CN110676332A - 基于层状过渡金属硫化物的柔性光电探测器及其制备方法 - Google Patents

基于层状过渡金属硫化物的柔性光电探测器及其制备方法 Download PDF

Info

Publication number
CN110676332A
CN110676332A CN201910864259.3A CN201910864259A CN110676332A CN 110676332 A CN110676332 A CN 110676332A CN 201910864259 A CN201910864259 A CN 201910864259A CN 110676332 A CN110676332 A CN 110676332A
Authority
CN
China
Prior art keywords
transition metal
metal sulfide
flexible
square
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910864259.3A
Other languages
English (en)
Other versions
CN110676332B (zh
Inventor
坚佳莹
董芃凡
常洪龙
坚增运
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Technological University
Original Assignee
Xian Technological University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Technological University filed Critical Xian Technological University
Priority to CN201910864259.3A priority Critical patent/CN110676332B/zh
Publication of CN110676332A publication Critical patent/CN110676332A/zh
Application granted granted Critical
Publication of CN110676332B publication Critical patent/CN110676332B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/108Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the Schottky type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明涉及微电子技术领域,具体涉及一种基于层状过渡金属硫化物的柔性光电探测器及其制备方法。本发明光电探测器由柔性衬底、过渡金属硫化物薄膜和金属电极由下而上依次叠加组成;其制备方法为:过渡金属硫化物是通过低成本、可大批量生产的水热法或物理气相沉积法制备而成,在过渡金属硫化物加入分散剂和增稠剂,采用球磨法分散材料形成过渡金属硫化物分散液,并采用旋涂法在柔性衬底上形成一层过渡金属硫化物纳米薄膜,最后以铜网为硬质掩膜版,采用真空镀膜法制备金属电极。本发明的柔性光电探测器制备工艺简单、产量高、成本低、柔性好。

