on the Electrocatalytic Characteristics for Oxygen Reduction Reaction of NiO/rGO

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant