CN114497248A - 一种基于混维Sn-CdS/碲化钼异质结的光电探测器及其制备方法 - Google Patents

一种基于混维Sn-CdS/碲化钼异质结的光电探测器及其制备方法 Download PDF

Info

Publication number
CN114497248A
CN114497248A CN202111493107.0A CN202111493107A CN114497248A CN 114497248 A CN114497248 A CN 114497248A CN 202111493107 A CN202111493107 A CN 202111493107A CN 114497248 A CN114497248 A CN 114497248A
Authority
CN
China
Prior art keywords
cds
mote
heterojunction
mixed
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111493107.0A
Other languages
English (en)
Inventor
张黎
韩晓宁
张诗豪
李京波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China Normal University
Original Assignee
South China Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China Normal University filed Critical South China Normal University
Priority to CN202111493107.0A priority Critical patent/CN114497248A/zh
Publication of CN114497248A publication Critical patent/CN114497248A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0328Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
    • H01L31/0336Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032 in different semiconductor regions, e.g. Cu2X/CdX hetero- junctions, X being an element of Group VI of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035227Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum wires, or nanorods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明属于电子器件技术领域,公开了一种基于混维Sn‑CdS/碲化钼异质结的光电探测器及其制备方法。所述光电探测器的结构为电极/Sn‑CdS/MoTe2异质结/电极;所述Sn‑CdS/MoTe2异质结中Sn‑CdS为Sn掺杂CdS纳米线,MoTe2为纳米片;Sn‑CdS/MoTe2异质结不与电极接触。该基于混维Sn‑CdS/MoTe2异质结的光电探测器具有优越的吸光能力与载流子传输能力。该光电探测器在325~808nm波长内具有较高的响应率(400~600mA/W)和探测率(1012~1013Jones)。本发明的工艺简单易操作,为基于混维半导体材料异质结的高性能光电探测器的研究提供了思路。

Description

一种基于混维Sn-CdS/碲化钼异质结的光电探测器及其制备 方法
技术领域
本发明属于电子器件技术领域,更具体地,涉及一种基于混维Sn-CdS/碲化钼(MoTe2)异质结的光电探测器及其制备方法。
背景技术
自2004年石墨烯被机械剥离出来以来,研究者已经发现和研究了许多二维材料,如黑磷、h-BN和过渡金属二硫属元素化物(TMD)。其中,碲化钼(MoTe2)具有独特的特性,如高外量子产率(10-15%)、高载流子迁移率(30-40cm2/Vs)和自旋轨道耦合较大,使其成为下一代光电子学应用的候选者。然而,仍存在一些固有的材料问题,基于单个MoTe2的光电探测器的性能总是不尽如人意。一方面,由于其纳米级(10-100nm)的厚度,2D MoTe2表现出较差的光吸收(光吸收系数4-5×104cm-1)。此外,带电杂质的散射、来自相邻电介质的界面库仑杂质和表面极性声子散射都会影响光生载流子的传输。另一方面,由于缺乏有效的光电导增益,在激发一个入射光子时不能产生多个电荷载流子。因此,单个基于MoTe2的光电探测器件的响应度通常非常低。
构建由二维材料和其他低维材料组成的异质结光电探测器已被证明是提高器件性能的有效方法之一。特别是,由于二维材料的无悬空键表面,可以在不考虑晶格匹配的情况下轻松构建范德华异质结(vdWs)。在这方面,硫化镉(CdS)作为吸引人的光电子学光敏材料而备受关注。CdS具有独特的特性,包括室温下2.4eV的直接带隙、较强的光与物质相互作用、以及出色的热和化学稳定性。此外,CdS还表现出出色的载流子传输能力,使光生载流子能够快速有效地移动。因此,结合各组分的优点构建由二维MoTe2和CdS纳米结构组成的混合结构是高性能光电探测器的潜在解决方案。
发明内容
为了解决以上半金属基的光电探测器面临的问题,本发明的首要目的在于提供一种基于混维Sn-CdS/MoTe2异质结的光电探测器。采用Sn掺杂CdS纳米线与二维MoTe2构建的混维异质结,以解决单一材料存在的偏压下较大的暗电流(10-7~10-6A)、光吸收较差和光电导增益较小等问题,实现了高响应度(400~600mA/W),高探测率(1012~1013Jones)、宽谱快速(8~15ms)的光响应。
本发明的另一目的在于提供上述基于混维Sn-CdS/MoTe2异质结的光电探测器的制备方法。
本发明的再一目的在于提供上述基于混维Sn-CdS/MoTe2异质结的光电探测器的应用。
本发明的目的通过下述技术方案来实现:
一种基于混维Sn-CdS/MoTe2异质结的光电探测器,所述光电探测器的结构为电极/Sn-CdS/MoTe2异质结/电极;所述Sn-CdS/MoTe2异质结中Sn-CdS为Sn掺杂CdS纳米线,MoTe2为纳米片;所述Sn掺杂CdS纳米线与MoTe2纳米片构建为垂直异质结,Sn-CdS/MoTe2异质结不与电极接触。
优选地,所述电极为Ti/Au,Ti的厚度为8~12nm,Au的厚度为45~55nm。
优选地,所述Sn掺杂CdS纳米线中Sn掺杂量为1~3%,Sn掺杂CdS纳米线的长度为100~500μm,直径在1~5μm。
优选地,所述MoTe2的厚度为10~30nm。
所述的基于混维Sn-CdS/MoTe2异质结的光电探测器的制备方法,包括如下具体步骤:
S1.采用化学气相生长法得到的Sn掺杂CdS纳米线,将单根纳米线放到Si/SiO2衬底的表面,并在80~100℃加热,使纳米线与衬底贴合,制得Sn掺杂CdS纳米线/Si/SiO2衬底;
S2.采用机械剥离法剥离MoTe2晶体,在硅片衬底上得到MoTe2纳米片;
S3.采用干法转移的法将MoTe2纳米片转移到步骤S1的Sn掺杂CdS纳米线上,得到Sn-CdS/MoTe2异质结;
S4.分别在MoTe2纳米片与Sn-CdS纳米线的边缘制作Ti/Au电极,在真空条件下150~200℃退火,制得电极/Sn-CdS/MoTe2异质结/电极,即为基于混维Sn-CdS/MoTe2异质结的光电探测器。
优选地,步骤S1中所述加热的时间为10~20min。
优选地,步骤S4中所述退火的时间为20~30min。
所述的基于混维Sn-CdS/MoTe2异质结的光电探测器在宽带快速光电探测、成像或光电通讯领域中的应用。
本发明基于混维Sn-CdS/MoTe2异质结的光电探测器。相对于单一的材料,构建的异质结光电探测器结合了一维Sn-CdS纳米线的较为出色的载流子传输能力与二维层状MoTe2的高外量子产率、高载流子迁移率和自旋轨道耦合较大等优点,表现出优越的吸光能力与载流子传输能力。另外,CdS与MoTe2两种材料间的势垒差,在异质结构的结区产生了有效的内建电场,使光生载流子能够在结区快速的分离,随后快速的传输到两端电极。具体地,Sn-CdS/MoTe2异质结探测器在325~808nm光波长范围内具有较高的响应率(400~600mA/W)与探测率(1012~1013Jones)。并且,异质结探测器在可见波长范围内的响应时间为8~15ms,比Sn掺杂CdS纳米线探测器40~90ms的响应速度得到了一定的改善。本发明的工艺简单易操作,为基于混维半导体材料异质结的高性能光电探测器的进一步研究提供了思路。
与现有技术相比,本发明具有以下有益效果:
1.本发明的基于混维Sn-CdS/MoTe2异质结的光电探测器采用了Sn掺杂CdS纳米线,使得光电探测器的探测波长范围得到了拓宽,从纯CdS的520~550nm拓宽到808~1000nm。
2.本发明基于混维Sn-CdS/MoTe2异质结的光电探测器利用Sn掺杂的CdS纳米线与MoTe2纳米片构建的异质结结区产生的内建电场,有效的将光生载流子进行分离,使其光电器件在可见的波长范围内在0V偏压,405nm光照下,具有高响应度(400~600mA/W),高探测率(1012~1013Jones)、宽谱快速(8~15ms)的光响应;其响应时间比Sn掺杂CdS纳米线探测器(40~90ms)的响应速度得到了改善。
3.本发明的工艺简单易操作,为基于混维半导体材料的异质结高性能光探测器的进一步研究提供了思路。
附图说明
图1为实施例1中Sn-CdS纳米线的SEM照片和MoTe2的原子结构图像。
图2为实施例2中基于Sn-CdS纳米线/MoTe2异质结的光电探测器的光学图像。
图3为实施例2中基于Sn-CdS纳米线/MoTe2异质结的光电探测器的制备流程示意图。
图4为实施例2中基于Sn-CdS纳米线/MoTe2异质结的光电探测器的光电性能。
具体实施方式
下面结合具体实施例进一步说明本发明的内容,但不应理解为对本发明的限制。若未特别指明,实施例中所用的技术手段为本领域技术人员所熟知的常规手段。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。
实施例1
将CdS固体粉末和SnO2粉末研磨并混合均匀(质量比为10:1~12:1),得到前驱体混合粉末;将硅衬底分别用丙酮、乙醇、去离子水各超声清洗,随后用氮气枪吹干,得到预处理的硅片衬底;用氢气和氩气的混合气体(8~10%)通过石英管排气1~2h,将石英管内的空气排净后,将前驱体混合粉末倒入瓷舟中,置于管式炉的中心加热温区位置,在900~950℃反应,加热过程中,气流速率保持为20~30sccm,将预处理的硅衬底置于距中心加热温区12~13cm处的下游沉积区的瓷舟上,反应结束后自然降至室温,在石英管内壁和硅衬底上得到Sn-CdS纳米线。
图1为实施例1中Sn-CdS纳米线的SEM照片和MoTe2的原子结构图像。其中,(a)为Sn-CdS纳米线分散到硅片衬底上的SEM图像;插图为单根Sn-CdS纳米线的扫描电子显微镜照片,(b)为MoTe2的原子结构图。从图1中(a)可以清楚的看到Sn-CdS纳米线的表面十分的光滑且洁净。纳米线的长度在100~500μm之间,直径在500nm~5μm之间。Sn-CdS纳米线的尾端截面为六边形,进一步说明其纤锌矿结构。从图1中(b)可以看出MoTe2具有Te-Mo-Te的层状结构,其中两个带有Te原子的六边形平面被一个Mo原子平面隔开,再次表明2H-MoTe2属于空间群(P63/mmc)。
实施例2
1.将实施例1中采用化学气相生长方法得到的Sn掺杂CdS纳米线分散到Si/SiO2衬底上,并在显微镜下用探针的尖端挑出单根纳米线(长度100~500μm,直径为500nm~5μm)到Si/SiO2衬底的表面,并在热台上80℃加热10~20min,使Sn掺杂CdS纳米线与Si/SiO2衬底较好地贴合,使纳米线与衬底贴合;
2.采用机械剥离法用热释放胶带反复重叠,剥离MoTe2晶体,再将胶带置于干净的硅片衬底上,在设置为50-60℃的热台上加热30~60s,再从热台上取下,均匀按压后慢慢撕下,在硅片衬底上得到MoTe2纳米片;
3.采用干法转移的方法将MoTe2纳米片转移到步骤1的Sn掺杂CdS纳米线上,得到Sn-CdS/MoTe2垂直异质结;
4.分别在MoTe2与Sn-CdS纳米线边缘制作Ti/Au金属电极,在真空条件下150℃退火30min,以保证MoTe2纳米片、Sn-CdS纳米线与各自端的金属电极接触良好,制得电极/Sn-CdS/MoTe2异质结/电极,即为基于混维Sn-CdS/MoTe2异质结的光电探测器,其制备流程示意图如图3所示。
图2为实施例2中基于Sn-CdS纳米线/MoTe2异质结的光电探测器的光学图像(标尺为5nm)。如图2所示,光电探测器的结构为电极/Sn-CdS/MoTe2异质结/电极;所述Sn-CdS/MoTe2异质结中Sn-CdS为Sn掺杂CdS纳米线,MoTe2为纳米片;Sn掺杂CdS纳米线与MoTe2纳米片构建的平行异质结,Sn-CdS/MoTe2异质结不与电极接触。电极为Ti/Au金属,Ti的厚度为8~12nm、Au的厚度为45~55nm;Sn掺杂CdS纳米线中Sn掺杂量为1~3%,长度为100~500μm,直径为500nm~5μm,MoTe2纳米片的厚度在10~30nm。
图4为实施例2中基于Sn-CdS/MoTe2异质结的光电探测器的光电性能。其中,a-e分别为在325nm、405nm、532nm、635nm和808nm光照下,异质结光电探测器随时间变化的光开关图像。从图4可知,在0V偏压下,在最优波长405nm光照下,基于Sn-CdS/MoTe2异质结的光电探测的探测率可达到1012~1013Jones,响应率为400~600mA/W,在可见波长范围内的响应时间为8~15ms。由此可知,在325~808nm波段光的光照下,基于Sn-CdS/MoTe2异质结的光电探测具有较好光开关的重现性和稳定性、光响应性能稳定、响应速度快和灵敏度高等特点,上述优异的性能使基于Sn-CdS/MoTe2异质结的光电探测器在宽带快速光电探测器中具有广阔的应用前景。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合和简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (8)

1.一种基于混维Sn-CdS/碲化钼异质结的光电探测器,其特征在于,所述光电探测器的结构为电极/Sn-CdS/MoTe2异质结/电极;所述Sn-CdS/MoTe2异质结中Sn-CdS为Sn掺杂CdS纳米线,MoTe2为纳米片;所述Sn掺杂CdS纳米线与MoTe2纳米片构建为垂直异质结,Sn-CdS/MoTe2异质结不与电极接触。
2.根据权利要求1所述的基于混维Sn-CdS/碲化钼异质结的光电探测器,其特征在于,所述电极为Ti/Au,Ti的厚度为8~12nm,Au的厚度为45~55nm。
3.根据权利要求1所述的基于混维Sn-CdS/碲化钼异质结的光电探测器,其特征在于,所述Sn掺杂CdS纳米线中Sn掺杂量为1~3%,Sn掺杂CdS纳米线的长度为100~500μm,直径在1~5μm。
4.根据权利要求1所述的基于混维Sn-CdS/碲化钼异质结的光电探测器,其特征在于,所述MoTe2的厚度为10~30nm。
5.一种根据权利要求1-4任一项所述的基于混维Sn-CdS/碲化钼异质结的光电探测器的制备方法,其特征在于,包括如下具体步骤:
S1.采用化学气相生长法得到的Sn掺杂CdS纳米线,将单根纳米线放到Si/SiO2衬底的表面,并在80~100℃加热,使纳米线与衬底贴合,制得Sn掺杂CdS纳米线/Si/SiO2衬底;
S2.采用机械剥离法剥离MoTe2晶体,在硅片衬底上得到MoTe2纳米片;
S3.采用干法转移的法将MoTe2纳米片转移到步骤S1的Sn掺杂CdS纳米线上,得到Sn-CdS/MoTe2异质结;
S4.分别在MoTe2纳米片与Sn-CdS纳米线的边缘制作Ti/Au电极,在真空条件下150~200℃退火,制得电极/Sn-CdS/MoTe2异质结/电极,即为基于混维Sn-CdS/MoTe2异质结的光电探测器。
6.根据权利要求5所述的基于混维Sn-CdS/碲化钼异质结的光电探测器的制备方法,其特征在于,步骤S1中所述加热的时间为10~20min。
7.根据权利要求5所述的基于混维Sn-CdS/碲化钼异质结的光电探测器的制备方法,其特征在于,步骤S4中所述退火的时间为20~30min。
8.权利要求1-4任一项所述的基于混维Sn-CdS/碲化钼异质结的光电探测器在宽带快速光电探测、成像或光电通讯领域中的应用。
CN202111493107.0A 2021-12-08 2021-12-08 一种基于混维Sn-CdS/碲化钼异质结的光电探测器及其制备方法 Pending CN114497248A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111493107.0A CN114497248A (zh) 2021-12-08 2021-12-08 一种基于混维Sn-CdS/碲化钼异质结的光电探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111493107.0A CN114497248A (zh) 2021-12-08 2021-12-08 一种基于混维Sn-CdS/碲化钼异质结的光电探测器及其制备方法

Publications (1)

Publication Number Publication Date
CN114497248A true CN114497248A (zh) 2022-05-13

Family

ID=81492879

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111493107.0A Pending CN114497248A (zh) 2021-12-08 2021-12-08 一种基于混维Sn-CdS/碲化钼异质结的光电探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN114497248A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117186462A (zh) * 2023-11-08 2023-12-08 华中科技大学 一种具有取向桥接结构的聚合物基柔性薄膜、制备及应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101979723A (zh) * 2010-11-23 2011-02-23 东华大学 一种p型CdS纳米线的制备方法
CN108002445A (zh) * 2017-12-08 2018-05-08 温州大学 硫化铼的制备以及硫化镉/硫化铼复合材料
CN109742177A (zh) * 2018-12-24 2019-05-10 北京科技大学 具有周期性应变的范德华异质结型光电探测器及制备方法
US20210151700A1 (en) * 2019-11-20 2021-05-20 Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) Photodetector based on transition metal dichalcogen compound and method of manufacturing the same
CN113224143A (zh) * 2021-04-22 2021-08-06 南京理工大学 基于二硫化钨/锑化镓结型场效应晶体管及其制备方法
CN113471310A (zh) * 2021-06-25 2021-10-01 华南师范大学 一种基于混维体系的高增益光探测器及其制备方法
WO2021223343A1 (zh) * 2020-05-07 2021-11-11 南京南大光电工程研究院有限公司 氮化镓二硫化钼混合尺度pn结的制备方法
CN113735160A (zh) * 2021-07-30 2021-12-03 华南师范大学 一种利用Sn纳米线作为模板引导生长CdS分支结构及其催化生长方法和应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101979723A (zh) * 2010-11-23 2011-02-23 东华大学 一种p型CdS纳米线的制备方法
CN108002445A (zh) * 2017-12-08 2018-05-08 温州大学 硫化铼的制备以及硫化镉/硫化铼复合材料
CN109742177A (zh) * 2018-12-24 2019-05-10 北京科技大学 具有周期性应变的范德华异质结型光电探测器及制备方法
US20210151700A1 (en) * 2019-11-20 2021-05-20 Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) Photodetector based on transition metal dichalcogen compound and method of manufacturing the same
WO2021223343A1 (zh) * 2020-05-07 2021-11-11 南京南大光电工程研究院有限公司 氮化镓二硫化钼混合尺度pn结的制备方法
CN113224143A (zh) * 2021-04-22 2021-08-06 南京理工大学 基于二硫化钨/锑化镓结型场效应晶体管及其制备方法
CN113471310A (zh) * 2021-06-25 2021-10-01 华南师范大学 一种基于混维体系的高增益光探测器及其制备方法
CN113735160A (zh) * 2021-07-30 2021-12-03 华南师范大学 一种利用Sn纳米线作为模板引导生长CdS分支结构及其催化生长方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YANFANG GONG等: "Vapor growth of CdS nanowires/WS2 nanosheet heterostructures with sensitive photodetections", 《NANOTECHNOLOGY》, vol. 30, no. 34, pages 1 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117186462A (zh) * 2023-11-08 2023-12-08 华中科技大学 一种具有取向桥接结构的聚合物基柔性薄膜、制备及应用
CN117186462B (zh) * 2023-11-08 2024-02-02 华中科技大学 一种具有取向桥接结构的聚合物基柔性薄膜、制备及应用

Similar Documents

Publication Publication Date Title
Sun et al. Heterostructured graphene quantum dot/WSe 2/Si photodetector with suppressed dark current and improved detectivity
Liu et al. Non-planar vertical photodetectors based on free standing two-dimensional SnS 2 nanosheets
Wang et al. Broadband photodetectors based on 2D group IVA metal chalcogenides semiconductors
Ma et al. High efficiency graphene/MoS2/Si Schottky barrier solar cells using layer-controlled MoS2 films
Han et al. A high performance self-powered photodetector based on a 1D Te–2D WS 2 mixed-dimensional heterostructure
WO2017166878A1 (zh) 具有高光电响应率的黑磷晶体、二维黑磷pn结及其制备方法与应用
CN109065662B (zh) 一种Te/MoS2范德华异质结构及其制备方法和应用
CN113964219A (zh) 一种基于拓扑绝缘体/二碲化钼异质结的光电晶体管及其制备方法和应用
TW201001726A (en) Techniques for enhancing efficiency of photovoltaic devices using high-aspect-ratio nanostructures
Xie et al. p-CdTe nanoribbon/n-silicon nanowires array heterojunctions: photovoltaic devices and zero-power photodetectors
Lu et al. Epitaxial growth of large-scale In 2 S 3 nanoflakes and the construction of a high performance In 2 S 3/Si photodetector
Sun et al. SbSI whisker/PbI 2 flake mixed-dimensional van der Waals heterostructure for photodetection
Hazra et al. A p-silicon nanowire/n-ZnO thin film heterojunction diode prepared by thermal evaporation
EP3396721A1 (en) Two-dimensional electronic devices and related fabrication methods
Ye et al. Si-CMOS-compatible 2D PtSe2-based self-driven photodetector with ultrahigh responsivity and specific detectivity
JP5379811B2 (ja) 高アスペクト比ナノ構造体を用いた光起電デバイス及びその作成方法
Das et al. SnS2/Si nanowire vertical heterostructure for high performance ultra-low power broadband photodetector with excellent detectivity
Zhao et al. Van der Waals epitaxy of ultrathin crystalline PbTe nanosheets with high near-infrared photoelectric response
Jiang et al. Van der Waals epitaxial growth of two-dimensional PbSe and its high-performance heterostructure devices
Wu et al. Van der Waals integration inch-scale 2D MoSe2 layers on Si for highly-sensitive broadband photodetection and imaging
Zhang et al. Graphene/InP Schottky junction near-infrared photodetectors
CN114497248A (zh) 一种基于混维Sn-CdS/碲化钼异质结的光电探测器及其制备方法
Zhu et al. High-performance near-infrared PtSe2/n-Ge heterojunction photodetector with ultrathin Al2O3 passivation interlayer
Fang et al. High-responsivity solar-blind ultraviolet photodetectors based on carbon nanodots/graphene hybrids
Song et al. Self-powered photodetectors based on a ZnTe–TeO 2 composite/Si heterojunction with ultra-broadband and high responsivity

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination