CN113013265A - 一种实现低角度依赖高光吸收和稳定柔性接触的柔性光电子器件设计方法及光探测器 - Google Patents

一种实现低角度依赖高光吸收和稳定柔性接触的柔性光电子器件设计方法及光探测器 Download PDF

Info

Publication number
CN113013265A
CN113013265A CN202011142518.0A CN202011142518A CN113013265A CN 113013265 A CN113013265 A CN 113013265A CN 202011142518 A CN202011142518 A CN 202011142518A CN 113013265 A CN113013265 A CN 113013265A
Authority
CN
China
Prior art keywords
quasi
divergent
flexible
nano
spherical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011142518.0A
Other languages
English (en)
Inventor
田军龙
刘思祥
吴澍
罗敏媛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiangtan University
Original Assignee
Xiangtan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiangtan University filed Critical Xiangtan University
Priority to CN202011142518.0A priority Critical patent/CN113013265A/zh
Publication of CN113013265A publication Critical patent/CN113013265A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0203Containers; Encapsulations, e.g. encapsulation of photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

启迪于万寿菊花朵喜阳特性的发散状准球对称结构,本发明公开了一种具有准球对称特性的发散状低角度光捕获结构以实现高性能柔性自给能光探测器及其制备方法。本发明专利创造的性的提出利用准球对称发散状结构,在柔性光电器件的柔性弯曲过程中从光学光吸收不变性和电学接触不变性两方面保证柔性光电器件的光电性能的稳定性。本发明创造性的利用非对称电极设计了一种具有高光吸收的纳米结构并用半导体纳米球花制造了兼具低角度高光吸收和稳定物理接触的自供电柔性宽波段光探测器。解决了传统柔性光电器件的能源供应问题、柔性弯曲性能差和平面和阵列硫化钼的低光吸收问题。本发明的发散状准球对称纳米结构高光吸收特性和物理接触不变特性对提升各种半导体的光吸收能力和柔性具有通用性。

Description

一种实现低角度依赖高光吸收和稳定柔性接触的柔性光电子 器件设计方法及光探测器
技术领域
本发明属于光电探测技术领域,尤其涉及一种准球形对称性纳米结构的兼具高光吸收和稳定物理接触的柔性光探测器及其制作方法。
背景技术
作为广泛使用的过渡金属硫化物之一,二硫化钼(MoS2)是用于电子和光子学应用的有前途的材料。特别是,带隙可变(1.2-1.8eV)的片状MoS2由于其独特的特性(例如高载流子迁移率,强电子空穴限制和高的光吸收率)而具有广泛的应用范围,包括电子传感器,储能设备,超级电容器,光电设备,催化和生物分子检测。对于光电器件应用而言,尽管MoS2的光吸收在厚度小于1nm时能达到入射太阳光的5-10%,但由于片状MoS2的局限性,进一步提升MoS2的光吸收能力是一个巨大的挑战,进而阻碍了MoS2光电性能的提高。近年来,与传统的刚性光电器件相比,具有稳定性能的柔性便携式自供电光电器件受到了越来越多的关注,并在柔性电子系统中有许多潜在的应用。然而,大多数具有良好光电性能的传统无机光电材料却显示出较差的柔韧性和可拉伸性。
通常,根据实现柔韧性的方式,柔韧性光电器件可分为三种主要类型:(i)在可弯曲塑料基板上构建的无机光电材料;(ii)无机光电器件涂有柔韧性聚合物,例如PMMA和聚二甲基硅氧烷(PDMS),(iii)有机半导体作为主要的光电材料。尽管(i)和(ii)的方法可以通过低成本工艺使无机光电器件实现柔韧性,但很容易引起破坏并改变物理接触以及弯曲时光的入射角。因此,这些缺陷阻碍了柔性无机光电器件的进一步发展。然而,与无机光电材料的迁移率相比,例如层状过渡金属二卤化金属的室温迁移率约为200-410 cm2/(Vs),分子晶体和聚合物的迁移率仅为40-50cm2/(Vs)。此外,结晶膜和基板的窄的光吸收和不相容性是限制有机光电器件性能的其他关键因素。因此,包括(i)和(ii) 的改进手段是促进柔性光电器件的低成本,可扩展且有效的方法。如今,为了解决方法(i) 和(ii)的问题,调节具有机械特性的无机光电材料的微观结构和组成以适应大的应变和几何变形是一种有效的方法。目前迫切需要避免使用常规方法来改善光电材料的机械特性,以适应较大的应变和几何变形。
发明内容
本发明的目的是提供一种由万寿菊结构启发的具有准球形对称性的发散状光捕获结构实现具有低角度依赖性和稳定柔性接触的高性能柔性光探测器。在这项工作中,受万寿菊花朵精细结构的启发,我们展示了一种创新的方法,该方法构造具有准球形对称性的发散微纳米结构,使光电材料能够实现柔性器件弯曲时其物理接触不变及高光吸收不变特性。在这里,基于MoS2的独特的光电特性,通过一种简便的一步水热方法成功地合成了具有准球形对称性的自组装发散状的硫化钼纳米球花结构MoS2_F。结合非对称的银电极以简便廉价的纸基作为基底并由PMMA封装,实现了基于MoS2_F的自供电柔性PD,该PD 在没有外部供能装置的情况下显示出强大的光吸收能力和出色的柔性光响应性能。因此,光电检测器装置的基本问题,例如电源问题,缺乏柔性和低光吸收,已经通过新颖且低成本的方法成功地克服了。这项工作为实现低角度依赖性的高光吸收提供了新的方向,并通过保持弯曲的光学和电气特性不变而开辟了一条创新的途径来实现灵活的光电应用。
为解决上述问题,本发明的技术方案为:
本发明技术所使用的仿真技术参考为:
S1:在万寿菊结构的启发下构建光学仿真模型,并对模型不断优化,使用FDTD对所构建的光学仿真模型进行仿真模拟。并选取一种半导体纳米球花作为所建模型的对应半导体材料进行研究。
S2:使用水热法生长具有分散式特征的半导体纳米球花,使用该半导体纳米球花作为探测器的光响应材料制作柔性光探测器,设计多层柔性结构实现性能优异的柔性光探测器。
优选地,所述步骤S2进一步包括:
(1)采用简便的一步水热法工艺制备半导体纳米球花材料;
(2)采用真空吸滤技术在滤纸或纸质基底上沉积半导体纳米球花材料薄膜;
(3)采用液态金属如银浆或使用电子束蒸发、热蒸发、磁控溅射等技术制备非对称电极;
(4)选用PMMA、PEN、PET、PDMS中的一种或多种作为柔性基底。选用PMMA 或者PDMS封装柔性器件;
进一步地,水热法工艺制备半导体纳米球花材料,MoS2纳米球花的合成:在典型的合成中,通过搅拌60-120分钟,将0.05-0.2g钼酸钠(Na2MoO4·2H2O)和0.1–0.3g硫脲(CH4N2S)分散到60-80mL去离子水中。然后将溶液转移到160-200℃电烤箱中的特氟龙衬里不锈钢高压釜(100mL)中12-24小时。
进一步地,自然冷却至室温后,将黑色产物用去离子水和乙醇洗涤4-6次以上,采用真空吸滤技术在滤纸或纸质基底上沉积半导体纳米球花材料薄膜,并在真空烘箱中于60-80℃干燥12-48小时。
进一步地,采用液态金属如银浆或使用电子束蒸发、热蒸发、磁控溅射等技术制备非对称电极;电极的大小的比例为1:4到1:10,电极的厚度为50nm到500nm。优选地,切下尺寸为5mm*10mm滤纸或纸基的样品,二硫化钼沉积样品上的两个电极(大小比例为1:4到1:10)由银浆制成,并分别与测试线连接。。
进一步地,选用PMMA、PEN、PET、PDMS中的一种或多种作为柔性基底。选用 PMMA或者PDMS作为封装材料封装柔性器件;
优选地,选用PET、PMMA、滤纸作为柔性基底;将0.5-1g PMMA溶解在10-20mL 丙酮中,然后在使用前将混合物溶液超声处理10-30分钟作为旋涂液。PMMA溶液首先用于将附有半导体纳米球花的滤纸的底部固定在PET上表面,然后将其放在50-60℃的真空干燥箱中放置30-60分钟。
优选地,选用PMMA作为封装材料,PMMA具有优良的柔性性能和光学透过率,是制备柔性光电子材料的优秀的材料。将0.5-1g PMMA溶解在10-20mL丙酮中,然后在使用前将混合物溶液超声处理10-60分钟作为旋涂液,转速为1500rpm,旋涂时间为30s, 旋涂后在60-80℃的干燥箱中干燥60-240分钟。
本发明由于采用以上技术方案,使其与现有技术相比具有以下的优点和积极效果:
1、本发明提供了一种新型的由万寿菊结构启发的具有准球形对称性的发散状光捕获结构,该结构能够极高效的捕获入射光,并且在制备成柔性光探测期间后,其不但能够在弯曲状态下依旧保持极高效的光捕获能力,而且还能够保持高度的弯曲稳定性及良好的物理接触。解决了光电子设备光吸收低与柔性性能不稳定的问题。
2、在本发明的光探测器中,采用的非对称性的银电极作为不但能作为导电电极,还能够与MoS2纳米球花形成肖特基接触并构建内建电场,从而使得柔性器件具有自供电能力。解决了特殊环境下能源供应的问题。
3、在本发明的光探测器中,使用PET作为柔性基底,可以使得光探测器具有极其优越的弯曲还原性和抗疲劳性。另外,在MoS2纳米球花上使用透光性优秀的PMMA对其进行封装,不但可以很好的保护MoS2纳米球花的表面形貌使其弯曲稳定性更加优越。
附图说明
图1为本发明实施例中柔性自供电光探测器的制备过程示意图;
图2为本发明实施例中柔性自供电光探测器的结构示意图;
图3为本发明实施例中制得的MoS2纳米球花的SEM图;
图4为本发明实施例中柔性自供电光探测器的分层结构SEM图;
图5为本发明实施例中所使用的MoS2纳米片模型(MoS2_S Sim)、MoS2纳米阵列模型(MoS2_SA Sim)、MoS2纳米球花模型(MoS2_1-F Sim、MoS2_32-F Sim)、MoS2纳米球花实物(MoS2_F Exp)的光吸收对比数据分析图;
图6为本发明实施例中柔性自供电光探测器的平面示意图;
图7为本发明实施例中柔性自供电光探测器在不同弯曲状态下的光响应分析图;
图8为本发明实施例中柔性自供电光探测器在不同弯曲次数下的光响应分析图;
图9为本发明实施例中柔性自供电光探测器在1000次弯曲后的光响应分析图;
图10为本发明摘要附图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的的保护范围。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例
一种柔性光探测器
柔性光探测器包括柔性基底,柔性基底的厚度为100-200μm;柔性基底由滤纸、PMMA、 PET三部分组成,滤纸在最上方与材料直接接触,在收集半导体纳米材料和制成薄膜时起主要作用,厚度为20-40μm;PMMA居于中间起到连接滤纸和PET的作用,厚度为 5-20μm;PET位于最下方,作为柔性弯曲器件的抗疲劳基底的主体,厚度为100-150μm。因此,由滤纸、PMMA、PET三部分组成柔性基底可以保证柔性光探测器优异的柔性性能。经由简便的一步水热法制备的半导体纳米球花材料通过真空吸滤技术均匀的沉积在滤纸上,半导体纳米球花的厚度为2-100μm,一定的厚度可以保持绝对的高光吸收特性。非对称电极可以通过液态金属、电子束蒸发、热蒸发、磁控溅射等技术制备,所制备的电极的大小的比例要求为1:4到1:10,电极的材质可以是金、银、铬、钛、钯以及钪中的一种或多种。
参阅图2,本发明的实施例一提供的基于MoS2纳米球花的柔性光探测器的制备方法主要包括以下步骤:
(1)通过简便的一步水热法合成MoS2纳米球花:在典型的合成中,将0.05-0.2g钼酸钠(Na2MoO4·2H2O)和0.1–0.3g硫脲(CH4N2S)分散到60-80mL去离子水中,搅拌 60-120分钟。然后将溶液转移到160-200℃电烤箱中的特氟龙衬里不锈钢高压釜(100mL) 中反应12-24小时,MoS2纳米球花由MoS2纳米片自组装形成。MoS2纳米球花SEM图像见图3。
(2)自然冷却至室温后,将黑色产物用去离子水和乙醇洗涤四次以上,然后通过真空抽吸机将其沉淀在滤纸上成膜,并在真空烘箱中于60℃干燥24小时。收集MoS2纳米球花的直径为450~1200nm,所述组成MoS2纳米球花的纳米片的厚度为10-100nm。
(3)剪切下尺寸大小为5mm*10mm的附有MoS2纳米球花薄膜的方形滤纸,优选地,在MoS2纳米球花薄膜上的两个电极由银浆制成(面积比为1:4到1:10),并分别与测试线连接。
(4)柔性光探测器设备组装与封装:将0.5-1g PMMA溶解在10-20mL丙酮中,然后在使用前将混合物溶液超声处理10-30分钟作为旋涂液。PMMA溶液首先用于将附有半导体纳米球花的滤纸的底部固定在PET上表面上,然后将其放在50-60℃的真空干燥箱中放置30分钟。然后使用PMMA旋涂液,转速为1500rpm,旋涂时间为30s,对MoS2纳米球花薄膜进行封装。旋涂完成后在60℃的干燥箱中干燥60分钟。
所述柔性光探测器中银电极的尺寸比为1:4到1:10。另外,PMMA,MoS2纳米球花,滤纸,PMMA和PET的厚度(依次从上到下)分别为23μm,87μm,22μm,7μm和 110μm。整个柔性光探测装置的厚度为约250μm。具体结构参数见图2和图4。
图5为本发明实施例中所使用的MoS2纳米片模型(MoS2_S Sim)、MoS2纳米阵列模型(MoS2_SA Sim)、MoS2纳米球花模型(MoS2_1-F Sim、MoS2_32-F Sim)、MoS2纳米球花实物(MoS2_F Exp)的光吸收对比数据分析图。可见本发明中发明的MoS2纳米球花模型的光吸收能力不论是在FDTD光学仿真计算中还是实验的紫外可见分光光度计的测试中,相对于MoS2纳米片模型和MoS2纳米阵列模型而言都具有巨大的优势,MoS2纳米球花模型在300-900纳米的波长范围内都具有平稳恒定的高光吸收强度,其平均光吸收达到了90%以上。这是其他模型所不能达到的,因此本发明的MoS2纳米球花模型从理论计算和实验操作上解决了现实中半导体纳米材料光吸收能力不足的难题。
图6为本发明实施例中柔性自供电光探测器的平面示意图。本实施例中采用的光电测试系统为Keithley半导体参数分析仪,柔性器件的正负极与测试系统连接成闭合回路。通过外加激光源作为激励,测试柔性光探测器的电学性能。
图7为本发明实施例中柔性自供电光探测器在不同弯曲状态下的光响应分析图。在不同的弯曲角度下,分别为0°、58°、103°、和151°,本发明实施例中的柔性光探测器都保持了高度的稳定性。另外,当器件恢复到初始状态时,器件性能基本没有损耗,依然达到了初始时的性能。
图8为本发明实施例中柔性自供电光探测器在不同弯曲次数下的光响应分析图。本发明实施例中的柔性光探测器具有优良的抗疲劳特性,即使在进行1000次弯曲折叠实验后,探测器的性能还是能够基本保持不变,这对探测器的实际使用具有重要意义。另外,这还说明本发明的思路对其他柔性器件具有极高的实际应用借鉴价值。
图9为本发明实施例中柔性自供电光探测器在1000次弯曲后的光响应分析图。为探究在多次弯曲折叠使用后,器件是否依然能够保持稳定的工作状态。本发明对弯曲折叠1000次后的器件做了稳定性测试,结果表面,即便经过了1000次的弯曲使用,其稳定性依然不受影响且保持高度稳定的工作状态。

Claims (8)

1.一种具有准球对称特性的发散状低角度光捕获结构以实现高性能柔性自给能光探测器及其制备方法,其特征在于,包括如下步骤:
S1:具有准球对称特性的发散状低角度光捕获结构微纳球制备;
S2:于所述具有准球对称特性的发散状低角度光捕获结构微纳球上化学或物理沉积半导体纳米材料得到半导体光电微纳球;
S3:于S2所述准球对称特性的发散状微纳光电微纳球,通过物理或化学成膜技术,制备光电薄膜;
S4:于S3所述光电薄膜构建非对称电极,通过非对称电极实现自给能特性;
S5:于S4所述构建非对称电极后的光电薄膜结合透明柔性材料,其作用一进行封装保护,其目的二实现器件柔性弯曲。
2.根据权利要求1所述的具有准球对称特性的发散状低角度光捕获结构以实现高性能柔性自给能光探测器及其制备方法,其特征在于,所述步骤S1进一步包括:通过湿化学法将二维片状半导体光电材料自组装成具有准球对称特性的发散状低角度光捕获结构的准球对称发散状纳米球。
S21:选取一半导体光电材料,利用是化学法合成微纳二维片状结构材料,于此同时自组装成准球对称发散状微纳球。
3.根据权利要求1所述的具有准球对称特性的发散状低角度光捕获结构以实现高性能柔性自给能光探测器及其制备方法,其特征在于,所述步骤S1进一步包括:选取一生物模板材料,进行前处理及活化处理,通过阳极氧化或纳米颗粒自组装或刻蚀或3D打印或微纳压印技术构建所述仿生模板。
S31:于所述的上述准球对称发散状纳米球模板上化学或物理沉积半导体纳米材料得到半导体光电薄膜。
4.根据权利要求1所述的具有准球对称特性的发散状低角度光捕获结构以实现高性能柔性自给能光探测器及其制备方法,其特征在于,所述步骤S3进一步包括:于所述的上述准球对称发散状纳米球模板上化学或物理沉积半导体纳米材料得到半导体光电薄膜所使用的技术方法包括但不限于真空过滤吸附法、旋涂法、提拉发、滴定法、喷涂法。
5.根据权利要求1所述的具有准球对称特性的发散状低角度光捕获结构以实现高性能柔性自给能光探测器及其制备方法,其特征在于,所述步骤S4进一步包括:在光电薄膜构建非对称电极实现自给能特性所使用方法包括但不限于液态金属法或电子束蒸发技术或热蒸发技术或磁控溅射技术。
6.根据权利要求1所述的具有准球对称特性的发散状低角度光捕获结构以实现高性能柔性自给能光探测器及其制备方法,其特征在于,所述步骤S4进一步包括:所述非对称电极材质包括但不限于金或银或铬或钛或钯或钪中的一种或多种。
7.根据权利要求1所述的具有准球对称特性的发散状低角度光捕获结构以实现高性能柔性自给能光探测器及其制备方法,其特征在于,所述步骤S4进一步包括:所述非对称电极之所谓非对称是指在正负两个电极在长度或宽度或厚度或面积或体积的不一致。
8.根据权利要求1所述的具有准球对称特性的发散状低角度光捕获结构以实现高性能柔性自给能光探测器及其制备方法,其特征在于,所述步骤S5进一步包括:非对称电极与光电薄膜的封装保护透明柔性材料包括但不限于PMMA、PEN、PET、PDMS中的一种或多种。封装保护透明柔性材料用作柔性器件使柔性器件具备弯曲能力且因高度透光性而保持高光吸收能力。
CN202011142518.0A 2020-10-23 2020-10-23 一种实现低角度依赖高光吸收和稳定柔性接触的柔性光电子器件设计方法及光探测器 Pending CN113013265A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011142518.0A CN113013265A (zh) 2020-10-23 2020-10-23 一种实现低角度依赖高光吸收和稳定柔性接触的柔性光电子器件设计方法及光探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011142518.0A CN113013265A (zh) 2020-10-23 2020-10-23 一种实现低角度依赖高光吸收和稳定柔性接触的柔性光电子器件设计方法及光探测器

Publications (1)

Publication Number Publication Date
CN113013265A true CN113013265A (zh) 2021-06-22

Family

ID=76382995

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011142518.0A Pending CN113013265A (zh) 2020-10-23 2020-10-23 一种实现低角度依赖高光吸收和稳定柔性接触的柔性光电子器件设计方法及光探测器

Country Status (1)

Country Link
CN (1) CN113013265A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140037702A (ko) * 2012-09-19 2014-03-27 경희대학교 산학협력단 다층 전이금속 칼코겐화합물을 이용한 투명전자소자, 이를 이용한 광전자 소자 및 트랜지스터 소자
CN107026219A (zh) * 2017-06-02 2017-08-08 深圳大学 基于Fe掺GaN衬底的二硫化钼光电探测器和制备方法
CN109065662A (zh) * 2018-06-29 2018-12-21 国家纳米科学中心 一种Te/MoS2范德华异质结构及其制备方法和应用
CN109216483A (zh) * 2017-11-03 2019-01-15 北京纳米能源与系统研究所 单层MoS2同质结、光探测器及其制备方法、电子元件
CN110676332A (zh) * 2019-09-12 2020-01-10 西安工业大学 基于层状过渡金属硫化物的柔性光电探测器及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140037702A (ko) * 2012-09-19 2014-03-27 경희대학교 산학협력단 다층 전이금속 칼코겐화합물을 이용한 투명전자소자, 이를 이용한 광전자 소자 및 트랜지스터 소자
CN107026219A (zh) * 2017-06-02 2017-08-08 深圳大学 基于Fe掺GaN衬底的二硫化钼光电探测器和制备方法
CN109216483A (zh) * 2017-11-03 2019-01-15 北京纳米能源与系统研究所 单层MoS2同质结、光探测器及其制备方法、电子元件
CN109065662A (zh) * 2018-06-29 2018-12-21 国家纳米科学中心 一种Te/MoS2范德华异质结构及其制备方法和应用
CN110676332A (zh) * 2019-09-12 2020-01-10 西安工业大学 基于层状过渡金属硫化物的柔性光电探测器及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SIXIANG LIU: ""A fl ower-inspired divergent light-trapping structure with quasi-spherical symmetry towards a high-performance fl exible photodetector"", 《NANOSCALE》 *

Similar Documents

Publication Publication Date Title
Chertopalov et al. Environment-sensitive photoresponse of spontaneously partially oxidized Ti3C2 MXene thin films
Hanaei et al. Highly efficient antireflective and self-cleaning coatings that incorporate carbon nanotubes (CNTs) into solar cells: A review
Liu et al. Flexible electronics based on inorganic nanowires
US7923629B2 (en) Method for fabricating flexible semiconductor electrode, semiconductor electrode fabricated thereby, and solar cell using the semiconductor electrode
CN106233483B (zh) 太阳能电池及其制造方法
CN111192965A (zh) 柔性透明电极及其制备方法与由其制备的柔性太阳能电池
Zhu et al. A facile approach to construct multiple structured ZnO crystals by trisodium citrate-assisted hydrothermal growth toward performance enhancement of dye-sensitized solar cells
CN105074952A (zh) 硅烷功能化缓冲层和包括该缓冲层的电子设备
CN109755395B (zh) 一种应用风刀涂布制备有机聚合物薄膜太阳能电池的方法
Yu et al. Size-selected growth of transparent well-aligned ZnO nanowire arrays
Maheswari et al. Enhancing the performance of dye-sensitized solar cells based on organic dye sensitized TiO2 nanoparticles/nanowires composite photoanodes with ionic liquid electrolyte
Selim et al. ZnO nanorods: an advanced cathode buffer layer for inverted perovskite solar cells
Gokilamani et al. Grape pigment (malvidin-3-fructoside) as natural sensitizer for dye-sensitized solar cells
Li et al. Highly efficient visible-blind ultraviolet photodetector based on scalably produced titanium dioxide nanowire arrays
Dawo et al. Recent advances in the development of flexible dye-sensitized solar cells: fabrication, challenges and applications-a review
Hamed et al. Rare-earth metal-induced plasmon resonances for enhanced photons harvesting in inverted thin film organic solar cell
Deshmukh et al. Resistive Switching in CsPbBr3 (0D)/MoS2 (2D) Heterojunction System: Trap-Controlled Space Charge Limited Transport Mechanism
KR101429181B1 (ko) 코어-쉘 나노입자 및 및 이를 포함하는 태양전지
CN104282440A (zh) 一种硫族量子点敏化氧化物半导体光阳极的制备方法
Hsieh et al. Realizing omnidirectional light harvesting by employing hierarchical architecture for dye sensitized solar cells
CN113013265A (zh) 一种实现低角度依赖高光吸收和稳定柔性接触的柔性光电子器件设计方法及光探测器
Taft et al. Overview: Photovoltaic Solar Cells, Science, Materials, Artificial Intelligence, Nanotechnology and State of the Art
JP2024500972A (ja) 太陽電池の製造方法及びそれから製造された太陽電池
KR101937537B1 (ko) 광활성층 상에 저온 공정을 통한 규칙적인 나노 구조를 가지는 홀 전도층이 도입된 유기 태양 전지 및 그 제조 방법
Fatehmulla et al. Photovoltaic and impedance properties of hierarchical TiO2 nanowire based quantum dot sensitized solar cell

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20210622

WD01 Invention patent application deemed withdrawn after publication