CN109065662B - 一种Te/MoS2范德华异质结构及其制备方法和应用 - Google Patents

一种Te/MoS2范德华异质结构及其制备方法和应用 Download PDF

Info

Publication number
CN109065662B
CN109065662B CN201810697981.8A CN201810697981A CN109065662B CN 109065662 B CN109065662 B CN 109065662B CN 201810697981 A CN201810697981 A CN 201810697981A CN 109065662 B CN109065662 B CN 109065662B
Authority
CN
China
Prior art keywords
mos
der waals
layer
van der
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810697981.8A
Other languages
English (en)
Other versions
CN109065662A (zh
Inventor
何军
李宁宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Nanoenergy and Nanosystems
Original Assignee
Beijing Institute of Nanoenergy and Nanosystems
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Nanoenergy and Nanosystems filed Critical Beijing Institute of Nanoenergy and Nanosystems
Priority to CN201810697981.8A priority Critical patent/CN109065662B/zh
Publication of CN109065662A publication Critical patent/CN109065662A/zh
Application granted granted Critical
Publication of CN109065662B publication Critical patent/CN109065662B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0328Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
    • H01L31/0336Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032 in different semiconductor regions, e.g. Cu2X/CdX hetero- junctions, X being an element of Group VI of the Periodic Table
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • H01L31/1836Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe comprising a growth substrate not being an AIIBVI compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明提供一种Te/MoS2范德华异质结构,包括MoS2纳米片层和Te纳米线层,所述Te纳米线层外延生长在所述MoS2纳米片层表面。本发明的范德华异质结构用窄带隙的具有一维结构的Te纳米线作为红外吸收层,具有二维结构的MoS2纳米片作为导电沟道,该结构化学性质稳定。应用于红外探测器件中,使得红外探测器件工作于光伏机理,有良好的性能,在通信波长1550nm处同时表现出超高的响应度(1.9×103A/W)和快速的响应时间(τrising=15ms,τdecay=32ms);本发明通过物理气相沉积方法制备所述Te/MoS2范德华异质结构,具有成本低、工艺简单、合成速度快等优点。

Description

一种Te/MoS2范德华异质结构及其制备方法和应用
技术领域
本发明涉及无机半导体纳米材料技术领域,尤其涉及一种 Te/MoS2范德华异质结构及其制备方法和应用。
背景技术
红外探测在通信、热成像、生物成像以及遥感技术等领域都具有非常重要的应用。因此,研制高性能红外探测器是国家在民用、军用等关键领域的迫切需求。而目前常用的硅基半导体器件已经达到了摩尔定律的极限,另外,由于硅本身的带隙限制(~1.1eV),只能吸收波长小于1100nm的光。为了突破传统硅的局限性,需要寻找新的材料体系或器件结构来提高器件的工作波长范围以及红外探测性能。
近年来,二维层状材料的发现为红外探测的发展提供了很好的契机。其超薄的厚度,由层数精确调控的带隙,很好的机械柔韧性以及可任意组装成范德华异质结构的优势特性,使其在光电子领域表现出巨大的应用潜力。其中,石墨烯和黑磷被广泛用于红外探测的研究,但石墨烯对光的弱吸收以及黑磷的不稳定严重限制了其应用。
为了提高对红外光的吸收,一种基于半导体量子点与二维材料的混合维度的杂化结构逐渐成为人们研究的焦点。在这类杂化结构中,量子点作为红外吸收层,二维材料作为导电沟道,极大地提高了红外探测的性能。然而,水热法合成的量子点会带来大量的体缺陷和界面缺陷,使得这类探测器工作于缺陷辅助的光电导机制-光栅机制,导致在获得高响应度的同时会严重减慢响应速度。
发明内容
针对现有技术存在的问题,本发明提供一种Te/MoS2范德华异质结构及其制备方法和应用。
本发明提供的一种Te/MoS2范德华异质结构,包括MoS2纳米片层和Te纳米线层,所述Te纳米线层外延生长在所述MoS2纳米片层表面。
上述技术方案中,Te/MoS2范德华异质结构用窄带隙(Eg=0.35eV) 的具有一维结构的Te纳米线作为红外吸收层,具有二维结构的MoS2纳米片作为导电沟道,该结构化学性质稳定。将这样高质量的Te/MoS2范德华异质结构引入红外探测器件中,使得红外探测器件具有非常好的性能,表现出超高的响应度和快速的响应时间。
优选地,所述Te纳米线层由多条Te纳米线构成,所述Te纳米线的长度为2~10μm,更优选为2~5μm。
优选地,所述Te纳米线的厚度为20~100nm,更优选为30~80nm。
优选地,所述MoS2纳米片层为单层MoS2纳米片,所述MoS2纳米片厚度为0.8nm。
优选地,所述Te/MoS2范德华异质结构还包括基底,所述MoS2纳米片层平行生长在所述基底上,所述基底优选为硅片。
本发明还提供上述Te/MoS2范德华异质结构的制备方法,包括:利用物理气相沉积法在所述MoS2纳米片层的表面外延生长所述Te纳米线层。
上述技术方案中,利用物理气相沉积法进行制备,不同于传统的水热合成法,不会给量子点带来大量的体缺陷和界面缺陷,所以制备得到的范德华异质结构在应用于红外探测时,既可以获得高响应度又能有快速的响应速度;而且上述制备方法成本低、工艺简单、合成速度快。
优选地,所述物理气相沉积法具体包括:将所述MoS2纳米片层和Te粉分别置于单温区管式炉的下游和上游,持续通入氩气,使所述 Te粉在所述MoS2纳米片层的表面外延生长成所述Te纳米线层。
优选地,所述单温区管式炉的下游温度为180~250℃,更优选为 220℃。
优选地,所述单温区管式炉的上游温度为280~320℃,更优选为 300℃。
优选地,所述通入氩气的流量为30~50sccm;
优选地,所述外延生长时间为15~30min,更优选为20min。
优选地,所述制备方法还包括:所述MoS2纳米片层通过化学气相沉积法制备得到。
作为一种优选的具体实施方式,上述Te/MoS2范德华异质结构的制备方法,具体包括以下步骤:
(1)将MoO3粉和S粉分别置于双温区管式炉的下游和上游,硅片置于MoO3粉的上方,用氩气清洗石英管后,将下游的温度升为 800~900℃,上游温度升为180~220℃,持续通入氩气的流量为30~50 sccm,生长时间为5~15min,得到生长在硅片上的MoS2纳米片层;
(2)将步骤(1)得到的生长在硅片上的MoS2纳米片层和Te粉末分别置于单温区管式炉的下游和上游,将下游的温度升为 180~250℃,上游温度升为280~320℃,持续通入氩气的流量为30~50 sccm,生长时间为15~30min,即得。
本发明另一目的还提供上述Te/MoS2范德华异质结构或上述制备方法在红外探测方面的应用。
本发明的范德华异质结构用窄带隙(Eg=0.35eV)的具有一维结构的Te纳米线作为红外吸收层,具有二维结构的MoS2纳米片作为导电沟道,该结构化学性质稳定。将这样高质量的Te/MoS2范德华异质结构引入红外探测器件中,使得红外探测器件工作于光伏机理,有良好的性能,在通信波长1550nm处同时表现出超高的响应度(1.9×103A/W) 和快速的响应时间(τrising=15ms,τdecay=32ms);本发明通过物理气相沉积方法制备所述Te/MoS2范德华异质结构,具有成本低、工艺简单、合成速度快等优点。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例1中Te/MoS2范德华异质结构的制备流程示意图;
图2a为本发明实施例1中Te/MoS2范德华异质结构的SEM图,图2b为Te纳米线在MoS2纳米片层上定向生长的直方统计图;
图3为本发明实施例1中Te/MoS2范德华异质结构的局部原子力显微镜图,插图为Te/MoS2范德华异质结构的光学显微镜图;
图4为本发明实施例1中Te/MoS2范德华异质结构中MoS2纳米片的原子力显微镜图;
图5a为Te和MoS2重叠部分的MoS2以及单独MoS2的拉曼光谱图,图5b为Te和MoS2重叠部分的MoS2以及单独MoS2的光致发光谱图;
图6为基于Te/MoS2范德华异质结构的红外探测器的性能分析结果;
图7为基于Te/MoS2异质结二极管的光电测试分析结果;
图8为栅压为80V时的负响应的光开关曲线。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
本实施例提供一种Te/MoS2范德华异质结构,包括MoS2纳米片层和Te纳米线层,所述Te纳米线层外延生长在所述MoS2纳米片层表面。
本实施例还提供了上述Te/MoS2范德华异质结构的制备方法(其流程图如图1所示),包括以下步骤:
(1)将双氧水和浓硫酸按体积比为1:3的比例混合,放入切好的硅片,在140℃的温度下加热3h,然后依次用丙酮、乙醇和去离子水各超声20min,用氮气吹干;
(2)将MoO3粉和S粉分别置于双温区管式炉的下游中心温区和上游中心温区,硅片置于MoO3粉的上方,用氩气清洗石英管后,将下游中心温区的温度升为850℃,上游中心温区温度升为200℃,持续通入流量为40sccm的氩气,生长时间为10min,得到生长在硅片上的MoS2纳米片层;
(3)将Te粉和步骤(2)所得的MoS2纳米片层分别置于单温区管式炉的上游距中心9cm处和下游距中心20cm处,用氩气反复清洗石英管后,将炉温升高到320℃,在这个控制条件下,上游的Te粉处温度约为300℃,下游的MoS2纳米片层的温度约为220℃,保持氩气流量为38sccm,外延生长时间为20min,得到生长在硅片上的Te/MoS2范德华异质结构。
对制得的Te/MoS2范德华异质结构进行性能测试,结果如下:
图2a为Te/MoS2范德华异质结构的SEM图,从图中可以看出,绝大多数Te纳米线按三个特定方向(0°、60°、120°)生长,Te纳米线长度约为2~5μm;
图2b为对图2a中Te纳米线在MoS2纳米片层上定向生长的直方统计图,从图中可以看出,86%的Te纳米线会按三个特定方向(0°、 60°、120°)生长;
图3为其中三根纳米线的原子力显微镜(AFM)图,从图中可以看出,厚度分别为25.1nm、31.4nm和31.6nm。插图为Te/MoS2范德华异质结构的光学显微镜(OM)图。
图4为MoS2纳米片的原子力显微镜图,从图中可以看出,厚度为0.8nm。
图5a为Te和MoS2重叠部分的MoS2以及单独MoS2的拉曼光谱图,从图中可以看出,和单独的MoS2相比,被Te覆盖的MoS2的A1g峰位有明显的红移(~2cm-1),揭示了Te和MoS2之间有效的电荷转移,而且峰的强度有了明显的降低,主要是由于Te纳米线的堆垛抑制了 MoS2的面外振动;
图5b为Te和MoS2重叠部分的MoS2以及单独MoS2的光致发光谱图,由图中可以看出,和单独的MoS2相比,被Te覆盖的MoS2的 A激子峰的峰位红移再次验证了Te和MoS2两者之间有效的电荷转移。以上测试结果表明了Te和MoS2之间很强的界面耦合作用。
应用例1
将实施例1中的Te/MoS2范德华异质结构通过EBL以及热蒸镀等工艺做成三端器件,检测其在红外探测方面的应用性能。
如图6a所示,是基于Te/MoS2范德华异质结构的红外探测器的原理图,Te纳米线层作为红外吸收层,MoS2纳米片层作为导电沟道;
图6b是该器件在1550nm波长的红外光的不同入射功率密度下的 I-V转移特性曲线图,可以看出,电流随着入射光功率密度的增大有了明显的增大;
图6c是该器件的响应度与栅压的关系图,可以看出,随栅压的增大,响应度也逐渐增大,最大响应度可达1.9×103A/W;
图6d是该器件的探测度与栅压的关系图,可以看出,探测度同样随栅压的增大而增大,最大探测度可达1012Jones;
图6e是该器件在不同功率密度下的光开关响应曲线,图6f是其中一段的放大图,可以看出,该器件具有快速的响应时间(τrising=15 ms,τdecay=32ms)。
由上述测试结果可以看出,基于Te/MoS2范德华异质结构的红外探测器具有优异的红外探测性能,表现出超高的响应度(1.9×103 A/W)、探测度(1012Jones)以及快速的响应时间(τrising=15ms,τdecay=32ms)。
实施例2
本实施例提供一种Te/MoS2范德华异质结构,包括MoS2纳米片层和Te纳米线层,所述Te纳米线层外延生长在所述MoS2纳米片层表面。
本实施例还提供了上述Te/MoS2范德华异质结构的制备方法,包括以下步骤:
(1)将双氧水和浓硫酸按体积比为1:3的比例混合,放入切好的硅片,在140℃的温度下加热3h,然后依次用丙酮、乙醇和去离子水各超声20min,用氮气吹干;
(2)将MoO3粉和S粉分别置于双温区管式炉的下游中心温区和上游中心温区,硅片置于MoO3粉的上方,用氩气清洗石英管后,将下游中心温区的温度升为850℃,上游中心温区温度升为200℃,持续通入流量为40sccm的氩气,生长时间为10min,得到生长在硅片上的MoS2纳米片层;
(3)将Te粉和步骤(2)所得的MoS2纳米片层分别置于单温区管式炉的下游距中心20cm处和上游距中心9cm处,用氩气反复清洗石英管后,将炉温升高到300℃,在这个控制条件下,上游的Te粉处温度约为280℃,下游的MoS2纳米片层的温度约为200℃,保持氩气流量为20sccm,外延生长时间为15min,得到生长在硅片上的Te/MoS2范德华异质结构。
本实施例制备的Te/MoS2范德华异质结构,只有很少的Te纳米线在MoS2纳米片上外延生长(图7b插图所示)。
图7a是单独MoS2和单独Te的I-V转移特性曲线,可以看出, MoS2表现出明显的n型特性,Te表现出明显的p型特性;
图7b为Te/MoS2异质结二极管的转移曲线,插图为Te/MoS2异质结二极管的器件的光学显微镜(OM)图,可以看出,Te/MoS2异质结表现出PN结特有的反双极特性;
图7c为Te/MoS2异质结二极管不同栅压下的输出曲线,可以看出,在栅压Vgs=80V时表现出103的整流比;
图7d为在暗态与光照下的转移曲线,可以看出,在栅压较小时表现为正光响应,在大的栅压时表现出负光响应;
图8为栅压为80V时的负响应的光开关曲线。
由上述测试结果可以看出,明显的反双极特性,显著的整流比以及栅压调制下的正负光响应,证明了Te与MoS2之间PN结的存在,验证了应用例1中的基于Te/MoS2范德华异质结构的红外探测器的光伏工作机理。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

1.一种Te/MoS2范德华异质结构,其特征在于,包括MoS2纳米片层和Te纳米线层,所述Te纳米线层外延生长在所述MoS2纳米片层表面,所述Te纳米线层由多条Te纳米线构成,所述Te纳米线的长度为2~10μm,厚度为20~100nm;所述MoS2纳米片层为单层MoS2纳米片,所述MoS2纳米片厚度为0.8nm。
2.根据权利要求1所述的一种Te/MoS2范德华异质结构,其特征在于,所述Te纳米线的长度为2~5μm;
和/或,所述Te纳米线的厚度为30~80nm。
3.根据权利要求1或2所述的一种Te/MoS2范德华异质结构,其特征在于,还包括基底,所述MoS2纳米片层平行生长在所述基底上,所述基底优选为硅片。
4.权利要求1~3任一项所述的一种Te/MoS2范德华异质结构的制备方法,其特征在于,包括:利用物理气相沉积法在所述MoS2纳米片层的表面外延生长所述Te纳米线层。
5.根据权利要求4所述的制备方法,其特征在于,所述物理气相沉积法具体包括:将所述MoS2纳米片层和Te粉分别置于单温区管式炉的下游和上游,持续通入氩气,使所述Te粉在所述MoS2纳米片层的表面外延生长成所述Te纳米线层。
6.根据权利要求5所述的制备方法,其特征在于,所述单温区管式炉的下游温度为180~250℃;
和/或,所述单温区管式炉的上游温度为280~320℃。
7.根据权利要求6所述的制备方法,其特征在于,所述单温区管式炉的下游温度为220℃;
和/或,所述单温区管式炉的上游温度为300℃。
8.根据权利要求5所述的制备方法,其特征在于,所述通入氩气的流量为30~50sccm;
和/或,所述外延生长时间为15~30min。
9.根据权利要求4所述的制备方法,其特征在于,还包括:所述MoS2纳米片层通过化学气相沉积法制备得到。
10.权利要求1~3任一项所述的一种Te/MoS2范德华异质结构或权利要求4~9任一项所述的制备方法在红外探测方面的应用。
CN201810697981.8A 2018-06-29 2018-06-29 一种Te/MoS2范德华异质结构及其制备方法和应用 Active CN109065662B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810697981.8A CN109065662B (zh) 2018-06-29 2018-06-29 一种Te/MoS2范德华异质结构及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810697981.8A CN109065662B (zh) 2018-06-29 2018-06-29 一种Te/MoS2范德华异质结构及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN109065662A CN109065662A (zh) 2018-12-21
CN109065662B true CN109065662B (zh) 2020-02-21

Family

ID=64818436

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810697981.8A Active CN109065662B (zh) 2018-06-29 2018-06-29 一种Te/MoS2范德华异质结构及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN109065662B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110364622A (zh) * 2019-07-05 2019-10-22 国家纳米科学中心 基于层状α-MoO3纳米片的夹层结构及其制备方法
CN112216751A (zh) * 2019-07-11 2021-01-12 哈尔滨工业大学 GaSe/MoS2异质结的制备方法
CN110344022B (zh) * 2019-07-19 2021-07-30 河南师范大学 p型戴维南星形MoS2单层二维材料、制备方法及电子器件
CN112295866B (zh) * 2019-07-26 2022-03-22 中国科学院福建物质结构研究所 一种全金属有机框架范德华异质结层薄膜的制备方法及其所制备的薄膜和用途
CN113013265A (zh) * 2020-10-23 2021-06-22 湘潭大学 一种实现低角度依赖高光吸收和稳定柔性接触的柔性光电子器件设计方法及光探测器
CN113437166B (zh) * 2021-06-28 2022-08-26 华南师范大学 一种基于二维层状半导体材料的范德华异质结偏振光探测器及其制备方法
CN113871508A (zh) * 2021-08-19 2021-12-31 华中科技大学 一种碲半导体薄膜红外探测器件
CN115295676B (zh) * 2022-08-18 2023-02-03 之江实验室 一种高光响应Te/MoS2异质结光探测器及制备方法
CN115295675B (zh) * 2022-08-18 2023-03-24 之江实验室 一种基于二维材料Te/MoS2异质结的光探测器的制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105932091A (zh) * 2016-07-13 2016-09-07 合肥工业大学 一种自驱动二维碲化钼同型异质结近红外光电探测器及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101311338B (zh) * 2008-02-27 2010-10-06 中国科学院理化技术研究所 无模板电化学沉积制备Te一维纳米结构的方法
CN101435067B (zh) * 2008-12-01 2010-09-08 北京航空航天大学 基于物理气相沉积的碲纳米线阵列的制备方法
CN107564992B (zh) * 2017-08-18 2019-04-30 上海理工大学 一种快速响应的半导体异质结紫外光探测器及其制作方法
CN107749433B (zh) * 2017-08-30 2023-07-04 中国科学院上海技术物理研究所 一种二维范德华异质结光电探测器及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105932091A (zh) * 2016-07-13 2016-09-07 合肥工业大学 一种自驱动二维碲化钼同型异质结近红外光电探测器及其制备方法

Also Published As

Publication number Publication date
CN109065662A (zh) 2018-12-21

Similar Documents

Publication Publication Date Title
CN109065662B (zh) 一种Te/MoS2范德华异质结构及其制备方法和应用
Reddy et al. One-step fabrication of 1D p-NiO nanowire/n-Si heterojunction: Development of self-powered ultraviolet photodetector
CN107833940B (zh) 一种基于二维二硫化钼-二硫化铼异质结的光电子器件、制备方法及应用
Foisal et al. Self-powered broadband (UV-NIR) photodetector based on 3C-SiC/Si heterojunction
Mahyavanshi et al. Photovoltaic action with broadband photoresponsivity in germanium-MOS 2 ultrathin heterojunction
TW201001726A (en) Techniques for enhancing efficiency of photovoltaic devices using high-aspect-ratio nanostructures
EP2545589A2 (en) High efficiency nanostructured photvoltaic device manufacturing
Teng et al. High-performance long-wavelength InAs/GaSb superlattice detectors grown by MOCVD
Cai et al. AlGaN ultraviolet avalanche photodiodes based on a triple-mesa structure
Hekmatikia et al. Graphene–silicon-based high-sensitivity and broadband phototransistor
Ye et al. Si-CMOS-compatible 2D PtSe2-based self-driven photodetector with ultrahigh responsivity and specific detectivity
Zeng et al. A solar-blind photodetector with ultrahigh rectification ratio and photoresponsivity based on the MoTe2/Ta: β-Ga2O3 pn junction
Giraud et al. Field effect transistors and phototransistors based upon p-type solution-processed PbS nanowires
Li et al. Correlation between the response performance of epitaxial graphene/SiC UV-photodetectors and the number of carriers in graphene
Dahal et al. AlN avalanche photodetectors
Zubair et al. Record high photoresponse observed in CdS-black phosphorous van der Waals heterojunction photodiode
Guo et al. Visible-blind photodetector based on pin junction 4H-SiC vertical nanocone array
Wu et al. Van der Waals integration inch-scale 2D MoSe2 layers on Si for highly-sensitive broadband photodetection and imaging
Wang et al. High quantum efficiency back-illuminated AlGaN-based solar-blind ultraviolet p—I—n photodetectors
Kale et al. Silicon quantum dot solar cell using top-down approach
Zhao et al. Ultrasensitive Self-Powered Deep-Ultraviolet Photodetector Based on In Situ Epitaxial Ga₂O₃/Bi₂Se₃ Heterojunction
Li et al. InAs nanowire arrays for room-temperature ultra-broadband infrared photodetection
Sevik et al. The effect of molar ratio on the photo-generated charge activity of ZnO–CdO composites
Kathalingam et al. Effect of indium on photovoltaic property of n-ZnO/p-Si heterojunction device prepared using solution-synthesized ZnO nanowire film
Chen et al. Ultrahigh Responsivity β-Ga 2 O 3/BP Junction Field Effect Phototransistors for UV/IR Dual-Band Detection

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant