CN113224143A - 基于二硫化钨/锑化镓结型场效应晶体管及其制备方法 - Google Patents

基于二硫化钨/锑化镓结型场效应晶体管及其制备方法 Download PDF

Info

Publication number
CN113224143A
CN113224143A CN202110436209.2A CN202110436209A CN113224143A CN 113224143 A CN113224143 A CN 113224143A CN 202110436209 A CN202110436209 A CN 202110436209A CN 113224143 A CN113224143 A CN 113224143A
Authority
CN
China
Prior art keywords
type
film
substrate
gasb
nanowire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110436209.2A
Other languages
English (en)
Other versions
CN113224143B (zh
Inventor
程子超
剪宇轩
宋秀峰
顾宇
陈翔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN202110436209.2A priority Critical patent/CN113224143B/zh
Publication of CN113224143A publication Critical patent/CN113224143A/zh
Application granted granted Critical
Publication of CN113224143B publication Critical patent/CN113224143B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/26Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, elements provided for in two or more of the groups H01L29/16, H01L29/18, H01L29/20, H01L29/22, H01L29/24, e.g. alloys
    • H01L29/267Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, elements provided for in two or more of the groups H01L29/16, H01L29/18, H01L29/20, H01L29/22, H01L29/24, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/802Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with heterojunction gate, e.g. transistors with semiconductor layer acting as gate insulating layer, MIS-like transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Thin Film Transistor (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本发明公开了一种基于WS2/GaSb结型场效应晶体管及其制备方法。所述的结型场效应晶体管包括衬底、N型WS2薄膜、P型GaSb纳米线、源电极、漏电极和栅电极;P型GaSb纳米线设于衬底的表面,源电极与漏电极设于P型GaSb纳米线表面的两端,N型WS2薄膜设于P型GaSb纳米线表面且位于源电极与漏电极之间;栅电极设于N型WS2薄膜的表面且位于源电极与漏电极之间。本发明将GaSb和WS2二维半导体应用于JFET中,确保了抑制界面缺陷的产生,减少了界面态对载流子输运的影响,并借助JFET没有复杂介电工程的优势,降低器件的亚阈值摆幅,提高开关比和电流密度。

Description

基于二硫化钨/锑化镓结型场效应晶体管及其制备方法
技术领域
本发明属于半导体技术领域,涉及一种基于二硫化钨(WS2)/锑化镓(GaSb)结型场效应晶体管及其制备方法。
背景技术
III-V半导体纳米线因其大玻尔激子半径、窄带隙、载流子迁移率高等优异特性而在下一代电子学和光电子学中引起了广泛的关注。特别是,作为一种重要的P型半导体,GaSb纳米线表现出约0.726eV的带隙,理论空穴迁移率高达1000cm2V-1s-1,以及强自旋轨道相互作用,已被用作电子和光电器件中通道的替代候选者([1]Borg,M.;Schmid,H.;Gooth,J.;et al.High-Mobility GaSb Nanostructures Cointegrated with InAs on Si.ACSNano.2017,11,2554-2560.)。例如,基于GaSb的光检测器呈现出在1550nm光照下的高响应率为6000A/W、3.7×109Jones的特定检测率和38μs的响应时间([2]Li,D.;Lan,C.;Manikandan,A.;et al.Ultra-fast photodetectors based on high-mobility indiumgallium antimonide nanowires.Nat Commun.2019,10,1664.)。具有表面钝化的GaSb纳米线,金属氧化物半导体场效应晶体管(MOSFET)具有约为400cm2V-1s-1的峰值孔迁移率和2.2×1018cm-3空穴浓度,表明其在光电子学中的潜在应用([3]Yang,Z.X.;Yip,S.;Li,D.;etal.Approaching the Hole Mobility Limit of GaSb Nanowires.ACS Nano.2015,9,9268-9275.)。
如今,由于高工作效率和高输入阻抗,MOSFET是集成电路中应用最广的电子器件。但是,对于基于GaSb纳米线的MOSFET,仍然存在有待解决的问题,例如较大的磁滞(>5V),较差的亚阈值摆幅(接近1000mV dec-1),较高的漏极电压(7V)([4]Yang,Z.X.;Liu,L.;Yip,S.;et al.Complementary Metal Oxide Semiconductor-Compatible,High-Mobility,<111>-Oriented GaSb Nanowires Enabled by Vapor-Solid-Solid Chemical VaporDeposition.ACS Nano.2017,11,4237-4246.)。这个缺点严重限制了它们在具有氧化物介电层的短沟道器件中的应用,因为介电层的沉积过程会在沟道半导体中引入界面缺陷状态。此外,具有低缺陷态密度和高介电常数的高质量栅极电介质层仍然是短沟道MOSFET的挑战。必须设计器件结构以避免短沟道效应和复杂的介电工程。
相比之下,JFET只需在具有半导体栅的p-n结耗尽区域运行,这是一个可持续的电子学平台。无需复杂的介电工程,JFET可以通过电容直接耦合电荷,避免电荷在界面处捕获,这也可以克服静电放电和高温的影响,以实现低压运行并降低功耗。例如,通过操作p-MoTe2栅极,n沟道MoS2JFET器件显示0.05-0.1V的磁滞几乎没有,良好的SS约为~100mVdec-1,迁移率大于500cm2V-1s-1([5]Lim,J.Y.;Kim,M.;Jeong,Y.;et al.Van der Waalsjunction field effect transistors with both n-and p-channel transition metaldichalcogenides.npj 2D Materials and Applications.2018,2,37.)。具有SnSe/MoS2vdW的JFET异质结显示出接近理想的亚阈值摆幅值60.3mV dec-1,夹断电压VP仅有-0.25V,开/关比高(超过106)([6]Guo,J.;Wang,L.;Yu,Y.;et al.SnSe/MoS2 van derWaalsHeterostructure Junction Field-Effect Transistors with Nearly IdealSubthreshold Slope.Adv.Mater.2019,31,1902962.)。最近,具有混维范德华(vdW)异质结构的策略被引入JFET,以降低亚阈值摆幅和漏极电压。PyoJinJeon等人在JFET中引入了混维BP/ZnO异质结构,这是一种克服半导体/介电界面电荷捕获限制的极有前途的策略。通过结合BP顶栅,ZnO JFET显示了优异的晶体管特性,改进的SS为83mV dec-1,高迁移率为23.5cm2V-1s-1,滞后可以忽略不计([7]Jeon,P.J.;Lee,Y.T.;Lim,J.Y.;et al.BlackPhosphorus-Zinc Oxide Nanomaterial Heterojunction for p-n Diode and JunctionField-Effect Transistor.Nano Lett.2016,16,1293-1298.)。这些优异的电学性能与无悬键的vdW异质结界面和低的界面阱密态有关。近乎理想的vdW异质结构为提高JFET低功率晶体管的性能提供了一条有前途的途径。
发明内容
本发明目的在于提供一种基于WS2/GaSb结型场效应晶体管及其制备方法。本发明将无表面悬挂键的N型WS2和P型GaSb半导体材料应用于JFET中,提高载流子迁移率,降低器件的亚阈值摆幅,改善器件的性能。
实现本发明目的的技术方案如下:
基于WS2/GaSb结型场效应晶体管,包括:衬底、N型WS2薄膜、P型GaSb纳米线、源电极、漏电极和栅电极;所述P型GaSb纳米线设于衬底的表面,所述源电极与漏电极设于P型GaSb纳米线表面的两端,所述N型WS2薄膜设于P型GaSb纳米线表面,且N型WS2薄膜位于源电极与漏电极之间,所述栅电极设于N型WS2薄膜的表面,且栅电极位于源电极与漏电极之间。
本发明中,所述的衬底为本领域常规使用的绝缘衬底,包括且不限于SiO2、Al2O3、BN、SiNx、AlN衬底,或者在基底材料上沉积SiO2、Al2O3、BN、SiNx或AlN作为衬底。
本发明中,所述的P型GaSb纳米线的厚度为1nm~50nm。
本发明中,所述的N型WS2薄膜的厚度为50nm~200nm。
本发明中,所述的源电极、漏电极和栅电极为本领域常规使用的源电极、漏电极和栅电极,为Cr、Ti、Ni、Au、Pd、Pt、Ag中的一种或者多种的组合,其厚度为40nm~100nm。
上述基于WS2/GaSb结型场效应晶体管的制备方法,包括以下步骤:
步骤1,在衬底上制备P型GaSb纳米线;
步骤2,在PDMS上,制备N型WS2薄膜;
步骤3,将步骤2制备的N型WS2薄膜转移到步骤1制备的P型GaSb纳米线上;
步骤4,在步骤3制得的带有N型WS2薄膜和P型GaSb纳米线的衬底上制备源电极图形、漏电极图形和栅电极图形,并对源电极图形、漏电极图形和栅电极图形进行金属沉积后得到源电极、漏电极和栅电极。
进一步地,步骤1中,在衬底上制备P型GaSb纳米线的方法,具体为:将生长在玻璃衬底上的P型GaSb纳米线浸没在无水乙醇中浸没超声使其分散,将分散液滴在衬底表面,旋涂,即可在衬底表面获得所需的P型GaSb纳米线。
更进一步地,步骤1中,超声时间为10~15s;旋涂条件为600rpm旋涂8秒,2000rpm旋涂50秒。
进一步地,步骤2中,在PDMS上制备N型WS2薄膜的方法,具体为:在载玻片的上表面贴附表面平滑的PDMS膜,并将通过机械剥离获得的带有N型WS2薄膜样品的胶带紧密粘附在PDMS膜上使N型WS2薄膜样品接触PDMS膜,取下胶带,N型WS2薄膜即附着在PDMS膜上。
进一步地,步骤3中,将N型WS2薄膜转移到P型GaSb纳米线上的方法,具体为:旋转载玻片,使载有N型WS2薄膜的PDMS膜朝向下,并将载玻片安装在三维位移平台上;通过显微镜观察,将N型WS2薄膜对准将要转移的目标,通过三维位移平台将PDMS膜逐渐靠近并使N型WS2薄膜接触P型GaSb纳米线,同时对衬底加热至80℃保持10min后逐渐升起载玻片,使N型WS2薄膜与PDMS膜分离,N型WS2薄膜压在P型GaSb纳米线上。
进一步地,步骤4中,采用光刻技术、电子束曝光技术或激光直写技术的方法制备源电极图形、漏电极图形和栅电极图形。
进一步地,步骤4中,采用电子束蒸镀技术、热蒸镀技术、磁控溅射技术或脉冲激光沉积技术的方法进行金属沉积得到源电极、漏电极和顶栅电极。
与现有技术相比,本发明具有以下优点:
(1)本发明将无表面悬挂键的N型WS2和P型GaSb半导体材料通过干法转移制备JFET,通过调控N型WS2薄膜的电压来实现P型GaSb纳米线中耗尽区的宽度来实现沟道电导的调节,确保了抑制界面缺陷的产生,保证界面的纯度,减少了界面态对载流子输运的影响,并借助JFET没有复杂介电工程的优势,进而提高了器件的性能。
(2)本发明的基于WS2/GaSb结型场效应晶体管为异质结构P通道耗尽型晶体管GaSb结场效应晶体管。在N-WS2/P-GaSb异质结构二极管中可以观察到典型的二极管特性,其高整流比为~104。JFET具有优异的电学特性,具有开关比(~104)和亚阈值摆动(SS≈723mV dec-1)。通过背栅-30V控制,开/关电流比被提高到~106,并且亚阈值摆动被限制在166mV dec-1。此外,异质结JFET和p-n二极管的电学性能在高温下保持了良好的稳定性。
附图说明
图1是本发明的基于N型WS2和P型GaSb的结型场效应晶体管的结构示意图;图中:1、衬底;2、N型WS2薄膜;3、P型GaSb纳米线;4、源电极;5、漏电极;6、栅电极;
图2是实施例制备得到的基于N型WS2和P型GaSb的结型场效应晶体管的光学显微图;
图3是实施例制备得到的结型场效应晶体管原子力显微镜图以及厚度;
图4是实施例制备得到的结型场效应晶体管开尔文探针原子力显微镜图以及电势差;
图5是实施例制备得到的结型场效应晶体管P型GaSb纳米线和N型WS2电学输出特性图;
图6是实施例制备得到的结型场效应晶体管电学整流特性图;
图7是实施例制备得到的结型场效应晶体管电学转移特性图;
图8是实施例制备得到的结型场效应晶体管在背栅为-30V下的电学转移特性图;
图9是实施例制备得到的结型场效应晶体管在不同温度下的电学转移特性图;
图10是实施例制备得到的结型场效应晶体管在不同温度下的电学整流线性图。
具体实施方式
下面结合附图和具体实施例,进一步阐明本发明,应理解这些实施例仅用于说明本发明而不用于限制本发明的范围,在阅读了本发明之后,本领域技术人员对本发明的各种等价形式的修改均落于本申请所附权利要求所限定的范围。
实施例1
基于WS2/GaSb结型场效应晶体管的制备方法,具体步骤如下:
步骤1:选取热氧化硅片作为衬底,先分别使用乙醇、丙酮、去离子水超声5min,然后在加热台上300℃热处理衬底1h,静置于干燥环境中保存;
步骤2:将生长在玻璃衬底上的P型GaSb纳米线浸没在无水乙醇中浸没超声10~15s使其分散,将分散液滴在衬底表面,先600rpm旋涂8秒,再2000rpm旋涂50秒,在衬底表面获得所需的P型GaSb纳米线。
步骤3:在载玻片的上表面贴附表面平滑的PDMS膜,并准备好通过机械剥离获得的带有N型WS2薄膜样品的胶带,将胶带紧密粘附在PDMS膜上使N型WS2薄膜样品接触PDMS膜,取下胶带,N型WS2薄膜即附着在PDMS膜上。
步骤4:旋转载玻片,使步骤3载有N型WS2薄膜的PDMS膜朝向下,并将载玻片安装在三维位移平台上;通过显微镜观察,将N型WS2薄膜对准将要转移的步骤2中P型GaSb纳米线,通过三维位移平台将PDMS膜逐渐靠近并使N型WS2薄膜接触P型GaSb纳米线,同时对衬底加热至80℃保持10min后逐渐升起载玻片,使N型WS2薄膜与PDMS膜分离,N型WS2薄膜压在P型GaSb纳米线上。
步骤5:在步骤4获得的干法转移样品衬底上旋涂PMMA胶,利用电子束曝光技术制备源电极图形、漏电极图形和顶栅电极图形。采用电子束蒸镀技术分别沉积Cr和Au膜。然后,将蒸镀了Cr与Au的衬底放在丙酮中清洗,去除PMMA胶,再用异丙醇清洗掉残留的丙酮,用氮气枪吹干,得到基于WS2/GaSb结型场效应晶体管,如图2所示。
本实施例制备的结型场效应晶体管利用P型GaSb纳米线作为沟道,N型WS2薄膜作为栅极,对该晶体管进行原子力显微镜进行面扫,显示N型WS2的厚度约为80nm,而P型GaSb纳米线的厚度约为50nm,其AFM图以及测试位置如图3所示。N型WS2和P型GaSb纳米线形成异质结之后,必定有电荷的转移。通过对异质结进行KPFM测量,清楚地看到两种材料的表面电势,其差为70.92mV,结果以及电势差位置如图4所示。该晶体管表征完之后进行电学性能进行测试,测试结果如图5、图6、图7、图8所示。由图5的基于WS2/GaSb的结型场效应晶体管GaSb纳米线和WS2电学输出特性图可以看出,GaSb和WS2本征材料是没有整流特性的,而由图6的基于WS2/GaSb的结型场效应晶体管的整流特性曲线可以看出,栅极材料对左边或者右边材料的整流曲线基本吻合,整流比大于104。由图7的结型场效应晶体管的转移特性曲线可以看出,器件开态电流达到微安级别,关态电流比较小,在不同源漏电压下都表现出良好的电流饱和特性,开关比大于104,而亚阈值摆幅有723mV dec-1。通过在器件底部加背栅电压去调控P型GaSb沟道的载流子浓度,使开态电流提高1-2个数量级,从而使器件的整体开关性能达到106,同时使亚阈值摆幅降低至166mV dec-1,结果如图8所示。此外,对WS2/GaSb结型场效应管进行温度相关的实验以测试其稳定性。分别在300K、320K、340K、360K和380K下测试了转移特性和二极管性能,转移特性可以看出随温度的升高关态电流略有上升,但整体依然存在104的开关性能;而整流特性说明随温度升高也依然维持一定的整流作用,结果如图9、10所示。上述结果表明利用N型WS2薄膜作为顶部栅极,很好地调控了P型GaSb纳米线沟道的耗尽区,使结型场效应晶体管表现出优异的电学特性。
综上所述,实施例中的基于WS2/GaSb结型场效应晶体管,N型的半导体材料是多层WS2,P型半导体材料是GaSb,衬底是高掺杂硅,介质层是二氧化硅层,当在硅片上直接旋涂制备GaSb纳米线,利用PDMS干法转移直接将多层N型WS2转移至目标P型GaSb纳米线后,进行电子束曝光后镀上金属电极,用丙酮清洗多余的PMMA胶之后最终完成器件制作。本发明的基于WS2/GaSb结型场效应晶体管作为一种电压控制电阻器件,通过改变具有反向偏置P-N结的半导体沟道中的耗尽区来工作。由于GaSb纳米线最近在先进的器件应用中都引起了广泛关注,因为GaSb是技术上重要的P型半导体,带隙为0.726eV,理论空穴迁移率高达1000cm2 V-1s-1以及强大的自旋轨道相互作用。因此将半导体材料GaSb与WS2形成范德华接触,构建P-N异质结。一方面,避免了复杂的界面工程极大地保持了栅极可控性;另一方面,对于更高的击穿电压和功率容量来说,WS2/GaSbJFET有更鲁棒的结,并且形成的P-N结具有较高的内建电势,在同样的偏压时,较高的内建电势也减小了栅极泄露电流。

Claims (10)

1.基于WS2/GaSb结型场效应晶体管,其特征在于,包括:衬底、N型WS2薄膜、P型GaSb纳米线、源电极、漏电极和栅电极;所述P型GaSb纳米线设于衬底的表面,所述源电极与漏电极设于P型GaSb纳米线表面的两端,所述N型WS2薄膜设于P型GaSb纳米线表面,且N型WS2薄膜位于源电极与漏电极之间,所述栅电极设于N型WS2薄膜的表面,且栅电极位于源电极与漏电极之间。
2.根据权利要求1所述的结型场效应晶体管,其特征在于,所述的衬底为为于SiO2、Al2O3、BN、SiNx或AlN衬底,或者在基底材料上沉积SiO2、Al2O3、BN、SiNx或AlN作为衬底。
3.根据权利要求1所述的结型场效应晶体管,其特征在于,所述的P型GaSb纳米线的厚度为1nm~50nm;所述的N型WS2薄膜的厚度为50nm~200nm;所述的源电极、漏电极和栅电极为Cr、Ti、Ni、Au、Pd、Pt、Ag中的一种或者多种的组合,厚度为40nm~100nm。
4.根据权利要求1至3任一所述的基于WS2/GaSb结型场效应晶体管的制备方法,其特征在于,包括以下步骤:
步骤1,在衬底上制备P型GaSb纳米线;
步骤2,在PDMS上,制备N型WS2薄膜;
步骤3,将步骤2制备的N型WS2薄膜转移到步骤1制备的P型GaSb纳米线上;
步骤4,在步骤3制得的带有N型WS2薄膜和P型GaSb纳米线的衬底上制备源电极图形、漏电极图形和栅电极图形,并对源电极图形、漏电极图形和栅电极图形进行金属沉积后得到源电极、漏电极和栅电极。
5.根据权利要求4所述的制备方法,其特征在于,步骤1中,在衬底上制备P型GaSb纳米线的方法,具体为:将生长在玻璃衬底上的P型GaSb纳米线浸没在无水乙醇中浸没超声使其分散,将分散液滴在衬底表面,旋涂,即可在衬底表面获得所需的P型GaSb纳米线。
6.根据权利要求4所述的制备方法,其特征在于,步骤1中,超声时间为10~15s;旋涂条件为600rpm旋涂8秒,2000rpm旋涂50秒。
7.根据权利要求4所述的制备方法,其特征在于,步骤2中,在PDMS上制备N型WS2薄膜的方法,具体为:在载玻片的上表面贴附表面平滑的PDMS膜,并将通过机械剥离获得的带有N型WS2薄膜样品的胶带紧密粘附在PDMS膜上使N型WS2薄膜样品接触PDMS膜,取下胶带,N型WS2薄膜即附着在PDMS膜上。
8.根据权利要求4所述的制备方法,其特征在于,步骤3中,将N型WS2薄膜转移到P型GaSb纳米线上的方法,具体为:旋转载玻片,使载有N型WS2薄膜的PDMS膜朝向下,并将载玻片安装在三维位移平台上;通过显微镜观察,将N型WS2薄膜对准将要转移的目标,通过三维位移平台将PDMS膜逐渐靠近并使N型WS2薄膜接触P型GaSb纳米线,同时对衬底加热至80℃保持10min后逐渐升起载玻片,使N型WS2薄膜与PDMS膜分离,N型WS2薄膜压在P型GaSb纳米线上。
9.根据权利要求1所述的,步骤4中,采用光刻技术、电子束曝光技术或激光直写技术的方法制备源电极图形、漏电极图形和栅电极图形。
10.根据权利要求1所述的,步骤4中,采用电子束蒸镀技术、热蒸镀技术、磁控溅射技术或脉冲激光沉积技术的方法进行金属沉积得到源电极、漏电极和顶栅电极。
CN202110436209.2A 2021-04-22 2021-04-22 基于二硫化钨/锑化镓结型场效应晶体管及其制备方法 Active CN113224143B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110436209.2A CN113224143B (zh) 2021-04-22 2021-04-22 基于二硫化钨/锑化镓结型场效应晶体管及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110436209.2A CN113224143B (zh) 2021-04-22 2021-04-22 基于二硫化钨/锑化镓结型场效应晶体管及其制备方法

Publications (2)

Publication Number Publication Date
CN113224143A true CN113224143A (zh) 2021-08-06
CN113224143B CN113224143B (zh) 2022-09-20

Family

ID=77088609

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110436209.2A Active CN113224143B (zh) 2021-04-22 2021-04-22 基于二硫化钨/锑化镓结型场效应晶体管及其制备方法

Country Status (1)

Country Link
CN (1) CN113224143B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114497248A (zh) * 2021-12-08 2022-05-13 华南师范大学 一种基于混维Sn-CdS/碲化钼异质结的光电探测器及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070228376A1 (en) * 2006-03-30 2007-10-04 Korea University Industrial & Academic Collaboration Foundation Top-gate thin-film transistors using nanoparticles and method of manufacturing the same
CN109817757A (zh) * 2019-01-18 2019-05-28 中国空间技术研究院 一种二硒化钨薄片/氧化锌纳米带结型场效应晶体管光电探测器及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070228376A1 (en) * 2006-03-30 2007-10-04 Korea University Industrial & Academic Collaboration Foundation Top-gate thin-film transistors using nanoparticles and method of manufacturing the same
CN109817757A (zh) * 2019-01-18 2019-05-28 中国空间技术研究院 一种二硒化钨薄片/氧化锌纳米带结型场效应晶体管光电探测器及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114497248A (zh) * 2021-12-08 2022-05-13 华南师范大学 一种基于混维Sn-CdS/碲化钼异质结的光电探测器及其制备方法

Also Published As

Publication number Publication date
CN113224143B (zh) 2022-09-20

Similar Documents

Publication Publication Date Title
CN107749433B (zh) 一种二维范德华异质结光电探测器及其制备方法
US8618612B2 (en) Integrated circuits based on aligned nanotubes
Petti et al. Low-temperature spray-deposited indium oxide for flexible thin-film transistors and integrated circuits
CN107195681A (zh) 一种二维半导体负电容场效应管及制备方法
Xiao et al. Record-high saturation current in end-bond contacted monolayer MoS2 transistors
CN105632935B (zh) 一种调控半导体纳米线场效应晶体管阈值电压的方法
Chung et al. Low-voltage and short-channel pentacene field-effect transistors with top-contact geometry using parylene-C shadow masks
Yang et al. Ferroelectric α‐In2Se3 Wrapped‐Gate β‐Ga2O3 Field‐Effect Transistors for Dynamic Threshold Voltage Control
KR101904383B1 (ko) 원자층 증착을 이용한 이차원 반도체의 도핑방법 및 그를 포함하는 cmos 소자의 제조방법
Wolff et al. Solution processed inverter based on zinc oxide nanoparticle thin-film transistors with poly (4-vinylphenol) gate dielectric
CN113224143B (zh) 基于二硫化钨/锑化镓结型场效应晶体管及其制备方法
CN112447858B (zh) 结型场效应晶体管及其制备方法
Dondapati et al. High-performance chemical-bath deposited CdS thin-film transistors with ZrO2 gate dielectric
CN206789549U (zh) 一种二维半导体负电容场效应管
CN111403473B (zh) 一种基于二维材料的场效应整流器及其制备方法
Cheng et al. A mixed-dimensional WS 2/GaSb heterojunction for high-performance p–n diodes and junction field-effect transistors
CN114530506A (zh) 用于SiC基场效应晶体管的栅介质薄膜晶体管及其制备方法
Zhang et al. Dual-Junctions Field Effect Transistor Based on MoS 2/Te/MoS 2
Arora et al. Metal metalloid thin film for the application of field effect transistor
Hilleringmann et al. Semiconductor nanoparticles for electronic device integration on foils
CN117080257A (zh) 一种双结型场效应晶体管及其制备方法
Lee et al. Normally Off WSe2 Nanosheet-Based Field-Effect Transistors with Self-Aligned Contact Doping
Haratipour et al. Black phosphorus n-MOSFETs with record transconductance
Hilleringmann et al. CuO Nanoparticles for p-Type TFTs in Complementary Flexible Electronics
CN117766565A (zh) 一种1T&#39;-MoTe2/Ga2O3肖特基型栅场效应晶体管及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant