CN116053338A - 一种基于MoO3-x/Bi2O2Se异质集成的近红外光电传感器的制备方法 - Google Patents

一种基于MoO3-x/Bi2O2Se异质集成的近红外光电传感器的制备方法 Download PDF

Info

Publication number
CN116053338A
CN116053338A CN202211683606.0A CN202211683606A CN116053338A CN 116053338 A CN116053338 A CN 116053338A CN 202211683606 A CN202211683606 A CN 202211683606A CN 116053338 A CN116053338 A CN 116053338A
Authority
CN
China
Prior art keywords
sio
moo
pmma
wafer
mica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211683606.0A
Other languages
English (en)
Inventor
吕俊鹏
于远方
丁荣
刘宏微
严春伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taizhou Feirongda New Material Technology Co ltd
Original Assignee
Taizhou Feirongda New Material Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taizhou Feirongda New Material Technology Co ltd filed Critical Taizhou Feirongda New Material Technology Co ltd
Priority to CN202211683606.0A priority Critical patent/CN116053338A/zh
Publication of CN116053338A publication Critical patent/CN116053338A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0328Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
    • H01L31/0336Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032 in different semiconductor regions, e.g. Cu2X/CdX hetero- junctions, X being an element of Group VI of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明涉及一种基于氧化钼/硒氧化铋异质集成的快速高灵敏近红外光电传感器的制备方法,属于光电传感器领域。本发明的制备方法,包括如下步骤;1)合成层状Bi2O2Se纳米片,所用基板为云母片;2)将Bi2O2Se片从云母基板转移到SiO2/Si晶圆上;3)在晶圆上制备光电传感器。根据该方法制备的器件基于热电子转移机制运作,可同时实现快速和高灵敏近红外探测,能够解决当前商用光伏器件灵敏度低下的问题,以及光电导器件响应速度慢的问题。本发明制备出的基于MoO3‑x/Bi2O2Se异质集成的近红外光电传感器在1310和1550 nm两个重要的光纤通讯波段兼具快速响应和高灵敏特性,器件光电流稳定性长达半年。在通讯系统的光接收模块中具有重要的应用价值。

Description

一种基于MoO3-x/Bi2O2Se异质集成的近红外光电传感器的制备方法
技术领域
本发明涉及一种基于氧化钼/硒氧化铋异质集成的快速高灵敏近红外光电传感器的制备方法,属于光电传感器领域。
背景技术
在近红外(NIR)波长中,原始波段(O波段,1260nm~1360nm)和常规波段(C波段,1530nm~1565nm)由于其在光纤中的低能量耗散,对光通信至关重要[见参考文献1-4]。在先进的通信系统中,对这些波段工作的快速高灵敏光电探测器有着迫切需求。通常情况下,为了有效地进行信号提取,光接收机中的光电探测器的响应时间需要快于微秒。但是,由于没有光增益,当前结型结构器件的响应率较低(小于1A/W)[见参考文献5]。光电导器件在实现高响应方面具有优势。然而,它们的响应时间通常低于毫秒。如何在同一个器件中兼顾高灵敏度和快速响应非常必要。
二维层状Bi2O2Se具有较高的迁移率、优异的环境稳定性以及适合近红外探测的带隙而备受关注。其突出的光电特性使Bi2O2Se在通信波段的光探测中具有优势。然而,由于Bi2O2Se近红外探测器在近红外波长处的光吸收效率较低,在红外区域的灵敏度往往较低[见参考文献6]。
参考文献:
[1]M.Bock,P.Eich,S.Kucera,M.Kreis,A.Lenhard,C.Becher and J.Eschner,“High-fidelity entanglement between a trapped ion and a telecom photon viaquantum frequency conversion,”Nat.Commun.vol.9,May.2018,Art.no.1998.
[2]B.Zhu,T.F.Taunay,M.F.Yan,J.M.Fini,M.Fishteyn,E.M.Monberg andF.V.Dimarcello.“Seven-core multicore fiber transmissions for passive opticalnetwork,”Opt.Express.vol.18,no.11,pp.11117-11122,May 2010.
[3]Q.Wang,Y.Wen,K.Cai,R.Cheng,L.Yin,Y.Zhang,J.Li,Z.Wang,F.Wang,F.Wang,T.A.Shifa,C.Jiang,H.Yang and J.He,“Nonvolatile infrared memory inMoS2/PbS van der Waals heterostructures,”Sci.Adv.,vol.4,no.4,Apr 2018,Art.no.eaap7916.
[4]Z.Ren,P.Wang,K.Zhang,W.Ran,J.Yang,Y.-Y.Liu,Z.Lou,G.Shen,and Z.Wei.“Short-Wave Near-Infrared Polarization Sensitive Photodetector Based on GaSbNanowire”IEEE Electron.Device Lett.vol.42,no.4,pp.549-552,Apr 2021.
[5]S.Ke,Y.Ye,J.Wu,D.Liang,B.Cheng,Z.Li,Y.Ruan,X.Zhang,W.Huang,J.Wang,J.Xu,C.Li and S.Chen,“Low-Temperature Fabrication of Wafer-Bonded Ge/Si p-i-nPhotodiodes by Layer Exfoliation and Nanosecond-Pulse Laser Annealing,”IEEETrans.Electron.Devices vol.66,no.3,pp.1353-1360,Mar 2019.
[6]Y.Zhang,Q.Gao,X.Han and Y.Peng,“Mechanical flexibility and strainengineered-band structures of monolayer Bi2O2Se,”Physica E LowDimens.Syst.Nanostruct.vol.116,Feb 2020,Art.no.113728.
发明内容
针对现有技术存在的不足,本发明在于提供一种基于MoO3-x/Bi2O2Se(其中x的范围介于0和1之间)异质集成的近红外光电传感器的制备方法,该器件兼具快速和高灵敏度近红外响应,以及良好的器件稳定性的有益效果。
为了解决现有器件的性能问题,本发明的发明人首次提出将Bi2O2Se与表面等离激元结构相集成。这样能够有效地将光束缚于微尺度表面,从而改善二维材料的光-物质相互作用。本发明利用重掺杂半导体材料MoO3-x具有独特的红外局域表面等离激元共振的特征,将其运用于红外光电转换[MoO3-x具体如文献[7]所记载,S.D.Lounis,E.L.Runnerstrom,A.Llordes and D.J.Milliron,“Defect Chemistry and Plasmon Physics of ColloidalMetal Oxide Nanocrystals,”J.Phys.Chem.Lett.vol.5,no.9,pp.1564-1574,May2014.]。与传统的光伏和光电导器件具有本质上的不同,该复合器件是基于热电子转移的光电机制运作,MoO3-x中的等离激元热电子转移到Bi2O2Se沟道,避免了带间缺陷态束缚以及净余动能耗散的问题,能够有效兼顾快速响应和高灵敏光电转换,为高性能近红外探测提供了一种重要策略。
为实现上述目的,本发明提供了如下技术方案:
一种基于MoO3-x/Bi2O2Se异质集成的近红外光电传感器的制备方法,包括如下步骤;
1)采用化学气相沉积法合成层状Bi2O2Se纳米片,所用基板为云母片;
2)将Bi2O2Se片从云母基板转移到SiO2/Si晶圆上,以用于后续在标准半导体工艺的晶圆上制备光电传感器;
3)在SiO2/Si晶圆上旋涂光刻胶聚甲基丙烯酸甲酯,即PMMA,采用电子束光刻,在PMMA上刻蚀并显影得到电极图案;
4)采用热蒸发沉积5nm Ni/50nm Au电极;电极沉积后利用丙酮溶液浸泡器件以去除PMMA;从而得到在SiO2/Si晶圆上的Bi2O2Se光电探测器;
5)将样品再次旋转涂覆PMMA,然后用电子束光刻刻蚀出图案化阵列状纳米孔;
6)利用热蒸发在上述带有阵列图案的器件上沉积MoO3-x;MoO3-x沉积后利用丙酮溶液浸泡器件以去除PMMA;从而得到在SiO2/Si晶圆上的Bi2O2Se/MoO3-x光电探测器;
其中,MoO3-x中的3-x表示氧化钼中的氧原子含量,且0<x<1。
进一步地,
所述步骤1)中,Bi2O2Se的制备过程具体如下:将纯度为99.999%的Bi2O3和纯度为99.999%的Bi2Se3粉末作为前驱体放置在陶瓷舟中,Bi2O3位于管式加热炉的中间,Bi2Se3位于炉的上游;将管炉密封,用机械泵抽至低真空,用100-150sccm流速的高纯氩气体冲洗;生长时间为5~30min,在550℃~750℃的温度范围内,合成厚度可控的Bi2O2Se,其中Bi2O3与Bi2Se3的用量比为2:1。
所述步骤2)中,将Bi2O2Se片从云母基板转移到SiO2/Si晶圆上的具体过程如下:
a)将PMMA(聚甲基丙烯酸甲酯)在生长样品的云母上旋涂60秒,转速3000转;然后在180℃下退火90秒,刮去云母边缘的PMMA;
b)用HF溶液腐蚀掉下面的云母,而后将悬浮的PMMA膜转移到去离子水中,用SiO2/Si衬底舀起,将其浸泡于丙酮中24小时以去除PMMA,从而将Bi2O2Se片从云母基板转移到SiO2/Si晶圆上。
所述步骤3)中,电子束光刻,具体为FEI,fp2021/12INSPECT F50。
所述步骤4)中,热蒸发,具体为TPRE-Z20-IV。
所述步骤4)中,蒸镀所用速率为
Figure BDA0004019910970000031
真空腔气压在10-5Pa量级。
所述步骤6)中,蒸镀所用速率为
Figure BDA0004019910970000032
真空腔气压在10-5Pa量级。
需要强调的是,本发明制备的器件在工作原理上显著区别于传统的光伏、光电导和热电器件[参考文献F.H.L.Koppens,T.Mueller,Ph.Avouris,A.C.Ferrari,M.S.Vitiello and M.Polini,Photodetectors based on graphene,other two-dimensional materials and hybrid systems,Nature Nanotechnology,6,2014,780-793],该器件是基于热电子转移的方式运作。利用的是与具有等离激元共振的掺杂半导体材料MoO3-x。在器件运作过程中,MoO3-x中光激发下产生具有表面等离激元共振效应。其能量会通过非辐射弛豫传递给电子,激发出大量热电子。热电子跨越界面势垒发生转移,从而参与光电转换。基于热电子转移能够避免缺陷态束缚和复合过程的发生,从而避免响应速度的延迟以及能量损失,同时实现快速高灵敏探测。而常规器件是基于带边电荷转移运作的,容易受到缺陷态和载流子复合影响。
本发明具有以下有益效果:
1)本发明的基于MoO3-x/Bi2O2Se异质集成近红外光电传感器的制备方法,根据该方法制备的器件基于热电子转移机制运作,能够同时实现快速和高灵敏近红外探测,能够解决当前商用光伏器件灵敏度低下的问题,以及光电导器件响应速度慢的问题。这个是本专利的创新之处,是从器件运作原理方面的创新。该器件是基于热电子转移的方式运作。利用的是MoO3-x中光激发下的等离激元共振效应。能量弛豫传递给电子,激发出大量热电子。热电子跨越界面势垒发生转移,从而参与光电转换。
2)本发明制备出的基于MoO3-x/Bi2O2Se异质集成的近红外光电传感器在1310和1550nm两个重要的光纤通讯波段兼具快速响应和高灵敏特性,器件光电流稳定性长达半年。在通讯系统中具有重要的应用价值。
附图说明
图1为Bi2O2Se纳米片的扫描电子显微镜图像。
图2a为MoO2.5/Bi2O2Se异质集成近红外光电传感器示意图;
图2b为MoO2.5/Bi2O2Se异质结的扫描电子显微镜图像。
图3为利用示波器表征的MoO2.5/Bi2O2Se器件瞬态光电响应。
图4为MoO2.5/Bi2O2Se近红外传感器在1310和1550nm光通讯波段的响应度。
图5为器件的稳定性测试。
具体实施方式
为了使本发明的目的、技术方案及优点更加清晰明了,以下结合附图及实施例,对本发明进行进一步详细说明,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。
制备二维硒氧化铋所需主要材料来源
Figure BDA0004019910970000051
实施例1
实施例1涉及基于MoO2.5/Bi2O2Se异质集成近红外光电传感器的制备方法,包括如下步骤:
1)Bi2O2Se的生长:
采用化学气相沉积法合成层状Bi2O2Se纳米片,所用基板为云母片;将Bi2O3(纯度为99.999%)和Bi2Se3(纯度为99.999%)粉末作为前驱体放置在陶瓷舟中。其中Bi2O3与Bi2Se3的用量比为2:1。Bi2O3位于管式加热炉的中间,Bi2Se3位于炉的上游。将管炉密封,用机械泵抽至低真空,用150sccm流速的高纯氩气体冲洗。生长时间为10min。在700℃的温度范围内,合成厚度可控的Bi2O2Se,厚度介于10-30nm之间,宽度介于10-100μm之间。
2)将Bi2O2Se片从云母基板转移到SiO2/Si晶圆上,具体流程如下:
a)将PMMA(聚甲基丙烯酸甲酯)在生长样品的云母上旋涂60秒,转速3000转。然后在180℃下退火90秒,刮去云母边缘的PMMA。
b)用HF溶液腐蚀掉下面的云母。而后将悬浮的PMMA膜转移到去离子水中,用SiO2/Si衬底舀起,将其浸泡于丙酮中24小时以去除PMMA。从而将Bi2O2Se片从云母基板转移到SiO2/Si晶圆上。利用扫描电子显微镜表征(SEM,FEI INSPECT F50)对生长的Bi2O2Se纳米片进行表征。如图1所示。
3)在SiO2/Si晶圆上旋涂光刻胶(聚甲基丙烯酸甲酯,PMMA),采用电子束光刻(FEI,fp2021/12INSPECT F50)在PMMA上刻蚀并显影得到电极图案。
4)采用热蒸发(TPRE-Z20-IV)沉积5nm Ni/50nm Au电极。蒸镀所用速率为
Figure BDA0004019910970000061
真空腔气压在10-5Pa量级。电极沉积后利用丙酮溶液浸泡器件以去除PMMA。从而得到在SiO2/Si晶圆上的Bi2O2Se光电探测器;
5)将样品再次旋转涂覆PMMA,然后用电子束光刻刻蚀出图案化阵列状纳米孔;
6)利用热蒸发在上述带有阵列图案的器件上沉积MoO3-x。蒸镀所用速率为
Figure BDA0004019910970000062
真空腔气压在10-5Pa量级。MoO3-x沉积后利用丙酮溶液浸泡器件以去除PMMA。从而得到在SiO2/Si晶圆上的Bi2O2Se/MoO3-x光电探测器。
图2a为MoO2.5/Bi2O2Se异质集成近红外光电传感器示意图。
图2b为MoO2.5/Bi2O2Se异质结的扫描电子显微镜图像。
4.器件性能表征:
a)利用脉冲激光器作为光源,示波器读取器件的光响应。利用e指数拟合得到器件的上升沿光电响应时间为~400ns。
b)利用Keithley 2612测试器件的光响应度。在1310和1550nm的两个重要光通讯波段,器件的响应度分别高达~24A/W和1A/W。
图3为利用示波器表征的MoO2.5/Bi2O2Se器件瞬态光电响应。
图4为MoO2.5/Bi2O2Se近红外传感器在1310和1550nm光通讯波段的响应度。从图4可以看出:MoO2.5/Bi2O2Se传感器的灵敏度比单纯Bi2O2Se器件提升10倍左右。
图5为器件的稳定性测试,从图5可以看出:实验发现器件在6个月后仍然保持较好的光响应。
以上所述仅为本发明的较佳实施例,并不用于限制本发明,凡在本发明的设计构思之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种基于MoO3-x/Bi2O2Se异质集成的近红外光电传感器的制备方法,其特征在于,包括如下步骤;
1)采用化学气相沉积法合成层状Bi2O2Se纳米片,所用基板为云母片;
2)将Bi2O2Se片从云母基板转移到SiO2/Si晶圆上,以用于后续在标准半导体工艺的晶圆上制备光电传感器;
3)在SiO2/Si晶圆上旋涂光刻胶聚甲基丙烯酸甲酯,即PMMA,采用电子束光刻,在PMMA上刻蚀并显影得到电极图案;
4)采用热蒸发沉积5 nm Ni /50 nm Au电极;电极沉积后利用丙酮溶液浸泡器件以去除PMMA;从而得到在SiO2/Si晶圆上的Bi2O2Se光电探测器;
5)将样品再次旋转涂覆PMMA,然后用电子束光刻刻蚀出图案化阵列状纳米孔;
6)利用热蒸发在上述带有阵列图案的器件上沉积MoO3-x;MoO3-x沉积后利用丙酮溶液浸泡器件以去除PMMA;从而得到在SiO2/Si晶圆上的Bi2O2Se/MoO3-x光电探测器;
其中,MoO3-x中的 3-x表示氧化钼中的氧原子含量,且0<x<1。
2.根据权利要求1所述的制备方法,其特征在于,所述步骤1)中,Bi2O2Se的制备过程具体如下:将纯度为99.999%的Bi2O3和纯度为99.999%的Bi2Se3粉末作为前驱体放置在陶瓷舟中,Bi2O3位于管式加热炉的中间,Bi2Se3位于炉的上游;将管炉密封,用机械泵抽至低真空,用100-150 sccm流速的高纯氩气体冲洗;生长时间为5 ~ 30 min,在550℃~ 750℃的温度范围内,合成厚度可控的Bi2O2Se,其中Bi2O3 与Bi2Se3的用量比为2:1。
3.根据权利要求1所述的制备方法,其特征在于,所述步骤2)中,将Bi2O2Se片从云母基板转移到SiO2/Si晶圆上的具体过程如下:
a) 将PMMA(聚甲基丙烯酸甲酯)在生长样品的云母上旋涂60秒,转速3000转;然后在180℃下退火90 秒,刮去云母边缘的PMMA;
b) 用HF溶液腐蚀掉下面的云母,而后将悬浮的PMMA膜转移到去离子水中,用SiO2/Si衬底舀起,将其浸泡于丙酮中24小时以去除PMMA,从而将Bi2O2Se片从云母基板转移到SiO2/Si晶圆上。
4.根据权利要求1所述的制备方法,其特征在于,所述步骤3)中,电子束光刻,具体为FEI, fp2021 /12 INSPECT F50。
5.根据权利要求1所述的制备方法,其特征在于,所述步骤4)中,热蒸发,具体为TPRE-Z20-IV。
6.根据权利要求1所述的制备方法,其特征在于,所述步骤4)中,蒸镀所用速率为0.3-0.5 Å/s, 真空腔气压在10-5 Pa量级。
7.根据权利要求1所述的制备方法,其特征在于,所述步骤6)中,蒸镀所用速率为0.4-0.5 Å/s, 真空腔气压在10-5 Pa量级。
CN202211683606.0A 2022-12-27 2022-12-27 一种基于MoO3-x/Bi2O2Se异质集成的近红外光电传感器的制备方法 Pending CN116053338A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211683606.0A CN116053338A (zh) 2022-12-27 2022-12-27 一种基于MoO3-x/Bi2O2Se异质集成的近红外光电传感器的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211683606.0A CN116053338A (zh) 2022-12-27 2022-12-27 一种基于MoO3-x/Bi2O2Se异质集成的近红外光电传感器的制备方法

Publications (1)

Publication Number Publication Date
CN116053338A true CN116053338A (zh) 2023-05-02

Family

ID=86117448

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211683606.0A Pending CN116053338A (zh) 2022-12-27 2022-12-27 一种基于MoO3-x/Bi2O2Se异质集成的近红外光电传感器的制备方法

Country Status (1)

Country Link
CN (1) CN116053338A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117096206A (zh) * 2023-10-17 2023-11-21 北京大学 一种基于铋氧硒-钙钛矿异质结的光感算一体器件及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117096206A (zh) * 2023-10-17 2023-11-21 北京大学 一种基于铋氧硒-钙钛矿异质结的光感算一体器件及其制备方法

Similar Documents

Publication Publication Date Title
KR101558801B1 (ko) 그래핀-실리콘 양자점 하이브리드 구조를 이용한 포토 다이오드 및 그 제조방법
TWI705577B (zh) 二維電子元件與相關製造方法
Lu et al. Epitaxial growth of large-scale In 2 S 3 nanoflakes and the construction of a high performance In 2 S 3/Si photodetector
Choi et al. Lithographic fabrication of point contact with Al2O3 rear-surface-passivated and ultra-thin Cu (In, Ga) Se2 solar cells
CN111725348B (zh) 高光响应TiO2/MoS2异质结可见光探测器及制备
CN116053338A (zh) 一种基于MoO3-x/Bi2O2Se异质集成的近红外光电传感器的制备方法
CN113013263A (zh) 一种增强型二维半导体光电探测器及其制备方法
CN116314386A (zh) 混维范德瓦尔斯异质结光电探测器及其制备方法
Abdul-Hameed et al. Fabrication of a high sensitivity and fast response self-powered photosensor based on a core-shell silicon nanowire homojunction
Zhao et al. Ultrasensitive Self-Powered Deep-Ultraviolet Photodetector Based on In Situ Epitaxial Ga₂O₃/Bi₂Se₃ Heterojunction
CN110190150A (zh) 基于硒化钯薄膜/硅锥包裹结构异质结的宽波段高性能光电探测器及其制作方法
CN113964230A (zh) 一种硫硒化亚锡纳米片/GaAs异质结光电二极管及其制备方法和应用
CN116314424A (zh) 多波段紫外光电探测器及其制备方法
CN114497248A (zh) 一种基于混维Sn-CdS/碲化钼异质结的光电探测器及其制备方法
Gupta et al. Ultraviolet light detection properties of ZnO/AlN/Si heterojunction diodes
Srivastava et al. Silicon nanowire arrays based “black silicon” solar cells
Xu et al. Band gap engineering of amorphous MgSnO film for deep-ultraviolet photodetection
CN114420784B (zh) 一种基于二硒化铂和硅的异质结结构及光电探测器、及其制备方法
CN116110985B (zh) 集成非对称F-P腔的InSe基日盲紫外光电探测器
CN216648333U (zh) 一种基于二硒化铂和硅的异质结结构的光电探测器
CN114759104B (zh) 基于ⅱ型范德华异质结近红外偏振光电探测器及其制备方法
CN116705894A (zh) 一种自驱动光电探测器及其制备方法和应用
CN117976759A (zh) 一种范德华异质结光电探测器及其制备方法和应用
CN117727816A (zh) CuOx/WSe2异质结光电探测器及其制备方法
Veeramalai et al. Photoelectronic properties of antimony selenide nanowire synthesized by hydrothermal method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination