CN112018215A - 一种柔性二维TMDs光电探测器的制备方法 - Google Patents
一种柔性二维TMDs光电探测器的制备方法 Download PDFInfo
- Publication number
- CN112018215A CN112018215A CN202010807246.5A CN202010807246A CN112018215A CN 112018215 A CN112018215 A CN 112018215A CN 202010807246 A CN202010807246 A CN 202010807246A CN 112018215 A CN112018215 A CN 112018215A
- Authority
- CN
- China
- Prior art keywords
- film
- substrate
- flexible
- tmds
- dimensional
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- GJWAPAVRQYYSTK-UHFFFAOYSA-N [(dimethyl-$l^{3}-silanyl)amino]-dimethylsilicon Chemical compound C[Si](C)N[Si](C)C GJWAPAVRQYYSTK-UHFFFAOYSA-N 0.000 title claims abstract description 30
- 238000002360 preparation method Methods 0.000 title claims abstract description 12
- 239000000758 substrate Substances 0.000 claims abstract description 83
- 238000010438 heat treatment Methods 0.000 claims abstract description 17
- 229910052751 metal Inorganic materials 0.000 claims abstract description 14
- 239000002184 metal Substances 0.000 claims abstract description 14
- 238000000034 method Methods 0.000 claims abstract description 14
- 238000004528 spin coating Methods 0.000 claims abstract description 6
- 238000005229 chemical vapour deposition Methods 0.000 claims abstract description 5
- 238000000576 coating method Methods 0.000 claims abstract description 5
- 239000007787 solid Substances 0.000 claims abstract description 5
- 238000002207 thermal evaporation Methods 0.000 claims abstract description 5
- 239000010408 film Substances 0.000 claims description 55
- 239000010409 thin film Substances 0.000 claims description 22
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 21
- 229910052802 copper Inorganic materials 0.000 claims description 21
- 239000010949 copper Substances 0.000 claims description 21
- 238000004321 preservation Methods 0.000 claims description 6
- 238000007711 solidification Methods 0.000 claims description 5
- 230000008023 solidification Effects 0.000 claims description 5
- 239000002390 adhesive tape Substances 0.000 claims description 4
- 239000000463 material Substances 0.000 abstract description 17
- 230000008569 process Effects 0.000 abstract description 4
- 230000007613 environmental effect Effects 0.000 abstract 1
- 239000004642 Polyimide Substances 0.000 description 42
- 229920001721 polyimide Polymers 0.000 description 42
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 16
- 239000004926 polymethyl methacrylate Substances 0.000 description 16
- 238000005286 illumination Methods 0.000 description 12
- 239000010410 layer Substances 0.000 description 10
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 8
- 238000000399 optical microscopy Methods 0.000 description 6
- 239000010980 sapphire Substances 0.000 description 6
- 239000002356 single layer Substances 0.000 description 6
- 238000007738 vacuum evaporation Methods 0.000 description 6
- 238000001704 evaporation Methods 0.000 description 5
- 229910052594 sapphire Inorganic materials 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- 229910052961 molybdenite Inorganic materials 0.000 description 4
- 229910052982 molybdenum disulfide Inorganic materials 0.000 description 4
- 229910052723 transition metal Inorganic materials 0.000 description 4
- -1 transition metal sulfide Chemical class 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 238000001237 Raman spectrum Methods 0.000 description 3
- 229910021389 graphene Inorganic materials 0.000 description 3
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000002923 metal particle Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000000879 optical micrograph Methods 0.000 description 2
- 229910016002 MoS2a Inorganic materials 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 239000013590 bulk material Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
- H01L31/1892—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof methods involving the use of temporary, removable substrates
- H01L31/1896—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof methods involving the use of temporary, removable substrates for thin-film semiconductors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
- H01L31/186—Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
- H01L31/1864—Annealing
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physical Vapour Deposition (AREA)
- Light Receiving Elements (AREA)
Abstract
本发明涉及光电子技术领域,公开了一种柔性二维TMDs光电探测器的制备方法。所述方法包括如下步骤:首先采用CVD法在生长衬底上制备出二维TMDs薄膜;接着在生长衬底上旋涂一层PI溶液并加热固化形成PI固体薄膜。将固化后的PI薄膜从生长衬底上撕下,二维TMDs薄膜与生长衬底分离并贴附在PI薄膜上;最后采用真空热蒸发镀膜法,在粘贴有二维TMDs薄膜的柔性PI基底上制备图形化的金属电极。本发明提出了一种制备柔性二维TMDs光电探测器的新方法,该方法简化了二维TMDs光电探测器制备过程中的二维TMDs材料转移工艺,保证了转移前后二维TMDs材料的完整性及均匀性,具有环境友好性。
Description
技术领域
本发明涉及光电子技术领域,具体涉及一种柔性二维TMDs光电探测器的制备方法。
背景技术
基于摩尔定律,现代电子器件上所用半导体材料已经延伸到尺寸更小的二维材料上。从2004年石墨烯被发现以来,二维材料以其优越的物理化学性能,受到研究者们的普遍关注。石墨烯材料具有超高的电子迁移率,但是其零带隙限制了它在电子器件上的应用。TMDs材料具有与石墨烯相似的层状结构,体相的TMDs材料属于间接带隙半导体,随着其层数不断减少至单层时,会从间接带隙转变为直接带隙结构。
目前商业化的光电探测器往往需要采用硅、锗等较厚的块体材料作为光探测元件以获得较大的光电响应度。然而,块体材料光电探测器在使用过程中易碎裂,不能完全满足下一代光电子器件对柔性化、轻量化、优异的移植性、大面积兼容性等方面的需求。TMDs材料机械性能良好,为柔性可穿戴器件提供了新的可能性。聚酰亚胺(PI)目前是半导体和微电子工业中应用最为广泛的高分子材料之一,其具有很好的热稳定性、优异的机械性能(强度高、膨胀系数低、耐磨耐老化)、电性能(介电常数低、漏电低)等。
由于单层TMDs材料的厚度不到1nm,因此在制备TMDs薄膜柔性光电探测器过程中,现有技术需要先将PMMA溶液旋涂在生长衬底上,固化形成PMMA薄膜,再将PMMA薄膜从生长衬底撕下,此时二维TMDs薄膜将与生长衬底分离并贴附在PMMA薄膜上,最后将粘附有TMDs材料的PMMA薄膜粘贴在器件衬底上,并用丙酮溶解PMMA转移支撑层。Byungjin等人提出TMDs薄膜的转移如下:首先在生长衬底上旋涂有机溶剂PMMA,在生长衬底表面固化形成PMMA薄膜,然后采用PMMA薄膜作为转移支撑层,将粘贴有TMDs薄膜的PMMA转移支撑层从生长衬底撕下,再将PMMA转移支撑层贴附至PI衬底上,最后采用丙酮溶解PMMA转移支撑层。参见Byungjin C,Jongwon Y,Sung L,et al.Metal Decoration Effects on the Gas-Sensing Properties of 2D Hybrid-Structures on Flexible Substrates[J].Sensors,2015,15(10):24903-24913.但该工艺在溶解PMMA转移支撑层过程中易在TMDs薄膜表面留下杂质,丙酮若过量将会少量溶解TMDs薄膜,对薄膜的均匀性以及完整性造成破坏;并且该工艺十分复杂,需要转移两次才能将生长衬底上的二维TMDs薄膜转移至柔性衬底上。
发明内容:
为了解决现有技术易对薄膜的均匀性以及完整性造成破坏,同时制备方法复杂的问题,本发明提供了一种柔性二维TMDs光电探测器的制备方法。
为了达到本发明的目的,本发明提供了一种柔性二维TMDs光电探测器的制备方法,包括下述步骤:
1)、采用CVD法生长出二维TMDs薄膜;
2)、将生长有二维TMDs薄膜的衬底放置在加热台上预热,加热台温度设定50~80℃,预热时间2~4min;
3)、将PI溶液滴于生长衬底表面,将生长衬底放置在匀胶机上进行旋涂,匀胶机转速设定为1000~2000rpm,时间为10~40s;
4)、将步骤3)所得生长衬底放置在真空加热台中固化,真空加热台温度设定为120~160℃,真空度10pa,保温时间10~20min,生长衬底表面会形成棕黄色的PI固体薄膜;
5)、用镊子将PI薄膜从生长衬底表面撕下,二维TMDs薄膜从生长衬底转移到柔性PI薄膜上;
6)、采用真空热蒸发镀膜法,以铜网为掩膜版在粘贴有二维TMDs薄膜的柔性PI衬底上制备图形化的金属电极。
上述步骤2)中生长衬底的预热温度50~80℃,预热时间2~4min。
上述步骤3)匀胶机转速为1000~2000rpm,时间为10~40s。
上述步骤6)中以铜网为硬质掩膜版,所用的铜网肋宽为20~30μm,在显微镜下将铜网覆盖在黏贴有TMDs薄膜的柔性PI衬底上,并用高温胶带将其四周紧贴于衬底表面,最后采用真空热蒸发镀膜工艺,在衬底表面依次蒸镀10nm厚的金属Cr和50nm厚的金属Au。
与现有技术相比,本发明的优点:
1、本发明首次提出二维TMDs材料向柔性衬底的一步法转移技术,直接将PI溶液旋涂在生长衬底上,固化形成PI薄膜,再将PI薄膜从生长衬底撕下,此时二维TMDs薄膜将与生长衬底分离并贴附在PI薄膜上,该PI薄膜既是TMDs材料的转移支撑层又是柔性衬底,避免了现有转移技术中所产生的污染和缺陷,保证了转移前后二维TMDs材料的完整性及均匀性。
2、本发明方法不需要再将贴附有TMDS材料的PMMA转移支撑层贴附至器件衬底,不需要采用丙酮溶解PMMA转移支撑层,具有环境友好性。
3、本发明方法直接将二维TMDs材料转移至柔性器件衬底,简化了柔性二维TMDs光电探测器的制备工艺。
附图说明
图1:转移流程图;
图2:案例1中MoS2薄膜柔性光电探测器制备视图;
其中:
(a)生长在蓝宝石衬底上的MoS2薄膜光学显微镜图;
(b)MoS2薄膜转移至PI衬底上的光学显微镜图;
(c)MoS2薄膜柔性光电探测器的光学显微镜图;
(d)MoS2薄膜柔性光电探测器的实物图。
图3:案例1中MoS2薄膜的拉曼光谱图;
图4:案例1中MoS2薄膜柔性光电探测器的光电特性;
其中:
(a)不同光照功率下的I-V特性;
(b)不同光照功率下的I-t曲线。
图5:案例2中WS2薄膜柔性光电探测器制备视图;
其中:
(a)生长在蓝宝石上的WS2薄膜光学显微镜图;
(b)WS2薄膜转移至PI衬底上的光学显微镜图;
(c)WS2薄膜柔性光电探测器的光学显微镜图;
(d)WS2薄膜柔性光电探测器的实物图。
图6:案例2中WS2薄膜的拉曼光谱图;
图7:案例2中WS2薄膜柔性光电探测器的光电特性;
其中:
(a)不同光照功率下的I-V特性;
(b)不同光照功率下的I-t曲线。
具体实施方式:
下面将结合附图和实施例对本发明做详细地描述。
实施例1:一种柔性二维TMDs光电探测器的制备方法,包括以下步骤:
一、采用CVD法在蓝宝石衬底上生长出二维MoS2薄膜。图2(a)是生长在蓝宝石衬底上的MoS2薄膜的光学显微镜图,图3为该样品的拉曼光谱图,由图3可知A1g与E2g 1的差值19.128cm-1,故该MoS2薄膜为单层。
二、将表面生长有二维MoS2薄膜的生长衬底(15*5mm)放置加热台上预热,加热台温度设定60℃,预热时间2min;
三、取1ml聚酰亚胺(PI)溶液,将PI溶液滴于生长衬底表面,将衬底放置在匀胶机上进行旋涂,匀胶机转速设定为1000rpm,时间为10s;
四、将步骤三旋涂了PI溶液的生长衬底放置在真空加热台中固化,真空加热台温度设定为120℃,真空度10pa,保温时间10min。保温完成后,衬底表面会形成棕黄色的PI固体薄膜;
五、用镊子将PI膜从衬底表面撕下,PI与二维过渡金属硫化物间的粘附力将大于二维过渡金属硫化物与生长衬底间的粘附力,MoS2薄膜会从生长衬底转移到PI膜上,转移到PI衬底上的MoS2薄膜如图2(b)所示;
六、以铜网为硬掩膜版,在粘贴有二维MoS2薄膜的柔性PI衬底上真空蒸镀金属电极,其主要步骤为:首先利用显微镜在PI衬底上找到尺寸合适的二维MoS2薄膜,标定区域;将肋宽25μm的铜网覆盖于标定好的区域内;用高温胶带将铜网四周紧贴于PI衬底表面,防止凸起;再将固定着铜网的PI衬底和金属颗粒放置在真空蒸镀设备的仓体内,将真空蒸镀机抽真空到5×10-4Pa,在衬底表面依次蒸镀10nm厚金属Cr和50nm厚金属Au。蒸镀速率为蒸镀功率为100W。图2(c)是制备出的单层MoS2薄膜光电探测器的光学显微镜图。
采用半导体光电测试仪对器件的光电性能进行测试,测试采用的入射激光波长为405nm,光照功率范围为0.2mW至1mW。图4(a)为波长405nm的激光照射下,MoS2薄膜柔性光电探测器在不同光照功率下的I-V特性。图4(b)是在波长405nm的激光照射下,MoS2薄膜柔性光电探测器在不同光照功率下的I-t曲线,可以看出随光照强度增加,器件的光电流增加。
实施例2:一种柔性二维TMDs光电探测器的制备方法,包括以下步骤:
一、采用CVD法在蓝宝石衬底上生长出二维WS2薄膜。图5(a)是生长在蓝宝石衬底上的WS2薄膜的光学显微镜图,图6为该样品的拉曼光谱图,由图可知A1g与E2g 1的差值63.821cm-1,故该WS2薄膜为单层。
二、将表面生长有二维WS2薄膜的生长衬底(15*5mm)放置加热台上预热,加热台温度设定60℃,预热时间4min;
三、取1ml聚酰亚胺(PI)溶液,将PI溶液滴于生长衬底表面,将衬底放置在匀胶机上进行旋涂,匀胶机转速设定为2000rpm,时间为30s;
四、将步骤三旋涂了PI溶液的生长衬底放置在真空加热台中固化,真空加热台温度设定为150℃,真空度10pa,保温时间15min。保温完成后,衬底表面会形成棕黄色的PI固体薄膜;
五、用镊子将PI膜从衬底表面撕下,PI与二维过渡金属硫化物间的粘附力将大于二维过渡金属硫化物与生长衬底间的粘附力,WS2薄膜会从生长衬底转移到PI膜上,转移到PI衬底上的WS2薄膜如图5(b)所示;
六、以铜网为硬掩膜版,在粘贴有二维WS2薄膜的柔性PI衬底上真空蒸镀金属电极,其主要步骤为:首先利用显微镜在PI衬底上找到尺寸合适的二维WS2薄膜,标定区域;将肋宽25μm的铜网覆盖于标定好的区域内;用高温胶带将铜网四周紧贴于PI衬底表面,防止凸起;再将固定着铜网的PI衬底和金属颗粒放置在真空蒸镀设备的仓体内,将真空蒸镀机抽真空到5×10-4Pa,在衬底表面依次蒸镀10nm厚金属Cr和50nm厚金属Au。蒸镀速率为蒸镀功率为100W。图5(c)是制备出的单层WS2薄膜光电探测器的光学显微镜图片。
采用半导体光电测试仪对器件的光电性能进行测试,测试采用的激光波长为405nm,光照功率范围为0.2mW至1mW。图7(a)是在波长405nm的激光照射下,WS2薄膜柔性光电探测器在不同光照功率下的I-V特性。从图中可以看出明显的光电导效应。图7(b)是波长405nm的激光照射下,WS2薄膜柔性光电探测器在不同光照功率下的I-t曲线,可以看出随光照强度增加,器件的光电流增加。
以上所述,仅是本发明的较佳实施案例,并非对本发明作任何限制。对于本技术领域的普通技术人员来说,根据发明技术实质对以上实施例所作的任何简单修改、变更以及等效变化,均仍属于本发明技术方案的保护范围内。
Claims (4)
1.一种柔性二维TMDs光电探测器的制备方法,其特征在于:包括以下步骤:
1)、采用CVD法生长出二维TMDs薄膜;
2)、将生长有二维TMDs薄膜的衬底放置在加热台上预热,加热台温度设定50~80℃,预热时间2~4min;
3)、将PI溶液滴于生长衬底表面,将生长衬底放置在匀胶机上进行旋涂,匀胶机转速设定为1000~2000rpm,时间为10~40s;
4)、将步骤3)所得生长衬底放置在真空加热台中固化,真空加热台温度设定为120~160℃,真空度10pa,保温时间10~20min,生长衬底表面会形成棕黄色的PI固体薄膜;
5)、用镊子将PI薄膜从生长衬底表面撕下,二维TMDs薄膜从生长衬底转移到柔性PI薄膜上;
6)、采用真空热蒸发镀膜法,以铜网为掩膜版在粘贴有二维TMDs薄膜的柔性PI衬底上制备图形化的金属电极。
2.根据权利要求1所述的一种柔性二维TMDs光电探测器的制备方法,其特征在于,所述步骤2)中生长衬底的预热温度50~80℃,预热时间2~4min。
3.根据权利要求1或2所述的一种柔性二维TMDs光电探测器的制备方法,其特征在于,所述步骤3)匀胶机转速为1000~2000rpm,时间为10~40s。
4.根据权利要求3所述的一种柔性二维TMDs光电探测器的制备方法,其特征在于,所述的步骤6)中以铜网为硬质掩膜版,所用的铜网肋宽为20~30μm,在显微镜下将铜网覆盖在黏贴有TMDs薄膜的柔性PI衬底上,并用高温胶带将其四周紧贴于衬底表面,最后采用真空热蒸发镀膜工艺,在衬底表面依次蒸镀10nm厚的金属Cr和50nm厚的金属Au。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010807246.5A CN112018215B (zh) | 2020-08-12 | 2020-08-12 | 一种柔性二维TMDs光电探测器的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010807246.5A CN112018215B (zh) | 2020-08-12 | 2020-08-12 | 一种柔性二维TMDs光电探测器的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112018215A true CN112018215A (zh) | 2020-12-01 |
CN112018215B CN112018215B (zh) | 2022-06-21 |
Family
ID=73505967
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010807246.5A Expired - Fee Related CN112018215B (zh) | 2020-08-12 | 2020-08-12 | 一种柔性二维TMDs光电探测器的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112018215B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113035965A (zh) * | 2021-03-04 | 2021-06-25 | 电子科技大学 | 一种基于硒化物/硫化物异质结的柔性光电探测器的制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101299443A (zh) * | 2008-06-17 | 2008-11-05 | 四川大学 | 一种柔性碲化镉薄膜太阳电池结构 |
US20170088945A1 (en) * | 2015-09-30 | 2017-03-30 | National Tsing Hua University | Method of fabricating transition metal dichalcogenide |
CN110676218A (zh) * | 2019-08-28 | 2020-01-10 | 西安工业大学 | 一种定向转移cvd法制备二维过渡金属硫化物的方法 |
CN110676332A (zh) * | 2019-09-12 | 2020-01-10 | 西安工业大学 | 基于层状过渡金属硫化物的柔性光电探测器及其制备方法 |
-
2020
- 2020-08-12 CN CN202010807246.5A patent/CN112018215B/zh not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101299443A (zh) * | 2008-06-17 | 2008-11-05 | 四川大学 | 一种柔性碲化镉薄膜太阳电池结构 |
US20170088945A1 (en) * | 2015-09-30 | 2017-03-30 | National Tsing Hua University | Method of fabricating transition metal dichalcogenide |
CN110676218A (zh) * | 2019-08-28 | 2020-01-10 | 西安工业大学 | 一种定向转移cvd法制备二维过渡金属硫化物的方法 |
CN110676332A (zh) * | 2019-09-12 | 2020-01-10 | 西安工业大学 | 基于层状过渡金属硫化物的柔性光电探测器及其制备方法 |
Non-Patent Citations (1)
Title |
---|
李春 等: "《二维原子晶体半导体转移技术研究进展》", 《深圳大学学报理工版》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113035965A (zh) * | 2021-03-04 | 2021-06-25 | 电子科技大学 | 一种基于硒化物/硫化物异质结的柔性光电探测器的制备方法 |
CN113035965B (zh) * | 2021-03-04 | 2023-07-14 | 电子科技大学 | 一种基于硒化物/硫化物异质结的柔性光电探测器的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN112018215B (zh) | 2022-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chu et al. | Photosensitive and flexible organic field‐effect transistors based on interface trapping effect and their application in 2D imaging array | |
Hao et al. | Recent developments in flexible photodetectors based on metal halide perovskite | |
Betancur et al. | Sputtered NiO as electron blocking layer in P3HT: PCBM solar cells fabricated in ambient air | |
CN110611012A (zh) | 一种制备单层过渡金属二硫化物柔性光电探测器的方法 | |
Shao et al. | Enhancement of tetracene photovoltaic devices with heat treatment | |
CN112018215B (zh) | 一种柔性二维TMDs光电探测器的制备方法 | |
CN113035965B (zh) | 一种基于硒化物/硫化物异质结的柔性光电探测器的制备方法 | |
Cavas et al. | Photosensors based on Ni-doped ZnO/p-Si junction prepared by sol-gel method | |
Tsai et al. | Increasing organic vertical carrier mobility for the application of high speed bilayered organic photodetector | |
CN115050846A (zh) | MoS2/Ta2NiSe5异质结光电探测器及其制备方法 | |
CN113540154B (zh) | 基于二维材料的双异质结构的柔性光电探测器及其制备工艺 | |
Kaçuş et al. | Optical and electrical characterization of organic solar cells obtained using gold and silver metal nanoparticles | |
Ackermann et al. | Highly efficient hybrid solar cells based on an octithiophene–GaAs heterojunction | |
Waheed et al. | Performance improvement of ultrasonic spray deposited polymer solar cell through droplet boundary reduction assisted by acoustic substrate vibration | |
Ding et al. | Fabricating ultra-flexible photodetectors at the neutral mechanical plane by encapsulation | |
Zhou et al. | Solution‐Processing of CsPbClxBr3− x Perovskite Micro/Nanostructure Near‐Ultraviolet Photodetectors with High Performance | |
Yeh et al. | Large active area inverted tandem polymer solar cell with high performance via insertion of subnano-scale silver layer | |
Hsu et al. | Passivation ability of graphene oxide demonstrated by two-different-metal solar cells | |
Xiao et al. | Photoelectric properties of transparent conductive metal mesh films based on crack template and its application in Perovskite solar cells | |
Ying et al. | Ultra-thin CdS buffer layer for efficient Sb2S3-sensitized TiO2 nanorod array solar cells using Sb-thiourea complex solution | |
Jiang et al. | Passivation and antireflection AZO: H layer in AZO: H/p-Si heterojunction solar cells | |
Kittichungchit et al. | Efficiency enhancement in organic photovoltaic cell with interpenetrating conducting polymer/C60 heterojunction structure by substrate-heating treatment | |
CN111211195B (zh) | 一种利用新型化学改性手段制备高性能光电探测器的方法 | |
CN115347075B (zh) | 一种通过表面掺杂来提高二维材料kp15电学性能的方法 | |
CN111244290B (zh) | 一种具光学各向异性的共轭高分子体异质结薄膜及其制备方法与应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20220621 |
|
CF01 | Termination of patent right due to non-payment of annual fee |