Description

基于层状过渡金属硫化物的柔性光电探测器及其制备方法
技术领域
本发明涉及微电子技术领域,具体涉及一种基于层状过渡金属硫化物的柔性光电探测器及其制备方法。
背景技术
层状过渡金属硫化物是一种类石墨烯结构的平面二维材料,层与层之间由较弱的范德瓦耳斯力键合在一起,而每一单分子层则依靠较强的共价键结合而形成。MX2(M=Mo,W,Nb,Ti等;X=S,Se,Te)型过渡金属硫属化合物具有类石墨的层状密排六方结构,并且有较窄的禁带宽度,因而在光、电、润滑、催化等方面也表现出优异的性能。其中,二硫化钼(MoS2)和二硫化钨(WS2)是过渡金属二硫化物最典型的代表。
随着科学技术的发展,人们对便携化的可穿戴式电子设备不断追求,促使其相应的柔性传感器件向着高效、低成本、大面积制造等方向发展。近些年,为了实现光电探测器的便携化,柔性光电探测器的设计与制备受到了研究人员的广泛关注。
Tao Y,Wu X等人采用SnS2为光敏材料,聚氯乙烯(PVC)为柔性衬底,将双面胶一面贴在柔性衬底上,滴涂SnS2在双面胶的另一面上形成光敏薄膜,最后用70μm宽的铜丝为图形化电极的掩膜版制备出了沟道为65μm宽的光电探测器,参见(Tao Y,Wu X,Wang W,etal.Flexible photodetector from ultraviolet to near infrared based on SnS2nanosheet microsphere film[J].Journal of Materials Chemistry C,2014,3(6):1347-1353.);但是该方法制备出的光敏薄膜不均匀,且以铜线为掩膜版图形化的金属电极图案不规则。
Xinhang Chen,Zongyu Huang等人以PET为柔性衬底,用手工涂银胶的方法制备金属电极,制备出了以SnS2和石墨烯混合物为光敏材料的光电探测器,参见(PhotodetectorsBased on SnS2/Graphene Heterostructure on Rigid and Flexible Substrates[J].ChemNanoMat,2018,4.);但手工涂银胶制备电极沟道距离的误差较大,沟道间距不易控制,且制备微小沟道间距的光电探测器不易实现。旋涂法制备出的薄膜较为均匀,但是以乙醇或者异丙醇等分散剂制备的过渡金属硫化物分散液粘度很低,采用旋涂法会将分散液甩飞,不易成膜。
发明内容
有鉴于此,本发明为解决现有技术存在的光敏薄膜厚度不均一、图形化金属电极图案不规则以及金属电极之间的沟道距离不易控制的问题,提供一种基于层状过渡金属硫化物的柔性光电探测器及其制备方法,其在过渡金属硫化物分散液中加入增稠剂,采用旋涂法制备均匀的纳米薄膜,以不同规格方孔铜网为硬质掩膜版制备而成。
为解决现有技术存在的问题,本发明的技术方案是:基于层状过渡金属硫化物的柔性光电探测器,其特征在于:所述的探测器结构为由下而上依次叠加的柔性衬底、过渡金属硫化物薄膜层和金属电极组成;
所述的柔性衬底为聚对苯二甲酸乙二醇酯(PET)、聚氯乙烯(PVC)或聚酰亚胺(PI)薄膜;
所述的过渡金属硫化物是通过水热法或超音速气流粉碎法制备的MoS2或WS2纳米材料;
所述的金属电极为Ti/Au或Cr/Au。
一种制备基于层状过渡金属硫化物的柔性光电探测器的方法,其特征在于:
步骤1)将过渡金属硫化物、分散剂、增稠剂在100ml容量的聚四氟乙烯行星球磨罐中进行配置;
步骤2)按照1/5~1/10的数量比例,加入直径分别为10mm与5mm的玛瑙研磨球,在150~450r/min转速下,在行星球磨罐中密封球磨3~96h后得到过渡金属硫化物悬浮液;
步骤3)将柔性材料剪裁为1cm×1cm的正方形,并分别使用无水乙醇、去离子水超声清洗5~20min,使用氮气枪吹干,得到柔性衬底;
步骤4)在柔性衬底表面采用旋涂法制备过渡金属硫化物薄膜;
步骤5)将单面聚酰亚胺高温胶带剪裁为宽小于等于200μm,长为5~10mm的矩形,取剪裁好的单面聚酰亚胺高温胶带将不同规格的方孔铜网固定在过渡金属硫化物薄膜上表面;
步骤6)以方孔铜网为硬质掩膜版,采用真空蒸发镀膜法在过渡金属硫化物薄膜表面先蒸镀厚度为3~10nm的Cr或Ti金属电极,再蒸镀厚度为20~80nm的Au金属电极;
步骤7)采用尖头镊取下过渡金属硫化物表面的方孔铜网与聚酰亚胺高温胶带即可制成光电探测器;
步骤8)采用半导体分析仪对光探测器进行光敏特性测试。
所述的步骤1)的分散剂为异丙醇。
所述的步骤1)的增稠剂为乙基纤维素。
所述步骤2)中球磨方式为:正转20~30min,停止3~10min,反转20~30min,停止3~10min,周期式运行。
所述的步骤4)中旋涂法的具体步骤如下:
1)将柔性衬底真空吸附在匀胶机中心位置;
2)匀胶机转速设定为1000~5000r/min;时间设定为30~80s;
3)使用1ml容量的一次性滴灌吸取0.3~0.8ml过渡金属硫化物悬浮液,当匀胶机转速稳定后,在柔性衬底中心位置滴加一滴悬浮液;
4)匀胶机停止运行后,得到在柔性衬底上表面的过渡金属硫化物薄膜。
所述的步骤5)中所述不同规格的方孔铜网为透射电镜铜网。
所述的步骤5)中固定方孔铜网的具体方法为:取两份剪裁好的矩形单面聚酰亚胺高温胶带,以“十”字交叉粘贴于铜网中心,并将其粘贴在过渡金属硫化物薄膜表面。
所述的步骤6)中真空蒸镀条件为:真空度小于等于5×10-4Pa、金属Cr或Ti的蒸镀速率为
Figure BDA0002200788710000041
金属Au的蒸镀速率为
Figure BDA0002200788710000042
金属Cr、Ti与Au的纯度应大于等于5N。
与现有技术相比,本发明的优点如下:
1、本发明使用的光敏材料均为低成本、可大批量生产的过渡金属硫化物;
2、本发明在制备过渡金属硫化物光敏薄膜过程中加入增稠剂提高过渡金属硫化物悬浮液的粘度,因此采用旋涂法制备的薄膜厚度均匀;
3、本发明以不同规格的铜网为硬掩模板,图形化的金属电极图案规则,电极之间的沟道距离可控;
4、本发明因为采用柔性透明的材料为衬底,所以制备的光电探测器可以任意的弯曲;
5、本发明方法生产的光电探测器制备工艺简单,产量高,并且具有成本低、柔性好的特点。
附图说明:
图1、基于层状过渡金属硫化物的柔性光电探测器件结构示意图;
图2、基于层状过渡金属硫化物的柔性光电探测器件测试照片;
图3-1、实施例1物理气相沉积制备的MoS2球磨前的TEM照片;
图3-2、实施例1物理气相沉积制备的MoS2球磨后的TEM照片;
图3-3、实施例1制备的MoS2柔性光电探测器在405nm点状激光下,不同光照强度下的I-V曲线图;
图3-4、实施例1制备的MoS2柔性光电探测器在405nm点状激光下,不同光照强度下的循环I-T曲线图;
图3-5、实施例1制备的MoS2柔性光电探测器在405nm点状激光下,一个周期的I-T曲线图;光功率为:0.285mW/cm2
图4-1、实施例2物理气相沉积制备的WS2球磨前的TEM照片;
图4-2、实施例2物理气相沉积制备的WS2球磨后的TEM照片;
图4-3、实施例2制备的WS2柔性光电探测器在405nm点状激光下,不同光照强度下的I-V曲线;
图4-4、实施例2制备的WS2柔性光电探测器在405nm点状激光下,不同光照强度下的循环I-T曲线图;
图4-5、实施例2制备的MoS2柔性光电探测器在405nm点状激光下,一个周期的I-T曲线图;光功率为:0.285mW/cm2
图5-1、实施例3水热法制备的MoS2球磨前的TEM照片;
图5-2、实施例3水热法制备的MoS2球磨后的TEM照片;
图5-3、实施例3制备的MoS2柔性光电探测器在405nm点状激光下,不同光照强度下的I-V曲线图;
图5-4、实施例3制备的MoS2柔性光电探测器在405nm点状激光下,不同光照强度下的循环I-T曲线图;
图5-5、实施例3制备的MoS2柔性光电探测器在405nm点状激光下,一个周期的I-T曲线图,光功率为:0.285mW/cm2
具体实施方式
本发明一种基于层状过渡金属硫化物的柔性光电探测器的结构为由下而上依次叠加的柔性衬底、过渡金属硫化物薄膜层和金属电极组成,如图1所示;
上述柔性衬底为聚对苯二甲酸乙二醇酯(PET)、聚氯乙烯(PVC)或聚酰亚胺(PI)薄膜;
上述过渡金属硫化物为可大批量生产的通过水热法或超音速气流粉碎法制备的纳米材料;水热法制备的过渡金属硫化物材料团聚比较严重,超音速气流粉碎法制备的层状过渡金属硫化物层数较多,均不易成膜,因此需要加入分散剂,采用球磨法分散材料,由于加入分散剂球磨后的溶液粘度较低,需要加入增稠剂便于旋涂成膜。
上述金属电极为Ti/Au或Cr/Au。
一种制备基于层状过渡金属硫化物的柔性光电探测器的方法的步骤为:
1、将过渡金属硫化物、分散剂、增稠剂在100ml容量的聚四氟乙烯行星球磨罐中进行配置;
所述的分散剂为异丙醇;所述增稠剂为乙基纤维素。
2、按照1/5~1/10的数量比例,加入直径分别为10mm与5mm的玛瑙研磨球,在150~450r/min转速下,在行星球磨罐中密封球磨3~96h后得到过渡金属硫化物悬浮液;
球磨方式为:正转20~30min,停止3~10min,反转20~30min,停止3~10min,周期式运行;
3、将柔性材料剪裁为1cm×1cm的正方形,并分别使用无水乙醇、去离子水超声清洗5~20min,使用氮气枪吹干,得到柔性衬底;
4、在柔性衬底表面采用旋涂法制备过渡金属硫化物薄膜;
旋涂法的具体步骤如下:
1)将柔性衬底真空吸附在匀胶机中心位置;
2)匀胶机转速设定为1000~5000r/min;时间设定为30~80s;
3)使用1ml容量的一次性滴灌吸取0.3~0.8ml过渡金属硫化物悬浮液,当匀胶机转速稳定后,在柔性衬底中心位置滴加一滴悬浮液;
4)匀胶机停止运行后,得到在柔性衬底上表面的过渡金属硫化物薄膜;
5、将单面聚酰亚胺高温胶带剪裁为宽小于等于200μm,长为5~10mm的矩形,取剪裁好的单面聚酰亚胺高温胶带将方孔铜网固定在过渡金属硫化物薄膜上表面;
所述不同规格的方孔铜网为市场可购得的透射电镜铜网。通过选择不同肋宽的方孔铜网可以调节探测器电极间的沟道间距;
固定铜网的具体方法为:取两份剪裁好的矩形单面聚酰亚胺高温胶带,以“十”字交叉粘贴于铜网中心,并将其粘贴在过渡金属硫化物薄膜表面;
6、以不同规格的方孔铜网为硬质掩膜版,采用真空蒸发镀膜法在过渡金属硫化物薄膜表面先蒸镀厚度为3~10nm的Cr或Ti金属电极,再蒸镀厚度为20~80nm的Au金属电极;
真空蒸镀条件为:真空度小于等于5×10-4Pa、金属Cr或Ti的蒸镀速率为
Figure BDA0002200788710000081
金属Au的蒸镀速率为
Figure BDA0002200788710000082
金属Cr、Ti与Au的纯度应大于等于5N;
7、采用尖头镊取下过渡金属硫化物表面的方孔铜网与聚酰亚胺高温胶带即可制成光电探测器;
8、采用半导体分析仪对光探测器进行光敏特性测试,如图2所示。
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
实施例1:
1)将物理气相沉积法制备的MoS2(上海阿拉丁生化科技股份有限公司)、异丙醇、乙基纤维素按照1g∶10ml∶0.1g的比例在100ml容量的聚四氟乙烯行星球磨罐中进行配置;
2)加入10颗10mm直径和70颗5mm直径的玛瑙研磨球,放入行星式球磨机中密封;
3)将球磨机转速调整为300r/min,采用正转25min、停止5min、反转25min、停止5min,周期式运行方式,球磨72h,得到MoS2悬浮液;
4)将柔性PET剪裁为1cm×1cm的正方形,并分别使用无水乙醇、去离子水超声清洗10min,使用氮气枪吹干,得到柔性PET衬底;
5)将柔性PET衬底真空吸附在匀胶机中心位置,匀胶机转速设定为2000r/min;时间设定为40s。
6)使用1ml容量的一次性滴灌吸取0.3ml MoS2悬浮液,当匀胶机转速稳定后,在柔性PET衬底中心位置滴加一滴悬浮液,匀胶机停止运行后,得到在柔性PET衬底上表面的MoS2薄膜;
7)将单面聚酰亚胺高温胶带剪裁为宽小于等于200μm,长为5~10mm的矩形,取两根剪裁好的单面聚酰亚胺高温胶带,以“十”字形式粘贴于肋宽为50μm,直径为3.05mm的方孔铜网中心,并将其粘贴在MoS2薄膜表面;
8)以方孔铜网为硬质掩膜版,采用真空蒸发镀膜法在过渡金属硫化物薄膜表面先蒸镀厚度为5nm的Cr金属电极,再蒸镀厚度为50nm的Au金属电极;
9)采用尖头镊取下过渡金属硫化物表面的铜网与聚酰亚胺高温胶带即可制成光电探测器;
10)将光探测器多次弯折后,粘贴于直径为10cm玻璃棒表面,采用半导体分析仪对其进行光敏特性测试。
实施例1所使用的超音速气流粉碎法制备的MoS2球磨前后的TEM照片分别如图3-1、图3-2所示,球磨前,MoS2颗粒粒径较大,层数较多;球磨后其粒径与层数明显减小。
实施例1的柔性光电探测器在405nm波长激光器的激发下,不同光照强度下的伏安特性如图3-3所示,电流随光照强度的增大而增大。不同光照强度下的循环I-T曲线如图3-4所示,随着光开关的变化,光电流能够迅速的升高或衰减到一定的数值后,能够很好保持光电流的稳定,最大光电流为3.7×10-9A,最大光响应度为0.203A/W。图3-5为一个周期的I-T曲线图,该光电探测器的光响应时间(Rise Time)低于89ms,暗响应时间(Fall Time)低于65ms,响应灵敏度高。
实施例2
1)将超音速气流粉碎法制备的WS2(上海阿拉丁生化科技股份有限公司)、异丙醇、乙基纤维素按照1.55g∶10ml∶0.1g的比例在100ml容量的聚四氟乙烯行星球磨罐中进行配置;
2)加入10颗10mm直径和75颗5mm直径的玛瑙研磨球,放入行星式球磨机中密封;
3)将球磨机转速调整为200r/min,采用正转20min、停止8min、反转20min、停止8min,周期式运行方式,球磨80h,得到WS2悬浮液;
4)将柔性PVC剪裁为1cm×1cm的正方形,并分别使用无水乙醇、去离子水超声清洗10min,使用氮气枪吹干,得到柔性PVC衬底;
5)将柔性PVC衬底真空吸附在匀胶机中心位置,匀胶机转速设定为3000r/min;时间设定为80s;
6)使用1ml容量的一次性滴灌吸取0.5ml WS2悬浮液,当匀胶机转速稳定后,在柔性PVC衬底中心位置滴加一滴悬浮液,匀胶机停止运行后,得到在柔性PET衬底上表面的WS2薄膜;
7)将单面聚酰亚胺高温胶带剪裁为宽小于等于200μm,长为5~10mm的矩形,取两根剪裁好的单面聚酰亚胺高温胶带,以“十”字形式粘贴于肋宽为50μm,直径为3.05mm的方孔铜网中心,并将其粘贴在WS2薄膜表面;
8)以方孔铜网为硬质掩膜版,采用真空蒸发镀膜法在过渡金属硫化物薄膜表面先蒸镀厚度为5nm的Ti金属电极,再蒸镀厚度为50nm的Au金属电极;
9)采用尖头镊取下过渡金属硫化物表面的方孔铜网与聚酰亚胺高温胶带即可制成光电探测器;
10)将光探测器多次弯折后,粘贴于直径为10cm玻璃棒表面,采用半导体分析仪对光探测器进行光敏特性测试。
实施例2所使用的超音速气流粉碎法制备的WS2球磨前后的TEM照片分别如图4-1、图4-2所示,球磨前,WS2颗粒粒径大于1μm,层数多;球磨后其粒径减少为0.5μm左右,层数也有明显减少。
实施例2的柔性光电探测器在405nm波长的激光器激发下,不同光照强度下的伏安特性如图4-3所示,电流随光照强度的增大而增大。不同光照强度下的循环I-T曲线如图4-4所示,随着光开关的变化,光电流能够迅速的升高或衰减到一定的数值后,能够很好保持光电流的稳定,最大光电流为1.5×10-9A,最大光响应度为0.087A/W。图4-5为一个周期的I-T曲线图,该光电探测器的光响应时间(Rise Time)低于133ms,暗响应时间(Fall Time)低于136ms,响应灵敏度高。
实施例3
1)采用水热法制备MoS2花状纳米球,将4mmol仲钼酸铵、6.3mmol硫脲,溶解于30ml去离子水中,使用浓盐酸调节PH值为2,密封于高压反应釜中,在200℃环境下反应24h,得到水热法制备的MoS2
2)将MoS2、异丙醇、乙基纤维素按照1g∶10ml∶0.1g的比例在100ml容量的聚四氟乙烯行星球磨罐中进行配置;
3)加入10颗10mm直径和70颗5mm直径的玛瑙研磨球,放入行星式球磨机中密封;
4)将球磨机转速调整为450r/min,采用正转30min、停止10min、反转30min、停止10min,周期式运行方式,球磨3h,得到MoS2悬浮液;
5)将柔性PI剪裁为1cm×1cm的正方形,并分别使用无水乙醇、去离子水超声清洗10min,使用氮气枪吹干,得到柔性PI衬底;
6)将柔性PI衬底真空吸附在匀胶机中心位置,匀胶机转速设定为1500r/min;时间设定为50s;
7)使用1ml容量的一次性滴灌吸取0.5ml MoS2悬浮液,当匀胶机转速稳定后,在柔性PI衬底中心位置滴加一滴悬浮液,匀胶机停止运行后,得到在柔性PI衬底表面的MoS2薄膜;
8)将单面聚酰亚胺高温胶带剪裁为宽小于等于200μm,长为5~10mm的矩形。取两根剪裁好的单面聚酰亚胺高温胶带,以“十”字形式粘贴于肋宽为50μm,直径为3.05mm的方孔铜网中心,并将其粘贴在MoS2薄膜表面;
9)以方孔铜网为硬质掩膜版,采用真空蒸发镀膜法在过渡金属硫化物薄膜表面先蒸镀厚度为5nm的Ti金属电极,再蒸镀厚度为45nm的Au金属电极;
10)采用尖头镊取下过渡金属硫化物表面的方孔铜网与聚酰亚胺高温胶带即可制成光电探测器;
11)将光探测器多次弯折后,粘贴于直径为10cm玻璃棒表面,采用半导体分析仪对光探测器进行光敏特性测试。
实施例3所使用的水热法制备MoS2花状纳米球,球磨前后的TEM照片分别如图5-1、图5-2所示,球磨前,MoS2颗粒是由多片片状MoS2材料组成,直径为0.3~0.6μm;球磨后片状MoS2材料彼此分离,可观察到其直径约为0.3μm,且层数较少,
实施例3的柔性光电探测器在405nm波长的激光器激发下,不同光照强度下的伏安特性如图5-3所示,电流随光照强度的增大而增大。不同光照强度下的循环I-T曲线如图5-4所示,随着光开关的变化,光电流能够迅速的升高或衰减到一定的数值后,能够很好保持光电流的稳定,最大光电流为4.76×10-8A,最大光响应度为2.12A/W。图5-5为一个周期的I-T曲线图,该光电探测器的光响应时间(Rise Time)低于176ms,暗响应时间(Fall Time)低于146ms,响应灵敏度高。
以上所述仅是本发明的优选实施例,并非用于限定本发明的保护范围,应当指出,对本技术领域的普通技术人员在不脱离本发明原理的前提下,对其进行若干改进与润饰,均应视为本发明的保护范围。

Claims (9)

1.基于层状过渡金属硫化物的柔性光电探测器,其特征在于:所述的探测器结构为由下而上依次叠加的柔性衬底、过渡金属硫化物薄膜层和金属电极组成;
所述的柔性衬底为聚对苯二甲酸乙二醇酯(PET)、聚氯乙烯(pvc)或聚酰亚胺(PI)薄膜;
所述的过渡金属硫化物是通过水热法或超音速气流粉碎法制备的MoS2或WS2纳米材料;
所述的金属电极为Ti/Au或Cr/Au。
2.根据权利要求1所述的一种制备基于层状过渡金属硫化物的柔性光电探测器的方法,其特征在于:
步骤1)将过渡金属硫化物、分散剂、增稠剂在100ml容量的聚四氟乙烯行星球磨罐中进行配置;
步骤2)按照1/5~1/10的数量比例,加入直径分别为10mm与5mm的玛瑙研磨球,在150~450r/min转速下,在行星球磨罐中密封球磨3~96h后得到过渡金属硫化物悬浮液;
步骤3)将柔性材料剪裁为1cm×1cm的正方形,并分别使用无水乙醇、去离子水超声清洗5~20min,使用氮气枪吹干,得到柔性衬底;
步骤4)在柔性衬底表面采用旋涂法制备过渡金属硫化物薄膜;
步骤5)将单面聚酰亚胺高温胶带剪裁为宽小于等于200μm,长为5~10mm的矩形,取剪裁好的单面聚酰亚胺高温胶带将不同规格的方孔铜网固定在过渡金属硫化物薄膜上表面;
步骤6)以方孔铜网为硬质掩膜版,采用真空蒸发镀膜法在过渡金属硫化物薄膜表面先蒸镀厚度为3~10nm的Cr或Ti金属电极,再蒸镀厚度为20~80nm的Au金属电极;
步骤7)采用尖头镊取下过渡金属硫化物表面的方孔铜网与聚酰亚胺高温胶带即可制成光电探测器;
步骤8)采用半导体分析仪对光探测器进行光敏特性测试。
3.根据权利要求2所述的一种制备基于层状过渡金属硫化物的柔性光电探测器的方法,其特征在于:所述的步骤1)的分散剂为异丙醇。
4.根据权利要求2或3所述的一种制备基于层状过渡金属硫化物的柔性光电探测器的方法,其特征在于:所述的步骤1)的增稠剂为乙基纤维素。
5.根据权利要求4所述的一种制备基于层状过渡金属硫化物的柔性光电探测器的方法,其特征在于:所述步骤2)中球磨方式为:正转20~30min,停止3~10min,反转20~30min,停止3~10min,周期式运行。
6.根据权利要求5所述的一种制备基于层状过渡金属硫化物的柔性光电探测器的方法,其特征在于:所述的步骤4)中旋涂法的具体步骤如下:
1)将柔性衬底真空吸附在匀胶机中心位置;
2)匀胶机转速设定为1000~5000r/min;时间设定为30~80s;
3)使用1ml容量的一次性滴灌吸取0.3~0.8ml过渡金属硫化物悬浮液,当匀胶机转速稳定后,在柔性衬底中心位置滴加一滴悬浮液;
4)匀胶机停止运行后,得到在柔性衬底上表面的过渡金属硫化物薄膜。
7.根据权利要求6所述的一种制备基于层状过渡金属硫化物的柔性光电探测器的方法,其特征在于:所述的步骤5)中所述不同规格的方孔铜网为透射电镜铜网。
8.根据权利要求7所述的一种制备基于层状过渡金属硫化物的柔性光电探测器的方法,其特征在于:所述的步骤5)中固定方孔铜网的具体方法为:取两份剪裁好的矩形单面聚酰亚胺高温胶带,以“十”字交叉粘贴于铜网中心,并将其粘贴在过渡金属硫化物薄膜表面。
9.根据权利要求8所述的一种制备基于层状过渡金属硫化物的柔性光电探测器的方法,其特征在于:所述的步骤6)中真空蒸镀条件为:真空度小于等于5×10-4Pa、金属Cr或Ti的蒸镀速率为
Figure FDA0002200788700000031
金属Au的蒸镀速率为
Figure FDA0002200788700000032
金属Cr、Ti与Au的纯度应大于等于5N。
CN201910864259.3A 2019-09-12 2019-09-12 基于层状过渡金属硫化物的柔性光电探测器及其制备方法 Active CN110676332B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910864259.3A CN110676332B (zh) 2019-09-12 2019-09-12 基于层状过渡金属硫化物的柔性光电探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910864259.3A CN110676332B (zh) 2019-09-12 2019-09-12 基于层状过渡金属硫化物的柔性光电探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN110676332A true CN110676332A (zh) 2020-01-10
CN110676332B CN110676332B (zh) 2021-07-02

Family

ID=69077908

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910864259.3A Active CN110676332B (zh) 2019-09-12 2019-09-12 基于层状过渡金属硫化物的柔性光电探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN110676332B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112018215A (zh) * 2020-08-12 2020-12-01 西安工业大学 一种柔性二维TMDs光电探测器的制备方法
CN113013265A (zh) * 2020-10-23 2021-06-22 湘潭大学 一种实现低角度依赖高光吸收和稳定柔性接触的柔性光电子器件设计方法及光探测器
CN113035965A (zh) * 2021-03-04 2021-06-25 电子科技大学 一种基于硒化物/硫化物异质结的柔性光电探测器的制备方法
CN113418552A (zh) * 2021-06-09 2021-09-21 海南大学 一种二维过渡金属硫化物材料柔性传感器及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105366725A (zh) * 2014-08-29 2016-03-02 中国科学院大连化学物理研究所 一种以含硫生物试剂为硫源的水热合成MoS2纳米花的方法
CN106567055A (zh) * 2015-10-08 2017-04-19 中国科学院金属研究所 一种大面积高质量完全单层的二硫化钨的制备方法
CN207038541U (zh) * 2017-07-30 2018-02-23 北京蓝木科技有限公司 一种高响应的石墨烯‑二硫化钼柔性光电传感器及光电检测设备
CN108193169A (zh) * 2018-03-06 2018-06-22 华东师范大学 一种制备二维材料金属电极的掩膜版
CN109216483A (zh) * 2017-11-03 2019-01-15 北京纳米能源与系统研究所 单层MoS2同质结、光探测器及其制备方法、电子元件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105366725A (zh) * 2014-08-29 2016-03-02 中国科学院大连化学物理研究所 一种以含硫生物试剂为硫源的水热合成MoS2纳米花的方法
CN106567055A (zh) * 2015-10-08 2017-04-19 中国科学院金属研究所 一种大面积高质量完全单层的二硫化钨的制备方法
CN207038541U (zh) * 2017-07-30 2018-02-23 北京蓝木科技有限公司 一种高响应的石墨烯‑二硫化钼柔性光电传感器及光电检测设备
CN109216483A (zh) * 2017-11-03 2019-01-15 北京纳米能源与系统研究所 单层MoS2同质结、光探测器及其制备方法、电子元件
CN108193169A (zh) * 2018-03-06 2018-06-22 华东师范大学 一种制备二维材料金属电极的掩膜版

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
丁远奎: "铜基光吸收层薄膜的绿色溶液法制备及其光伏器件研究", 《中国优秀硕士学位论文全文数据库(电子期刊)工程科技Ⅱ辑》 *
耿祥顺: "基于高速二维硒化钼异质结光电探测器的研究", 《中国优秀硕士学位论文全文数据库(电子期刊)信息科技辑》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112018215A (zh) * 2020-08-12 2020-12-01 西安工业大学 一种柔性二维TMDs光电探测器的制备方法
CN113013265A (zh) * 2020-10-23 2021-06-22 湘潭大学 一种实现低角度依赖高光吸收和稳定柔性接触的柔性光电子器件设计方法及光探测器
CN113035965A (zh) * 2021-03-04 2021-06-25 电子科技大学 一种基于硒化物/硫化物异质结的柔性光电探测器的制备方法
CN113035965B (zh) * 2021-03-04 2023-07-14 电子科技大学 一种基于硒化物/硫化物异质结的柔性光电探测器的制备方法
CN113418552A (zh) * 2021-06-09 2021-09-21 海南大学 一种二维过渡金属硫化物材料柔性传感器及其制备方法
CN113418552B (zh) * 2021-06-09 2022-10-04 海南大学 一种二维过渡金属硫化物材料柔性传感器及其制备方法

Also Published As

Publication number Publication date
CN110676332B (zh) 2021-07-02

Similar Documents

Publication Publication Date Title
CN110676332B (zh) 基于层状过渡金属硫化物的柔性光电探测器及其制备方法
Wu et al. Photovoltaic high-performance broadband photodetector based on MoS2/Si nanowire array heterojunction
Yao et al. ZnO nanorods grown on polymer substrates as UV photodetectors
Hosseini et al. High-performance UV‐Vis-NIR photodetectors based on plasmonic effect in Au nanoparticles/ZnO nanofibers
Yadav et al. Sol-gel-based highly sensitive Pd/n-ZnO thin film/n-Si Schottky ultraviolet photodiodes
Ranjith et al. Facile construction of vertically aligned ZnO nanorod/PEDOT: PSS hybrid heterojunction-based ultraviolet light sensors: Efficient performance and mechanism
US9694422B2 (en) Deposition and post-processing techniques for transparent conductive films
Husham et al. Microwave-assisted chemical bath deposition of nanocrystalline CdS thin films with superior photodetection characteristics
US20220052218A1 (en) Silicon carbide-based full-spectrum-responsive photodetector and method for producing same
CN111613691B (zh) 基于氧化铜/氧化镓纳米柱阵列pn结的柔性紫外探测器及其制备方法
Chen et al. Field-emission and photoelectrical characteristics of ZnO nanorods photodetectors prepared on flexible substrate
Li et al. Full-solution processed all-nanowire flexible and transparent ultraviolet photodetectors
Young et al. Self-powered ZnO nanorod ultraviolet photodetector integrated with dye-sensitised solar cell
Saikia et al. Synthesis, characterization and photovoltaic application of silver doped CdS/PVA nanocomposite thin films
Hsu et al. Fabrication of fully transparent indium-doped ZnO nanowire field-effect transistors on ITO/glass substrates
CN109698278A (zh) 一种有机无机复合结构自驱动日盲紫外探测器及制备方法
Maurya et al. Comparative study of photoresponse from vertically grown ZnO nanorod and nanoflake films
Lee et al. Effect of rapid thermal annealing on the structural and electrical properties of solid ZnO/NiO heterojunctions prepared by a chemical solution process
Young et al. Perspective—doped ZnO nanostructures based on ultraviolet photosensors
CN102969451B (zh) 一种有机聚合物薄膜紫外光探测器及其制备方法
Ju et al. Solution processed membrane-based wearable ZnO/graphene Schottky UV photodetectors with imaging application
Balaji et al. Impact of Cu concentration on the properties of spray coated Cu-MoO3 thin films: evaluation of n-CuMoO3/p-Si junction diodes by JV, Norde and Cheung’s methods
Nair et al. Photoresponse of a printed transparent silver nanowire-zinc oxide nanocomposite
KR101429181B1 (ko) 코어-쉘 나노입자 및 및 이를 포함하는 태양전지
CN207977318U (zh) 一种多功能器件

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant