CN113035965B - 一种基于硒化物/硫化物异质结的柔性光电探测器的制备方法 - Google Patents

一种基于硒化物/硫化物异质结的柔性光电探测器的制备方法 Download PDF

Info

Publication number
CN113035965B
CN113035965B CN202110253989.7A CN202110253989A CN113035965B CN 113035965 B CN113035965 B CN 113035965B CN 202110253989 A CN202110253989 A CN 202110253989A CN 113035965 B CN113035965 B CN 113035965B
Authority
CN
China
Prior art keywords
ito
selenide
film
heterojunction
sulfide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110253989.7A
Other languages
English (en)
Other versions
CN113035965A (zh
Inventor
黄文�
唐雨晴
龚天巡
林媛
张晓升
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202110253989.7A priority Critical patent/CN113035965B/zh
Publication of CN113035965A publication Critical patent/CN113035965A/zh
Application granted granted Critical
Publication of CN113035965B publication Critical patent/CN113035965B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0203Containers; Encapsulations, e.g. encapsulation of photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1892Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof methods involving the use of temporary, removable substrates
    • H01L31/1896Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof methods involving the use of temporary, removable substrates for thin-film semiconductors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Light Receiving Elements (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种基于硒化物/硫化物异质结的柔性光电探测器及其制备方法,该传感器采用PI薄膜作为基底,ITO作为电极,禁带宽度为1.2‑2.4eV的P型硒化物(如禁带宽度约为2.1eV的GaSe)和禁带宽度为1.8‑2.2eV的n型硫化物(如禁带宽度约为1.8eV的MoS2)形成的异质结作为功能层。器件制备流程为:首先通过光刻技术和ITO湿法刻蚀得到ITO电极,再采用机械剥离的方式得到硒化物和硫化物的亚微米薄片,并精确对准转移到基于PI基底的ITO电极上,形成超薄二维半导体异质结(各层厚度在10nm‑30nm之间),结区面积在1×102‑2.5×103平方微米之间。该种制备方法方便环保且成本低,且基于该方法制备的硒化物/硫化物异质结光电探测器具有良好的弯曲性,相较于刚性光电探测器可应用于更多的场景,且得益于硒化物/硫化物异质结的材料特性,此类光电探测器具有良好的光电探测性能,可实现良好的光电探测效果。

Description

一种基于硒化物/硫化物异质结的柔性光电探测器的制备 方法
技术领域
本发明属于光电传感器领域,涉及一种基于硒化物/硫化物异质结的柔性光电探测器的制备。
背景技术
随着在医疗保健监测和能量采集等领域的突出表现,柔性电子技术引起了人们的广泛关注。它利用柔软的基底代替传统的刚性基底,可以更好地成形和适应不同的衬底,在弯曲、拉伸等状态下仍能保持良好性能,可运用在皮肤表面等,实现电子设备的可穿戴,为一些实际应用提供大量的新功能。其中可穿戴设备领域发展的一大趋势就是柔性光电传感器的使用。高性能光探测器在诸多领域都扮演着其重要的作用,其应用范围包括电光显示、感光成像、环境管理、光通信、军事以及安保检查等等。但是目前常用的光电探测器大多基于刚性衬底,无法满足柔性可穿戴设备的发展趋势。因此,研究具有柔性、高响应度、响应时间短的高性能光电探测器是十分必要的。
硒化物半导体的带隙宽度一般在0.3eV到3.0eV之间,涵盖了从红外到紫外的宽波段,在太阳能电池、光电探测器、激光器等领域被广泛关注。其中,部分基于二维层状硒化物半导体纳米材料的光电探测器展现出了优异的器件性能,包括WSe2、GaSe以及In2Se3等。而以MoS2为代表的硫化物是已经被广泛研究的n型半导体。硒化物/硫化物异质结形成的内建电场可有效分离光生电子-空穴对,这对于光信号的收集和检测是有利的。此外,二维硒化物和硫化物材料均具有良好的弯曲性,这有利于柔性光电探测器的制备。
然而,目前对于基于机械剥离的异质结的制备方法大都采用刚性基底,无法实现柔性化,普通的柔性基底在进行光刻胶的去除时会与丙酮反应,破坏器件,因此需要寻找一种不溶于丙酮的柔性基底。另外,利用柔性基底进行电极制备时,大多需要将基底固定在刚性基底上操作,目前有使用旋涂pmma溶液固定的方式,但是该种方式成本较贵且pmma具有毒性,因此需要寻找一种新的方式进行固定。
目前大多数光电探测器均使用金属作为电极,但是由于金属电极对二维半导体的掺杂作用,二维半导体中的陷阱态,以及费米能级钉扎效应,金属电极很容易与二维半导体材料形成肖特基接触,从而抑制硒化物/硫化物异质结的光电性能,因此为了提升光电探测性能,需要寻找一种新的电极材料代替普通的金属电极材料。此外,由于部分硒化物材料容易氧化的特性,因此在制备器件时需做特殊处理。
发明内容
本发明的目的在于提供一种基于硒化物/硫化物异质结的柔性光电探测器,其特征在于,将采用机械剥离得到的硒化物薄膜与硫化物薄膜进行堆叠,两种材料的重叠部分通过范德华力形成异质结,两种材料不重叠部分分别堆叠在分离的基于PI基底的ITO电极上,并进行快速退火和封装。其特征在于,包括:(1)用3M胶带将覆有ITO的聚酰亚胺(PI)薄膜固定在刚性基底上,PI薄膜稳定性好,便于进行后续光刻处理,该方法方便环保又成本低廉;(2)在未被胶带覆盖的薄膜上进行电极的光刻显影处理;(3)对裸露的ITO进行刻蚀,初步得到图形化ITO电极;(4)将薄膜分别放入丙酮、酒精、去离子水中振荡,去除多余的光刻胶,得到图形化ITO电极,相较于常用的金属电极,ITO电极与材料间形成的欧姆接触可改善器件光电性能;(5)对硒化物及硫化物材料进行机械剥离,并分别转移到带有ITO电极的PI薄膜上形成异质结光电探测器件;(6)对器件进行快速退火,去除气泡,改善接触;(7)对器件进行封装,防止材料氧化对性能造成影响。
在一种可能的实现方式中,用3M胶带将覆有ITO的聚酰亚胺(PI)薄膜固定在刚性基底上,包括:(1)将覆有ITO的聚酰亚胺(PI)薄膜置于刚性基底上,包括玻璃片或硅片等,PI薄膜的长宽尺寸均小于刚性基底;(2)用3M胶带在PI薄膜两端进行固定,固定区域为薄膜前三分之一和后三分之一的部分,保证薄膜紧密地固定在刚性基底上,薄膜中间不能用胶带覆盖,以便进行后续的光刻处理。
在一种可能的实现方式中,对裸露的ITO进行刻蚀,包括:(1)用小刀将带有3M胶带的部分切除,只留有薄膜的部分,以免后续的ITO刻蚀液与胶带反应破坏器件;(2)在水浴加热60℃的条件下,将留下的薄膜放入ITO刻蚀液中5~10s,对光刻处理后裸露的ITO进行湿法刻蚀处理。
在一种可能的实现方式中,对材料进行机械剥离,并分别转移到带有电极的PI薄膜上形成异质结光电探测器件,包括:对硒化物及硫化物材料进行机械剥离,并分别利用PDMS印章,在显微镜下精确对准并转移到带有电极的PI薄膜上形成异质结光电探测器件,其中,由于PI薄膜的平整度不如硅片,基底与二维材料之间的范德华力相对较弱,因此在印章接触基底时需外加应力(5×103-5×104Pa)按压3-5分钟之后再缓慢分离,形成器件。
在一种可能的实现方式中,对器件进行快速退火,包括:在真空环境下(约为5×10-2-5×10-1Pa)对器件进行80-120℃快速退火5-20分钟,去除气泡,得到更好的接触。
在一种可能的实现方式中,对器件进行封装,包括:(1)在器件上旋涂适量PDMS,覆盖住材料的表面,但需留出部分电极不覆盖便于测试;(2)在热台上烘干PDMS溶液,对器件做保护封装。
综上,本发明的有益效果在于:提供一种基于柔性基底的硒化物/硫化物异质结光电探测器的制备方法,该种方法方便环保且成本低,且基于该方法制备的硒化物/硫化物异质结光电探测器具有良好的弯曲性,相较于刚性光电探测器可应用于更多的场景,且得益于硒化物/硫化物异质结的材料特性,此类光电探测器具有良好的光电探测性能,可实现良好的探测效果。
附图说明
图1为本发明实施例中器件结构示意图。
图2为本发明实施例中用3M胶带将覆有ITO的PI薄膜固定在硬质基底上的示意图。
图3为本发明实例中对ITO进行湿法刻蚀以及去除光刻胶的流程示意图。
图4为本发明实例中器件的重复性测试图。
图5为本发明实例中器件的上升时间响应图。
图6为本发明实例中器件的下降时间响应图。
具体实施方式
下面结合附图和实施例对本发明做进一步详细说明。
实施例1
本实施例提供基于GaSe/MoS2异质结的柔性光电探测器的制备过程。器件结构如图1所示,其具体制备工艺如下:
如图2所示,①是3M胶带,②是刚性基底,③是覆有ITO的PI薄膜。将柔性基底转为刚性基底:将覆有ITO的聚酰亚胺(PI)薄膜置于刚性基底上,包括玻璃片或硅片等,在薄膜的两端用3M胶带进行固定,保证薄膜紧密地固定在刚性基底上,薄膜和刚性基底之间不留空隙,薄膜中间不能用胶带覆盖,以便进行后续的光刻处理。该种方式相较于旋涂pmma做牺牲层等方式既方便环保,成本又低。
对所述薄膜进行光刻处理,包括在薄膜上利用旋涂机将光刻胶涂覆到基片上(以1000rpm/s转速工作10s,以3000rpm/s转速工作30s),从而保证光刻胶厚度约为1μm,60℃前烘30s,在激光直写机坐标轴里定位位置,定点曝光(55J/cm2.),接着用显影液显影35s,显影完成后,放入去离子水中浸泡,然后用氮气将表面的水吹干,再进行固胶。用小刀将带有3M胶带的部分切除,只留有薄膜的部分。
如图3流程图所示,①是光刻胶,②是ITO,③是PI薄膜,④是水浴加热的ITO刻蚀液,⑤是丙酮,⑥是无水乙醇,⑦是去离子水。将留下的薄膜放入ITO刻蚀液中,对光刻处理后裸露的ITO进行湿法刻蚀处理,其中ITO刻蚀液是由浓盐酸、浓硝酸和去离子水按一定比例配置而成,配比为:去离子水:浓盐酸(36%)浓硝酸(67%)=50:50:3,刻蚀条件为:在60℃水浴加热下刻蚀5~10s;将薄膜分别放入丙酮、酒精、去离子水中振荡10s,去除多余的光刻胶,形成电极;接着对材料进行机械剥离,并转移到带有电极的薄膜上形成光电探测器件,包括:在转移之前,我们要先分别用丙酮、酒精、去离子水对基底进行超声清洗并用氮气将基底吹干并在100℃的加热台上加热10分钟,以确保基底表面没有污染。由于要得到GaSe/MoS2异质结,所以首先要用机械剥离法得到MoS2二维薄片并转移到带有ITO电极的PI基底上,然后将机械剥离法得到的GaSe二维薄片精准堆叠到MoS2上。
在真空环境下对器件进行120℃快速退火10分钟,赶走气泡,使得界面接触更好;在器件上滴一小滴PDMS,覆盖住材料的表面,并在60℃热台上烘干PDMS溶液,对器件做保护封装。
图4为本实施例所得光电探测器贴附在直径为15cm的圆柱弯曲面上,在450nm波长下的重复性测试图,可见该器件即使在弯曲情况下仍具有稳定良好的光电探测能力。
图5和图6分别为本实例所得光电探测器的上升和下降响应时间图,可见上升和下降时间分别为44ms和32ms,性能优于一些基于有机物的柔性光电探测器,可以满足正常使用需求。
基于该方法制备的硒化物/硫化物光电探测器具有良好的弯曲性,且在弯曲情况下仍有良好的光电响应,相较于刚性光电探测器可应用于更多的场景,且器件开关比约为102,器件的响应上升时间约为44ms,下降时间约为32ms,可实现良好的探测效果。该种制备方法在未来光电探测领域有巨大的应用前景。
以上所述仅是本发明的优选实施方案,对于本技术领域的技术人员而言,在不脱离本发明的设计思想的情况下,还可以做出材料的替换、参数的增减等若干改进,这些改进也应视为本发明的保护范围。

Claims (6)

1.一种基于硒化物/硫化物异质结的柔性光电探测器的制备方法,其特征在于,包括:
用3M胶带将覆有ITO的聚酰亚胺薄膜固定在刚性基底上,采用聚酰亚胺薄膜基底的目的在于:聚酰亚胺薄膜稳定性好,便于进行后续光刻处理,该方法方便环保又成本低廉;
在未被胶带覆盖的薄膜上进行电极的光刻显影处理;
对裸露的ITO进行刻蚀,初步得到图形化ITO电极;
将薄膜分别放入丙酮、酒精、去离子水中振荡,去除多余的光刻胶,得到图形化ITO电极,采用ITO电极的目的在于:相较于常用的金属电极,ITO电极与材料间形成的欧姆接触可改善器件光电性能;
选择禁带宽度为1.2-2.4eV的P型硒化物和禁带宽度为1.8-2.2eV的n型硫化物,经机械剥离形成纳米厚度的亚微米薄片,并分别转移到带有ITO电极的聚酰亚胺薄膜上形成基于超薄二维半导体异质结的且各层厚度在10nm-30nm之间的光电探测器件,结区面积在1×102-2.5×103平方微米之间;
对器件进行快速退火,其目的在于去除气泡,改善接触;
对器件进行封装,其目的在于防止材料被空气中的氧气氧化对性能造成影响。
2.根据权利要求1所述的方法,其特征在于,用3M胶带将覆有ITO的聚酰亚胺薄膜固定在刚性基底上,包括:
将覆有ITO的聚酰亚胺薄膜置于刚性基底上,聚酰亚胺薄膜的长宽尺寸均小于刚性基底;
用3M胶带在聚酰亚胺薄膜两端进行固定,固定区域为薄膜前三分之一和后三分之一的部分,保证薄膜紧密地固定在刚性基底上,薄膜中间不能用胶带覆盖,以便进行后续的光刻处理。
3.根据权利要求1所述的方法,其特征在于,对裸露的ITO进行刻蚀,包括:用小刀将带有3M胶带的部分切除,只留有薄膜的部分,其目的在于避免后续的ITO刻蚀液与胶带反应破坏器件;
在水浴加热60℃的条件下,将留下的薄膜放入ITO刻蚀液中5~10s,对光刻处理后裸露的ITO进行湿法刻蚀处理。
4.根据权利要求1所述的方法,其特征在于,对材料进行机械剥离,并分别转移到带有电极的聚酰亚胺薄膜上形成异质结光电探测器件,包括:
对硒化物及硫化物材料进行机械剥离,并分别利用PDMS印章,在显微镜下精确对准并转移到带有电极的聚酰亚胺薄膜上形成异质结光电探测器件,其中,由于聚酰亚胺薄膜的平整度不如硅片,基底与二维材料之间的范德华力相对较弱,因此在印章接触基底时需外加压强为5×103-5×104Pa的应力按压3-5分钟之后再缓慢分离,形成器件。
5.根据权利要求1所述的方法,其特征在于,对器件进行快速退火,包括:
在压强为5×10-2-5×10-1Pa的真空环境下对器件进行80-120℃快速退火5-20分钟,去除气泡,得到更好的接触。
6.根据权利要求1所述的方法,其特征在于,对器件进行封装,包括:
在器件上旋涂适量PDMS,覆盖住材料的表面,但需留出部分电极不覆盖便于测试;
在热台上烘干PDMS溶液,对器件做保护封装。
CN202110253989.7A 2021-03-04 2021-03-04 一种基于硒化物/硫化物异质结的柔性光电探测器的制备方法 Active CN113035965B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110253989.7A CN113035965B (zh) 2021-03-04 2021-03-04 一种基于硒化物/硫化物异质结的柔性光电探测器的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110253989.7A CN113035965B (zh) 2021-03-04 2021-03-04 一种基于硒化物/硫化物异质结的柔性光电探测器的制备方法

Publications (2)

Publication Number Publication Date
CN113035965A CN113035965A (zh) 2021-06-25
CN113035965B true CN113035965B (zh) 2023-07-14

Family

ID=76467082

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110253989.7A Active CN113035965B (zh) 2021-03-04 2021-03-04 一种基于硒化物/硫化物异质结的柔性光电探测器的制备方法

Country Status (1)

Country Link
CN (1) CN113035965B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114361296A (zh) * 2022-01-06 2022-04-15 电子科技大学 一种基于异质结结构的高性能光电探测器的制备方法
CN115064642A (zh) * 2022-08-15 2022-09-16 广州粤芯半导体技术有限公司 异质结构和光电器件及其制备方法
CN116399924A (zh) * 2023-04-12 2023-07-07 澳门科技大学 光电化学工作电极及其制备方法,光电化学装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110611012A (zh) * 2019-08-28 2019-12-24 西安工业大学 一种制备单层过渡金属二硫化物柔性光电探测器的方法
CN110676332A (zh) * 2019-09-12 2020-01-10 西安工业大学 基于层状过渡金属硫化物的柔性光电探测器及其制备方法
CN111048619A (zh) * 2019-10-25 2020-04-21 深圳大学 基于黑磷/石墨烯/二硫化钼异质结的光电探测器及其制备方法
WO2020096708A2 (en) * 2018-10-03 2020-05-14 Northwestern University Two-dimensional semiconductor based printable optoelectronic inks, fabricating methods and applications of same
CN111564518A (zh) * 2020-05-18 2020-08-21 电子科技大学 一种基于MoS2/GaSe异质结的光电类突触器件及其制备方法
CN112018215A (zh) * 2020-08-12 2020-12-01 西安工业大学 一种柔性二维TMDs光电探测器的制备方法
CN112216751A (zh) * 2019-07-11 2021-01-12 哈尔滨工业大学 GaSe/MoS2异质结的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101532310B1 (ko) * 2013-02-18 2015-06-29 삼성전자주식회사 2차원 소재 적층 플렉서블 광센서

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020096708A2 (en) * 2018-10-03 2020-05-14 Northwestern University Two-dimensional semiconductor based printable optoelectronic inks, fabricating methods and applications of same
CN112216751A (zh) * 2019-07-11 2021-01-12 哈尔滨工业大学 GaSe/MoS2异质结的制备方法
CN110611012A (zh) * 2019-08-28 2019-12-24 西安工业大学 一种制备单层过渡金属二硫化物柔性光电探测器的方法
CN110676332A (zh) * 2019-09-12 2020-01-10 西安工业大学 基于层状过渡金属硫化物的柔性光电探测器及其制备方法
CN111048619A (zh) * 2019-10-25 2020-04-21 深圳大学 基于黑磷/石墨烯/二硫化钼异质结的光电探测器及其制备方法
CN111564518A (zh) * 2020-05-18 2020-08-21 电子科技大学 一种基于MoS2/GaSe异质结的光电类突触器件及其制备方法
CN112018215A (zh) * 2020-08-12 2020-12-01 西安工业大学 一种柔性二维TMDs光电探测器的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Fully Inkjet-Printed, Mechanically Flexible MoS2 Nanosheet Photodetectors;Jung-Woo Ted Seo等;《ACS Appl. Mater. Interfaces》;20190129(第11期);摘要,第5678页 *
GaSe/MoS2 Heterostructure with Ohmic-Contact Electrodes for Fast, Broadband Photoresponse, and Self-Driven Photodetectors;Zhenbei He等;《Adv. Mater. Interfaces》;20200122(第7期);第2页,图1 *

Also Published As

Publication number Publication date
CN113035965A (zh) 2021-06-25

Similar Documents

Publication Publication Date Title
CN113035965B (zh) 一种基于硒化物/硫化物异质结的柔性光电探测器的制备方法
US11456395B2 (en) Interconnection of solar cells in a solar cell module
CN107833940B (zh) 一种基于二维二硫化钼-二硫化铼异质结的光电子器件、制备方法及应用
CN107146830A (zh) 一种制备柔性透明的石墨烯/硅金属‑半导体‑金属光电探测器的方法
TW202027290A (zh) 太陽電池之製造方法、太陽電池、及太陽電池模組
JP2014053459A (ja) 光電変換素子の製造方法
CN108831952B (zh) 一种单晶硅纳米薄膜柔性瞬态电子器件、制备方法和应用
KR20200108485A (ko) 초박형 가요성 후방 접촉 실리콘 태양 전지들 및 이를 제조하기 위한 방법들
CN115832108A (zh) 一种栅极可调高灵敏偏振探测器的制备方法
CN113540154B (zh) 基于二维材料的双异质结构的柔性光电探测器及其制备工艺
CN114300555A (zh) 一种基于TaIrTe4/Si异质结的光电探测器及其制备方法
CN110581197A (zh) 一种可见光与近红外光的双波段光电探测器及其制备方法
CN112271259A (zh) 一种柔性倍增型有机光电探测器及制备方法
CN111599830A (zh) 一种基于单层石墨烯/绝缘层/硅/多层石墨烯结构的电荷注入器件
CN116072749A (zh) 一种紫磷/二硫化钼异质结光电探测器及制备方法
CN114361289B (zh) 一种基于范德华金属电极的自驱动超快光电探测器构筑方法
CN115775848A (zh) 垂直结构GaN紫外光探测器及其制备方法
CN114373812A (zh) 一种光电探测器及其制备方法
CN113471324A (zh) 一种基于石墨烯同质结的宽波段光电探测器及其制备方法
Suhail et al. Effective chemical treatment for high efficiency graphene/si schottky junction solar cells with a graphene back-contact structure
CN118016768B (zh) 一种波导集成的范德华异质结器件制备方法
CN115347066A (zh) 一种基于TaIrTe4/Ge异质结的光电探测器及其制备方法
CN114975675B (zh) 光电器件及其制备方法
CN114784129B (zh) 一种高灵敏度红外偏振光电探测器及其制备方法
CN111509076B (zh) 一种具有低暗电流的自驱动型光电探测器及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant