CN113437166B - 一种基于二维层状半导体材料的范德华异质结偏振光探测器及其制备方法 - Google Patents

一种基于二维层状半导体材料的范德华异质结偏振光探测器及其制备方法 Download PDF

Info

Publication number
CN113437166B
CN113437166B CN202110716606.5A CN202110716606A CN113437166B CN 113437166 B CN113437166 B CN 113437166B CN 202110716606 A CN202110716606 A CN 202110716606A CN 113437166 B CN113437166 B CN 113437166B
Authority
CN
China
Prior art keywords
polarized light
dimensional layered
semiconductor material
light detector
layered semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110716606.5A
Other languages
English (en)
Other versions
CN113437166A (zh
Inventor
李京波
赵齐笑
陈洪宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China Normal University
Original Assignee
South China Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China Normal University filed Critical South China Normal University
Priority to CN202110716606.5A priority Critical patent/CN113437166B/zh
Publication of CN113437166A publication Critical patent/CN113437166A/zh
Application granted granted Critical
Publication of CN113437166B publication Critical patent/CN113437166B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0328Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
    • H01L31/0336Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032 in different semiconductor regions, e.g. Cu2X/CdX hetero- junctions, X being an element of Group VI of the Periodic Table
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种基于二维层状半导体材料的偏振光探测器及其制备方法。该偏振光探测器自下而上依次为绝缘衬底、两种二维层状半导体构成的范德华异质结、金属电极。该偏振光探测器是通过机械剥离、聚乙烯醇(PVA)干法转移、光刻、蒸镀等技术制备。区别于传统材料结构偏振光探测器,该结构器件具有高二向色性比、自供电、快速响应等优异特性。此外,此种范德华异质结偏振光探测器结构简单、小型便携、操作方便,有益于新型高偏振分辨集成光学器件的开发。

Description

一种基于二维层状半导体材料的范德华异质结偏振光探测器 及其制备方法
技术领域
本发明涉及半导体电子器件领域,更具体地,涉及一种基于二维层状半导体材料的偏振光探测器及其制备方法。
背景技术
对于自然界中的任何物体,光波在散射、反射和透射之后,它将包含由物体自身特征所确定的偏振光谱信息。因此,包括目标物有关表面特征、形状、阴影和粗糙度的信息的偏振光探测器在遥感成像,生物医学,天体研究以及军事侦察等诸多领域有着广泛的应用需求。
传统的偏振光检测器技术可以分为四种类型:分时型、分振幅型、分孔径型、分焦面型。然而上述器件通常是将光强探测器与偏振元件集成在非整体式设备中,这与当前光电探测器正朝着微型化、模块化的高度集成器件方向发展(InfoMat,2020,2(2),291-317)相悖,导致其在智能机器人、人工智能、可穿戴设备、医疗监测及运动健康等新兴领域中的应用受到限制(Small,2017,13(43),1701822)。
针对这一问题,本发明提出一种基于二维层状半导体材料的偏振光探测器。通过不同二维材料的集成,构建PN结光电二极管实现设备的小型化和模块化的同时降低暗电流、提高光响应度和比探测率。
发明内容
本发明目的一在于提供一种基于二维层状半导体材料的偏振光探测器。该偏振光探测器具有优异的偏振光探测能力。
本发明的目的二在于提供上述偏振光探测器的制备方法。该方法通过PVA干法转移形成范德华异质结,并利用光刻蒸镀技术制备成PN结光电二极管。
本发明的目的通过下述技术方案来实现:
(1)将氧化硅片衬底在硫酸、盐酸体积比为3:1的混合液中加热5~30min来去除衬底表面附着的无机物;将绝缘衬底依次用丙酮、异丙醇和去离子水超声清洗5~10min去除衬底表面附着的有机物,清洗完毕后用高纯氮气吹干净,制得清洗的绝缘衬底;
(2)利用水热法和机械剥离技术,在不同绝缘衬底上分别制备碲纳米片及二硒化钼纳米片;
(3)利用聚乙烯醇(PVA)转移法将二硒化钼纳米片转移到的碲纳米片上,两者部分接触形成范德华异质结;
(4)旋涂光刻胶,通过激光直写制备电极图案,再利用电子束蒸镀沉积金属,经过丙酮去胶,得到金属电极;
(5)将上述整体在氮气气氛中退火,制得二硒化钼/碲范德华异质结偏振光探测器。
本发明相对于现有技术,具有以下有益效果:
(1)按照上述方法制备得到的范德华异质结偏振光探测器是一种新型的偏振光探测器结构,此种结构利用具有偏振光敏感性的二维层状半导体材料作为探测器的工作介质,实现了偏振光探测器的高度集成化;与此同时,此种偏振光探测器结构简单、小型便携、操作方便,使其在新型高偏振分辨集成光学器件领域中展现出巨大的潜在应用。
(2)使用范德华异质结构的二维层状半导体作为有源区,异质结构比普通单一材料结构在一定程度上提高了偏振光探测器的偏振探测能力,同时还能有效抑制噪声,提高偏振探测器件的响应速度及灵敏度;
(3)将偏振光探测器设计成p-n结,还可实现设备的自供电能力。自供电工作状态模式下的光电探测器具有低功耗和节能的优点,非常适合在极端条件下工作;
附图说明
图1为本发明的偏振光探测器的结构及工作过程示意图;
图2为本发明的偏振光探测器的制备流程图;
图3为实施例1制得的二硒化钼/碲偏振光探测器在405nm激光,光功率密度为24.27mW/cm2,偏压为0V时产生的光电流与入射光偏振角的关系。
具体实施方式
下面结合具体实施例进一步说明本发明的内容,但不应理解为对本发明的限制。若未特别指明,实施例中所用的技术手段为本领域技术人员所熟知的常规手段。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。
如图1所示,为本发明提供的一种基于二维层状半导体材料的偏振光探测器,包括绝缘衬底2和设置于绝缘衬底2上的光敏层3、4,以及设置于光敏层3、4上的金属电极5和金属电极6,金属电极5与金属电极6设置成通过光敏层3、4间接连接。此处的间接连接指得是金属电极5与金属电极6非直接连接、电导通,金属电极5与金属电极6彼此隔开,无法直接电导通,而是通过光敏层3、4实现电导通。所述光敏层的材料包括二硒化钼纳米片3及碲纳米片4。其中,二硒化钼纳米片3厚度为10~30nm,长为20~70μm,宽为10~30μm;碲纳米片4厚度为20~100nm,长为30~50μm,宽为3~10μm;属于二维层状纳米半导体材料。
绝缘衬底2为二氧化硅衬底,二氧化硅衬底的厚度可以为300~500nm,例如可以是300nm、400nm、500nm。
基于碲的偏振光光电探测器还包括基底层1,基底层1为P型掺杂的硅制成的硅基底层。
硅基底层的厚度为300~500μm,例如可以是300μm、400μm、500μm。硅基底层的电阻率为0.01~0.02Ω·cm,例如可以是0.01Ω·cm、0.02Ω·cm。
p型二维层状半导体材料4为碲纳米片及n型二维层状半导体材料3为二硒化钼。其中,碲纳米片层的厚度为20~100nm,二硒化钼的厚度为10~30nm。
金属电极4及金属电极5均包括钛层和金层,其中,钛层设于p型二维层状半导体材料3与金层之间。钛层的厚度为5~10nm,例如可以是5nm、7nm、9nm、10nm。金层的厚度为40~100nm,例如可以是40nm、60nm、80nm、100nm。
实施例1
图2为本发明的偏振光探测器器件制备流程图。一种新型二硒化钼/碲范德华异质结偏振光探测器的制备方法,如图2所示,包括以下步骤:
1.清洗衬底:用金刚笔将商业标准4英寸低掺p型单抛氧化硅片(300nm厚度SiO2,电阻率为0.01~0.02Ω·cm,硅部分的厚度为300μm)切成1×1cm2大小。再分别用丙酮和异丙醇超声清洗衬底10min以去除有机杂质及其他表面附着物,之后用去离子水超声清洗衬底5min,再用氮气枪吹干,制得清洗的绝缘衬底;
2.材料制备:
a)用Scotch胶带将二硒化钼晶体机械剥离,得到二硒化钼纳米片后将其转移至步骤1中清洗干净的待用绝缘衬底上;
b)碲纳米片制备:首先将0.1g聚乙烯吡咯烷酮(PVP)溶解在10mL去离子水中,然后加入0.1mgNa2TeO3并溶解到PVP溶液中以形成澄清溶液;依次向上述溶液中加入0.5mL氢氧化铵溶液和0.5mL水合肼;再将溶液转移到25mL衬有聚四氟乙烯的不锈钢高压釜中;高压釜密封良好,放入鼓风干燥箱;在温度为160℃条件下保温5h,得到碲纳米片;碲纳米片的乙醇分散液用移液枪取100μL滴至步骤1中清洗干净的待用绝缘衬底上,自然干燥得到干燥的含碲纳米片衬底。
3.干法转移:利用PVA转移技术构建二硒化钼/碲范德华异质结:
a)称量4gPVA颗粒(分子量27000)到装有21ml去离子水的烧杯中放置在磁力搅拌器平台上1000rpm进行搅拌10h,最终获得透明粘稠状液体。
b)准备一片干净载玻片(经过丙酮、异丙醇分别超声清洗5~10min),剪取0.5cm×0.5cm左右的0.4mm厚的PDMS(型号为17mil,两面分别由一层硬膜和一层软膜封装而成,购自美国Gel-Pak公司),用尖嘴镊子取下硬膜,紧密贴在载玻片中心位置,再将软膜揭下,确保PDMS平整无褶皱和气泡。
c)将带有PDMS的干净载玻片放置在无尘纸上,用胶头滴管吸取少量PVA水溶液(注意不要吸取过多),滴一滴到PDMS上,此时PVA溶液呈大液珠形式,取另一载玻片用边缘小心刮取多余的PVA到无尘纸上(载玻片刮取方向朝上),待PVA呈均匀铺满到PDMS上且中间有所凸起。将其放置在加热台上在50℃加热10min,取起来观察PVA平整且无气泡。
d)将转移平台温度调整至90℃,将二硒化钼样品衬底固定在下平台,找到所需的二硒化钼纳米片并聚焦将PVA/PDMS载玻片放置在转移平台的上平台固定,调整PVA/PDMS刚好位于目标样品上,调整PVA高度使其与二硒化钼纳米片接触,加热4min后抬起,此时二硒化钼纳米片被PVA吸附,在显微镜下移动该薄膜,使得二硒化钼纳米片与步骤2制得的碲纳米片对准,形成异质结,90℃加热4min,降温后将样品置于去离子水或二甲基亚砜中50℃加热20min,使PVA完全溶解,取出用氮气枪吹干,至此制备好二硒化钼/碲范德华异质结。
4.光刻:在步骤4得到的衬底上方旋涂光刻胶,转速为3500r/min旋涂60s,然后在加热板上烘干4min,烘干温度为100℃。利用405nm波长的激光直写技
术对涂有光刻胶的样品进行曝光,后通过显影技术得到所设计的电极图案。
5.镀金:利用电子束蒸镀金属电极,丙酮溶解光刻胶去金之后可得到电极;
6.退火:在氮气气氛中150℃退火20min,获得二硒化钼/碲范德华异质结偏振光探测器。
7.测试:如图1所示,将实施例1制得的偏振光探测器进行偏振光探测性能测试,测试方法包括以下步骤:
a)取实施例1中制作好的偏振光探测器,将其放在半导体特性分析仪配套的探针平台上,通过配套的CCD成像系统找到硅片上探测器的准确位置;
b)选取探针台配套的两个探针分别接触到探测器的金属电极;
c)打开半导体特性分析仪测试软件,探针选择电压扫描模式,扫描范围为-2V~2V。
d)打开405nm激光,通过半波片8改变入射光的偏振方向,然后激光将垂直照射在二硒化钼/碲范德华异质结偏振光探测器上。
在激光功率密度为24.27mW/cm2的条件下,分别得到偏振光探测器对应不同入射方向的激光的电学测试图。
图3为实施例1制得的二硒化钼/碲范德华异质结偏振光探测器在405nm激光,光功率密度为24.27mW/cm2,偏压为0V时产生的光电流与入射光偏振角的关系。
实施例2
1.清洗衬底:用金刚笔将商业标准4英寸低掺p型单抛氧化硅片(300nm厚度SiO2,电阻率为0.01~0.02Ω·cm,硅部分的厚度为500μm切成0.8×0.8cm2大小。再分别用丙酮和异丙醇超声清洗衬底10min以去除有机杂质及其他表面附着物,之后用去离子水超声清洗衬底5min,再用氮气枪吹干,制得清洗的绝缘衬底;
2.制备样品:
a)二硒化钼纳米片制备:用Scotch胶带将二硒化钼晶体机械剥离,得到二硒化钼纳米片后将其转移至步骤1中清洗干净的待用绝缘衬底上;
b)碲纳米片制备:首先将0.5g聚乙烯吡咯烷酮(PVP)溶解在15mL去离子水中,然后加入0.2mgNa2TeO3并溶解到PVP溶液中以形成澄清溶液;依次向上述溶液中加入1mL氢氧化铵溶液和0.9mL水合肼;
再将溶液转移到25mL衬有聚四氟乙烯的不锈钢高压釜中;高压釜密封良好,放入鼓风干燥箱;在温度为180℃条件下保温10h,得到碲纳米片;碲纳米片的乙醇分散液用移液枪取50μL滴至步骤1中清洗干净的待用绝缘衬底上,自然干燥得到干燥的含碲纳米片衬底;
3.PVA转移:利用PVA转移技术构建二硒化钼/碲范德华异质结:
a)称量4gPVA颗粒(分子量27000)到装有21ml去离子水的烧杯中放置在磁力搅拌器平台上1000rpm进行搅拌12h,最终获得透明粘稠状液体。
b)准备一片干净载玻片(经过丙酮、异丙醇分别超声清洗5~10min),剪取0.3cm×0.3cm左右的0.5mm厚PDMS(型号为KYN-500,两面分别有一层硬膜和一层软膜,购自中国杭州包尔得新材料科技有限公司),用尖嘴镊子取下硬膜,紧密贴在载玻片中心位置,再将软膜揭下,确保PDMS平整无褶皱和气泡。
c)将带有PDMS的干净载玻片放置在无尘纸上,用胶头滴管吸取少量PVA水溶液(注意不要吸取过多),滴一滴到PDMS上,此时PVA溶液呈大液珠形式,取另一载玻片用边缘小心刮取多余的PVA到无尘纸上(载玻片刮取方向朝上),待PVA呈均匀铺满到PDMS上且中间有所凸起。将其放置在加热台上在50℃加热10min,取起来观察PVA平整且无气泡。
d)将转移平台温度调整至90℃,将二硒化钼样品衬底固定在下平台,找到所需的二硒化钼纳米片并聚焦将PVA/PDMS载玻片放置在转移平台的上平台固定,调整PVA/PDMS刚好位于目标样品上,调整PVA高度使其与二硒化钼纳米片接触,加热4min后抬起,此时二硒化钼纳米片被PVA吸附,在显微镜下移动该薄膜,使得二硒化钼纳米片与步骤2制得的碲纳米片对准,形成异质结,90℃加热4min,降温后将样品置于去离子水或二甲基亚砜中50℃加热20min,使PVA完全溶解,取出用氮气枪吹干,至此制备好二硒化钼/碲范德华异质结。
4.光刻:在步骤4得到的衬底上方旋涂光刻胶,转速为3000r/min旋涂60s,然后在加热板上烘干4min,烘干温度为115℃;利用405nm波长的激光直写技
术对涂有光刻胶的样品进行曝光,后通过显影技术得到所设计的电极图案。
5.镀金:利用电子束蒸镀金属电极,丙酮溶解光刻胶去金之后可得到电极;
6.退火:在氮气气氛中150℃退火30min,获得二硒化钼/碲范德华异质结偏振光探测器。
7.测试:如图1所示,将实施例2制得的偏振光探测器进行偏振光探测性能测试,测试方法包括以下步骤:
a)取实施例2中制作好的偏振光探测器,将其放在半导体特性分析仪配套的探针平台上,通过配套的CCD成像系统找到硅片上探测器的准确位置;
b)选取探针台配套的两个探针分别接触到探测器的金属电极;
c)打开半导体特性分析仪测试软件,漏极探针选择电压扫描模式,扫描范围为-2V~2V。
d)打开405nm激光,通过半波片8改变入射光的偏振方向,然后激光将垂直照射在二硒化钼/碲范德华异质结偏振光探测器上。分别得到偏振光探测器对应不同入射方向的激光的电学测试图。
由图3可以看出,不同偏振方向的光对应不同的电流响应(源于各向异性的碲纳米片对不同方向光的吸收不同)。因此,本发明提供的偏振光探测器可用于对偏振光的探测。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合和简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (4)

1.一种基于二维层状半导体材料的偏振光探测器,所述偏振光探测器自下而上依次包括:
绝缘衬底;
光敏层,包括形成异质结的p型二维层状半导体材料及n型二维层状半导体材料;
金属电极层,所述金属电极层设置在光敏层上,并覆盖在所述p型二维层状半导体材料及n型二维层状半导体材料的一端;其特征在于,p型二维层状半导体材料为水热法制备的各向异性的碲纳米片;n型二维层状半导体材料为机械剥离方法制备的二硒化钼。
2.根据权利要求1所述的基于二维层状半导体材料的偏振光探测器,其特征在于,所述碲纳米片的厚度范围为20~100nm。
3.根据权利要求1所述的基于二维层状半导体材料的偏振光探测器,其特征在于,所述二硒化钼的厚度范围为10~30nm。
4.根据权利要求1所述的基于二维层状半导体材料的偏振光探测器,其制备方法包括:
S1、衬底清洗,在硫酸、盐酸体积比为3:1的混合液中加热5~30min来去除衬底表面附着的无机物,将绝缘衬底依次用丙酮、异丙醇和去离子水超声清洗5~10min去除衬底表面附着的有机物,清洗完毕后用氮气吹干备用;
S2、光敏层制备,利用聚乙烯醇(PVA)转移法将n型二维层状半导体材料转移到的p型二维层状半导体材料上,以使得两者部分接触形成范德华异质结;
S3、器件制备,通过激光直写技术、电子束蒸镀方法制备图案化金属电极;在氮气气氛中退火,制得偏振光探测器。
CN202110716606.5A 2021-06-28 2021-06-28 一种基于二维层状半导体材料的范德华异质结偏振光探测器及其制备方法 Active CN113437166B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110716606.5A CN113437166B (zh) 2021-06-28 2021-06-28 一种基于二维层状半导体材料的范德华异质结偏振光探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110716606.5A CN113437166B (zh) 2021-06-28 2021-06-28 一种基于二维层状半导体材料的范德华异质结偏振光探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN113437166A CN113437166A (zh) 2021-09-24
CN113437166B true CN113437166B (zh) 2022-08-26

Family

ID=77754820

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110716606.5A Active CN113437166B (zh) 2021-06-28 2021-06-28 一种基于二维层状半导体材料的范德华异质结偏振光探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN113437166B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114062279B (zh) * 2021-10-12 2023-02-03 暨南大学 基于二维材料的单颗粒光谱电调谐平台及制备、调控方法
CN114034387A (zh) * 2021-11-05 2022-02-11 中国科学院福建物质结构研究所 铁电体圆偏振光伏效应驱动圆偏振光探测器及制备方法
CN114551632A (zh) * 2022-02-25 2022-05-27 北京科技大学 一种二维碲和过渡金属硫化物的pn结型自驱动光电探测器及其制备方法
CN114759104B (zh) * 2022-03-29 2024-01-30 华南师范大学 基于ⅱ型范德华异质结近红外偏振光电探测器及其制备方法
CN115000205A (zh) * 2022-05-11 2022-09-02 浙江芯科半导体有限公司 一种高性能异质结及其制备方法
CN115295675B (zh) * 2022-08-18 2023-03-24 之江实验室 一种基于二维材料Te/MoS2异质结的光探测器的制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113013279A (zh) * 2021-01-27 2021-06-22 中国科学院上海技术物理研究所 一种碲镉汞范德华异质结红外偏振探测器及制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107749433B (zh) * 2017-08-30 2023-07-04 中国科学院上海技术物理研究所 一种二维范德华异质结光电探测器及其制备方法
CN108313987A (zh) * 2018-02-09 2018-07-24 深圳大学 二维碲纳米片及其制备方法和应用
CN109065662B (zh) * 2018-06-29 2020-02-21 国家纳米科学中心 一种Te/MoS2范德华异质结构及其制备方法和应用
CN111668325A (zh) * 2020-05-20 2020-09-15 深圳大学 一种基于碲烯的偏振光光电探测器及其制备方法和应用
CN112242455A (zh) * 2020-09-15 2021-01-19 中国科学院上海技术物理研究所 一种范德瓦尔斯非对称势垒结构的红外探测器及制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113013279A (zh) * 2021-01-27 2021-06-22 中国科学院上海技术物理研究所 一种碲镉汞范德华异质结红外偏振探测器及制备方法

Also Published As

Publication number Publication date
CN113437166A (zh) 2021-09-24

Similar Documents

Publication Publication Date Title
CN113437166B (zh) 一种基于二维层状半导体材料的范德华异质结偏振光探测器及其制备方法
CN113013279B (zh) 碲镉汞-黑磷范德华异质结红外偏振探测器及制备方法
CN107749433A (zh) 一种二维范德华异质结光电探测器及其制备方法
CN107863402A (zh) 一种近红外光电探测器及其制备方法
CN113097319B (zh) 一种碳化硅/二硫化锡异质结光电晶体管及其制备方法和应用
CN105552131A (zh) 基于量子点掺杂栅绝缘层的新型高性能光调制薄膜晶体管
WO2021114905A1 (zh) 一种各向异性器件及其制备方法和应用
CN209434186U (zh) 一种基于硒化铟晶体管的氧化锌压电传感器
Li et al. Enhanced ultraviolet photoresponse in a graphene-gated ultra-thin Si-based photodiode
CN109659305A (zh) 一种基于硒化铟晶体管的氧化锌压电传感器及其制作方法
CN109103275A (zh) 基于二维碲纳米片的固体光探测器及其制备方法
CN111668325A (zh) 一种基于碲烯的偏振光光电探测器及其制备方法和应用
CN105258806A (zh) 热释电红外探测单元及制造方法及其热释电红外探测器
CN109856391B (zh) 一种基于有机光晶体的免疫检测芯片、装置及其制备方法
CN111103318A (zh) 低维材料的热导率测试方法和测试系统
CN109087968A (zh) 基于二维硒纳米片的固体光探测器及其制备方法
CN113130704A (zh) 基于CrPS4偏振敏感的光电探测器的制备方法
CN108550640A (zh) 碲化镉纳米晶复合的宽波段黑磷光电探测器及其制备方法
CN103112818B (zh) 一种利用扫描电镜在单根微纳线上制作金属电极的方法
CN113035970B (zh) 正负光电导特性可调的纳米金刚石基探测器及其制备方法
CN110455419B (zh) 基于氧化钒单晶片的悬空式光电探测器及其制备方法
Krishnan Design, fabrication and characterization of thin-film MIM diodes for rectenna array
CN118173628A (zh) 基于MoS2-In2Se3异质结的多源信息探测器及制备方法
CN117890742A (zh) 一种少子寿命测试装置及其测试方法
CN114335209B (zh) 一种偏振敏感光电探测器及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant