CN114759104A - 基于ⅱ型范德华异质结近红外偏振光电探测器及其制备方法 - Google Patents

基于ⅱ型范德华异质结近红外偏振光电探测器及其制备方法 Download PDF

Info

Publication number
CN114759104A
CN114759104A CN202210316769.9A CN202210316769A CN114759104A CN 114759104 A CN114759104 A CN 114759104A CN 202210316769 A CN202210316769 A CN 202210316769A CN 114759104 A CN114759104 A CN 114759104A
Authority
CN
China
Prior art keywords
gese
mote
nanosheet
nanosheets
pva
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210316769.9A
Other languages
English (en)
Other versions
CN114759104B (zh
Inventor
霍能杰
张楠
李京波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China Normal University
Original Assignee
South China Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China Normal University filed Critical South China Normal University
Priority to CN202210316769.9A priority Critical patent/CN114759104B/zh
Publication of CN114759104A publication Critical patent/CN114759104A/zh
Application granted granted Critical
Publication of CN114759104B publication Critical patent/CN114759104B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

本发明涉及基于Ⅱ型范德华异质结近红外偏振光电探测器及其制备方法,其包括衬底,位于衬底上的MoTe2纳米片和GeSe纳米片,位于MoTe2纳米片和GeSe纳米片上的第一电极和第二电极,MoTe2纳米片与GeSe纳米片采用微机械剥离法获得,通过PVA干法转移设置部分层叠区域,部分层叠区域通过范德华力相互作用形成异质结,为载流子沟道层。该光电探测器侧重于近红外波段的探测,在室温下实现了自驱动低损耗探测、快的响应速度、偏振灵敏和性能稳定的特点,该制备方法技术成熟、成本低廉、工艺简单,非常有利于商业化推广。

Description

基于Ⅱ型范德华异质结近红外偏振光电探测器及其制备方法
技术领域
本发明涉及光电探测器领域,尤其涉及一种基于Ⅱ型范德华异质结近红外偏振光电探测器及其制备方法。
背景技术
近年来,由于红外光电探测器在多个领域方面的重要价值,许多研究人员致力于开发新型高性能红外光电探测器。目前,大多数商业红外光电探测器通常由某些窄带隙半导体如铟镓砷、碲镉汞等制成。但是,这些红外光电探测器的应用受到其复杂的制备工艺、高成本和低温操作条件的限制。自从发现石墨烯独特的光电特性,二维层状材料引起了人们的极大关注。与传统的块状半导体材料相比,二维材料由于其宽光谱响应等特点更适合于光电探测器的制备。然而,二维层状材料通常具有对入射光的吸收率低的缺点,这将导致较小的电流开/关比和低探测率。
发明内容
针对现有技术中存在的技术问题,本发明利用P型GeSe和N型MoTe2二维薄膜材料,设计了基于Ⅱ型范德华异质结近红外偏振光电探测器,该光电探测器包括衬底、位于衬底上的二维MoTe2纳米片和二维GeSe纳米片,以及位于纳米片上的电极。二维GeSe纳米片和二维MoTe2纳米片通过PVA干法转移设置有部分重叠区域,部分重叠区域通过范德华力相互作用形成异质结,该异质结作为载流子沟道层。由于GeSe和MoTe2的能带排列符合II型能带排列,能够实现高效的电荷转移,且GeSe和MoTe2二维材料均为窄禁带的半导体,该光电探测器侧重于近红外波段的探测,并且在室温下实现了自驱动低损耗探测(暗电流为20fA)、快响应速度(响应时间为26ms)、偏振灵敏、性能稳定的特点。另一方面本发明提供的制备方法技术成熟、成本低廉以及工艺简单,为红外探测器的设计提供了一种途径,非常有利于商业化推广。
基于上述目的,本发明至少采用如下技术方案:
基于Ⅱ型范德华异质结近红外偏振光电探测器,其包括,衬底,位于衬底上的MoTe2纳米片和GeSe纳米片,位于所述MoTe2纳米片上的第一电极和位于所述GeSe纳米片上的第二电极,其中,所述MoTe2纳米片与所述GeSe纳米片部分层叠构成异质结。
所述MoTe2纳米片和所述GeSe纳米片选用微机械剥离法获得。
所述MoTe2纳米片的厚度为20nm至100nm。
所述GeSe纳米片的厚度为20nm至100nm。
所述第一电极和所述第二电极选用Cr/Au复合金属层,Cr层的厚度为5nm,Au层的厚度为50nm。
所述衬底选用SiO2/Si衬底,SiO2层的厚度为300nm。
基于Ⅱ型范德华异质结近红外偏振光电探测器的制备方法,包括以下步骤:
采用微机械剥离法在衬底上获得GeSe纳米片和MoTe2纳米片;取适量PVA液体至PDMS上,随后加热成型形成PVA载体;将所述PVA载体覆盖至所述GeSe纳米片或所述MoTe2纳米片上,加热获得PVA/纳米片粘合层;将所述PVA/纳米片粘合层的一部分覆盖至另一纳米片上,随后去除PVA形成GeSe/MoTe2异质结;在所述MoTe2纳米片和所述GeSe纳米片上分别形成第一电极和第二电极,随后退火;其中,所述GeSe纳米片与所述MoTe2纳米片部分层叠。
所述PVA液体选用以下方法配制:
取一定量的PVA于一定体积的去离子水中搅拌,搅拌的转速为1000r,时间为10至12小时。
在将所述纳米薄片之一转移至衬底上之前,依次用丙酮、异丙醇、乙醇各超声30min,随后置于臭氧紫外或者氧气等离子体重清洗20min。
所述退火工艺为,在惰性气氛中,温度为80℃至150℃下退火0.5h至2h。
与现有技术相比,本发明至少具有如下有益效果:
本发明提供的基于Ⅱ型范德华异质结近红外偏振光电探测器以GeSe纳米片和MoTe2纳米片为异质结,该多层GeSe和MoTe2二维材料两者的能带排列符合Ⅱ型能带排列方式,实现了高效的电荷转移;并且两者相近的禁带宽度也使得该异质结在近红外波段(808、980、1064和1310nm)呈现出了良好的响应。另一方面GeSe二维材料本身具有各向异性的特点,用于异质结中作为感光层实现了偏振光探测的性能,进一步地,该光电探测器件呈现出了优异的光伏特性,实现了自驱动低损耗、快速光探测、偏振灵敏和性能稳定的特点。
另一方面,本发明提供的制备方法技术成熟、成本低廉且制备工艺简单,制备获得的光电探测器性能稳定可靠,适合大规模生产,促进了二维材料在高性能红外光电探测器领域的应用。
附图说明
图1为本发明一实施例基于Ⅱ型范德华异质结近红外偏振光电探测器示意图。
图2为本发明一实施例基于Ⅱ型范德华异质结近红外偏振光电探测器件的光学显微镜图。
图3为本发明一实施例基于Ⅱ型范德华异质结近红外偏振光电探测器件的性能测试图,其中a为不同波长光响应度-光强测试图;b为近红外探测器对635nm波长激光的偏振特性图;c为自驱动下的快速响应时间图。
具体实施方式
接下来将结合本发明的附图对本发明实施例中的技术方案进行清楚、完整地描述,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的其它实施例,均属于本发明保护的范围。下述实施例中所述实验方法,如无特殊说明,均为常规方法;所述试剂和材料,如无特殊说明,均可从公开商业途径获得。
本说明书中使用例如“之下”、“下方”、“下”、“之上”、“上方”、“上”等空间相对性术语,以解释一个元件相对于第二元件的定位。除了与图中所示那些不同的取向以外,这些术语意在涵盖器件的不同取向。
另外,使用诸如“第一”、“第二”等术语描述各个元件、层、区域、区段等,并非意在进行限制。使用的“具有”、“含有”、“包含”、“包括”等是开放式术语,表示存在所陈述的元件或特征,但不排除额外的元件或特征。除非上下文明确做出不同表述。
如图1示,本发明一实施例提供一种基于Ⅱ型范德华异质结近红外偏振光电探测器,其包括衬底,优选SiO2/Si衬底,SiO2层的厚度为300nm。衬底上设置有P型GeSe纳米片和N型MoTe2纳米片,MoTe2纳米片和GeSe纳米片部分层叠,该部分层叠区域通过范德华力相互作用形成异质结,该异质结作为载流子沟道层。MoTe2纳米片和GeSe纳米片的厚度均为20nm至100nm。纳米片采用微机械剥离法获得,多层GeSe和MoTe2二维材料两者的能带排列符合Ⅱ型能带排列方式,实现高效的电荷转移,并且GeSe和MoTe2的禁带宽度分别为1.2eV和1.02eV,相近的窄禁带宽度也使得该异质结预期能在近红外波段(808、980、1064和1310nm)能够有良好的响应。
MoTe2纳米片上设置有第一电极,GeSe纳米片上设置有第二电极,第一电极和第二电极选用Cr/Au复合金属层,Cr层的厚度为5nm,Au层的厚度为50nm。
本发明的另一实施例提供了上述近红外偏振光电探测器的制备方法,包括以下步骤。
首先,选用SiO2/Si衬底,将衬底依次置于丙酮、异丙醇和乙醇中各超声30min;然后将衬底置于臭氧紫外或者氧气等离子体中清洗20min。其中氧气流量为50sccm,等离子功率为100W。
接着,采用微机械剥离法在清洗后的SiO2/Si衬底上获得GeSe纳米片和MoTe2纳米片,SiO2层的厚度为300nm。
制作干法粘合剂聚乙烯醇(PVA):PVA与去离子水的配比为4:21(g/ml),该实施例中,称取4g PVA颗粒(MW=27000),放置于装有21ml去离子水的烧杯中,后放置在磁力搅拌器上,常温条件以1000r的转速搅拌10-12小时,最终获得透明粘稠状液体。
接着,取0.5cm×0.3cm的PDMS置于透明载玻片上,然后将粘稠状液体PVA通过胶头滴管取合适量滴在PDMS上并铺平,最后将其放置在加热台上50℃下加热10min成型为PVA转移载体。
接着,将上述PVA转移载体覆盖在GeSe纳米片或MoTe2纳米片上。该实施例中,将PVA转移载体覆盖在GeSe纳米片上,以90℃加热衬底4min使PVA与GeSe粘合紧密,后托起覆盖在MoTe2纳米片上形成异质结,接着在去离子水中以50℃水浴加热10-20min以去除PVA,最后氮气吹干获得干净的异质结。
在GeSe纳米片和MoTe2纳米片上制备第一电极和第二电极。对制备获得的异质结进行光刻胶掩模和紫外激光直写光刻曝光,后经显影处理完成电极的图案化。再由电子束蒸镀在GeSe纳米片和MoTe2纳米片上分别沉积形成5nm/50nm的Cr/Au电极,电子束蒸镀时的真空度为6×10-4pa,蒸镀速率平衡在
Figure BDA0003570039950000051
Figure BDA0003570039950000061
最后,在惰性气体中进行退火,惰性气体选用氮气和氩气,退火温度为80-150℃,退火时间为30-120分钟,冷却后获得表面均匀,性能稳定的近红外探测器。
上述实施例制备获得的近红外偏振光电探测器的测试性能如图2示,可以看出其侧重于近红外波段的探测,在0V偏压下暗电流为20fA,响应时间为26ms,在室温下能够实现自驱动低损耗和快速光探测功能。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.基于Ⅱ型范德华异质结近红外偏振光电探测器,其包括,衬底,位于衬底上的MoTe2纳米片和GeSe纳米片,位于所述MoTe2纳米片上的第一电极和位于所述GeSe纳米片上的第二电极,其中,所述MoTe2纳米片与所述GeSe纳米片部分层叠构成异质结。
2.根据权利要求1的所述近红外偏振光电探测器,其特征在于,所述MoTe2纳米片和所述GeSe纳米片选用微机械剥离法获得。
3.根据权利要求1或2的所述近红外偏振光电探测器,其特征在于,所述MoTe2纳米片的厚度为20nm至100nm。
4.根据权利要求1或2的所述近红外偏振光电探测器,其特征在于,所述GeSe纳米片的厚度为20nm至100nm。
5.根据权利要求1或2的所述近红外偏振光电探测器,其特征在于,所述第一电极和所述第二电极选用Cr/Au复合金属层,Cr层的厚度为5nm,Au层的厚度为50nm。
6.根据权利要求1或2的所述近红外偏振光电探测器,其特征在于,所述衬底选用SiO2/Si衬底,SiO2层的厚度为300nm。
7.基于Ⅱ型范德华异质结近红外偏振光电探测器的制备方法,包括以下步骤:
采用微机械剥离法在衬底上获得GeSe纳米片和MoTe2纳米片;
取适量PVA液体至PDMS上,随后加热成型形成PVA载体;
将所述PVA载体覆盖至所述GeSe纳米片或所述MoTe2纳米片上,加热获得PVA/纳米片粘合层;
将所述PVA/纳米片粘合层的一部分覆盖至另一纳米片上,随后去除PVA形成GeSe/MoTe2异质结;
在所述MoTe2纳米片和所述GeSe纳米片上分别形成第一电极和第二电极,随后退火;
其中,所述GeSe纳米片与所述MoTe2纳米片部分层叠。
8.根据权利要求7的所述制备方法,其特征在于,所述PVA液体选用以下方法配制:
取一定量的PVA于一定体积的去离子水中进行搅拌,搅拌的转速为1000r,时间为10至12小时。
9.根据权利要求7或8的所述制备方法,其特征在于,还包括,在将所述纳米薄片之一转移至衬底上之前,依次用丙酮、异丙醇、乙醇各超声30min,随后置于臭氧紫外或者氧气等离子体重清洗20min。
10.根据权利要求7或8的所述制备方法,其特征在于,所述退火工艺为,在惰性气氛中,温度为80℃至150℃下退火0.5h至2h。
CN202210316769.9A 2022-03-29 2022-03-29 基于ⅱ型范德华异质结近红外偏振光电探测器及其制备方法 Active CN114759104B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210316769.9A CN114759104B (zh) 2022-03-29 2022-03-29 基于ⅱ型范德华异质结近红外偏振光电探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210316769.9A CN114759104B (zh) 2022-03-29 2022-03-29 基于ⅱ型范德华异质结近红外偏振光电探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN114759104A true CN114759104A (zh) 2022-07-15
CN114759104B CN114759104B (zh) 2024-01-30

Family

ID=82326851

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210316769.9A Active CN114759104B (zh) 2022-03-29 2022-03-29 基于ⅱ型范德华异质结近红外偏振光电探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN114759104B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160372543A1 (en) * 2015-06-16 2016-12-22 Asm Ip Holding B.V. Metal selenide and metal telluride thin films for semiconductor device applications
CN110473904A (zh) * 2019-06-04 2019-11-19 南京邮电大学 垂直GeSe/MoS2 p-n异质结构
CN110993703A (zh) * 2019-11-27 2020-04-10 中国科学院金属研究所 一种GaN/MoS2二维范德华异质结光电探测器及其制备方法
CN113437166A (zh) * 2021-06-28 2021-09-24 华南师范大学 一种基于二维层状半导体材料的范德华异质结偏振光探测器及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160372543A1 (en) * 2015-06-16 2016-12-22 Asm Ip Holding B.V. Metal selenide and metal telluride thin films for semiconductor device applications
CN110473904A (zh) * 2019-06-04 2019-11-19 南京邮电大学 垂直GeSe/MoS2 p-n异质结构
CN110993703A (zh) * 2019-11-27 2020-04-10 中国科学院金属研究所 一种GaN/MoS2二维范德华异质结光电探测器及其制备方法
CN113437166A (zh) * 2021-06-28 2021-09-24 华南师范大学 一种基于二维层状半导体材料的范德华异质结偏振光探测器及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XINWEI GUAN等: "Recent Progress in Short- to Long-Wave Infrared Photodetection Using 2D Materials and Heterostructures", ADVANCED OPTICAL MATERIALS, vol. 9, no. 4, pages 1 - 24 *

Also Published As

Publication number Publication date
CN114759104B (zh) 2024-01-30

Similar Documents

Publication Publication Date Title
CN107316915B (zh) 可见光波段的集成石墨烯二硫化钼的光电探测器及其制备方法
CN111341875B (zh) 一种石墨烯/二硒化钯/硅异质结自驱动光电探测器
CN111682088A (zh) 一种基于范德华异质结的隧穿型光电探测器及其制备方法
CN110224041B (zh) 一种包含石墨烯夹层结构的光电探测器
CN111463295A (zh) 氧等离子体处理的硒氧化铋纳米片光电探测器及制备方法
CN107768452A (zh) 一种增强型石墨烯‑硅异质结光电探测芯片及其制备方法
CN112614945B (zh) 具有沟槽阵列结构的微纳单晶柔性光电探测器及其制备
CN113410317B (zh) 一种具有表面等离激元的二维材料异质结光电探测器及其制备方法
CN211670197U (zh) 一种二氧化钒和二维半导体的结型光探测器
CN113097334B (zh) 一种SiC基二硫化钨紫外-可见光电探测器及其制备方法和应用
WO2022126933A1 (zh) 波长选择性响应的光电探测器的制备方法
CN116314386A (zh) 混维范德瓦尔斯异质结光电探测器及其制备方法
CN111223943A (zh) 一种基于碳量子点和石墨烯的光电探测器及制备方法
WO2022088204A1 (zh) 一种紫外-可见-近红外硅基光电探测器及其制备方法
CN115832108A (zh) 一种栅极可调高灵敏偏振探测器的制备方法
CN113782621A (zh) 一种等离激元增强的碲镉汞微腔红外探测器及制备方法
CN109873046B (zh) 双异质结光敏二极管及制备方法
CN113964230A (zh) 一种硫硒化亚锡纳米片/GaAs异质结光电二极管及其制备方法和应用
CN110611010B (zh) 一种硅纳米晶/石墨烯宽光谱光电探测器及其制备方法
CN114759104B (zh) 基于ⅱ型范德华异质结近红外偏振光电探测器及其制备方法
CN116053338A (zh) 一种基于MoO3-x/Bi2O2Se异质集成的近红外光电传感器的制备方法
CN114300551A (zh) 石墨烯/等离子激元黑硅近红外探测器结构及其制备方法
CN113838943A (zh) 一种基于各向异性二维材料的偏振光探测器及其制备方法
CN115911152A (zh) 近红外偏振光电探测器及制备方法
CN116885024B (zh) 一种基于PdSe2/ZrTe3异质结的红外光电探测器及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant