CN116705894A - 一种自驱动光电探测器及其制备方法和应用 - Google Patents

一种自驱动光电探测器及其制备方法和应用 Download PDF

Info

Publication number
CN116705894A
CN116705894A CN202310595817.7A CN202310595817A CN116705894A CN 116705894 A CN116705894 A CN 116705894A CN 202310595817 A CN202310595817 A CN 202310595817A CN 116705894 A CN116705894 A CN 116705894A
Authority
CN
China
Prior art keywords
layer
ingan
self
metal electrode
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310595817.7A
Other languages
English (en)
Inventor
王文樑
卜俊飞
郑旭阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN202310595817.7A priority Critical patent/CN116705894A/zh
Publication of CN116705894A publication Critical patent/CN116705894A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/008Surface plasmon devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • H01L31/1848Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P comprising nitride compounds, e.g. InGaN, InGaAlN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1852Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising a growth substrate not being an AIIIBV compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种自驱动光电探测器及其制备方法和应用。本发明的自驱动光电探测器包括依次层叠设置的衬底、InN/InGaN缓冲层和n‑InGaN层,还包括设置在n‑InGaN层远离InN/InGaN缓冲层那一面的2D GaS层、第一金属电极和Ag纳米颗粒层,2D GaS层远离n‑InGaN层的那一面还设置有第二金属电极。本发明的自驱动光电探测器具有自驱动效应强、暗电流小、响应度及灵敏度高等优点,在紫外及可见光波段均拥有极高的带宽与响应度,且其制备过程简单、省时高效、能耗低,适合进行大规模工业化生产和应用。

Description

一种自驱动光电探测器及其制备方法和应用
技术领域
本发明涉及光电探测技术领域,具体涉及一种自驱动光电探测器及其制备方法和应用。
背景技术
III族氮化物半导体材料具有优良的光学、电学、热学、化学和机械性能,因而Ⅲ族氮化物光电器件和功率器件得到了广泛应用。InGaN材料是第三代半导体材料的研究热点之一,其具有电子迁移率高、热稳定性好、化学稳定性好等优点,且可以通过调整合金中In的含量实现禁带宽度从0.7eV到3.4eV的连续调节。InGaN材料制成的InGaN基紫外-可见光电探测器能够探测紫外及可见光波段,相比传统的光电探测器具有体积小、易携带、易集成、工作电压低、节能环保、无需滤光系统等优势,应用前景十分广阔。
目前,已经有研究人员采用GaN/InGaN材料制备出了紫外-可见开关比超过8×103、暗电流密度低于10-7A/cm2、在10V电压下峰值响应度超过8A/W的紫外-可见光电探测器,其性能十分优异。然而,由于GaN/InGaN材料表面存在悬挂键,该光电探测器的暗电流仍较高,而且,该光电探测器需要外加电源才可以进行工作,此外,由于InGaN材料易发生相分离,导致器件的制备困难,不利于进行实际应用。综上可知,现有的InGaN基紫外-可见光电探测器尚难以完全满足日益增长的实际应用要求。
因此,开发一种综合性能更加优异、具有自驱动效应的光电探测器具有十分重要的意义。
发明内容
本发明的目的在于提供一种自驱动光电探测器及其制备方法和应用。
本发明所采取的技术方案是:
一种自驱动光电探测器,其包括依次层叠设置的衬底、InN/InGaN缓冲层和n-InGaN层,还包括设置在n-InGaN层远离InN/InGaN缓冲层那一面的2D GaS层、第一金属电极和Ag纳米颗粒层;所述InN/InGaN缓冲层包含层叠设置的InN缓冲层和InGaN缓冲层,InN缓冲层与衬底接触,InGaN缓冲层与n-InGaN层接触;所述2D GaS层远离n-InGaN层的那一面还设置有第二金属电极;所述n-InGaN层与2D GaS层形成Ⅱ型异质结,且界面上形成内建电场。
优选的,所述衬底为蓝宝石衬底。
优选的,所述衬底的厚度为450μm~460μm。
优选的,所述InN缓冲层的厚度为350nm~400nm。
优选的,所述InGaN缓冲层的厚度为500nm~650nm。
优选的,所述n-InGaN层中掺杂有Si,掺杂浓度为1.0×1018cm-3~5.0×1018cm-3
优选的,所述n-InGaN层的厚度为150nm~200nm。
优选的,所述2D GaS层的厚度为5nm~8nm。
优选的,所述第一金属电极包含层叠设置的Ni层和Au层,Ni层与n-InGaN层接触。
优选的,所述Ni层的厚度为70nm~110nm。
优选的,所述Au层的厚度为70nm~110nm。
优选的,所述第一金属电极呈半球形。
优选的,所述第二金属电极包含层叠设置的Ni层和Au层,Ni层与2D GaS层接触。
优选的,所述Ni层的厚度为70nm~110nm。
优选的,所述Au层的厚度为70nm~110nm。
优选的,所述第二金属电极呈半球形。
一种如上所述的自驱动光电探测器的制备方法包括以下步骤:
1)采用MOCVD(金属有机化合物化学气相沉淀)技术在衬底上依次生长InN缓冲层、InGaN缓冲层和n-InGaN层;
2)采用CVD(化学气相沉积)技术在n-InGaN层上的一侧生长2D GaS层,再进行光刻在n-InGaN层上形成第一金属电极制备区域以及在2D GaS层上形成第二金属电极制备区域,再进行蒸镀形成第一金属电极和第二金属电极;
3)采用真空蒸镀技术在n-InGaN层上的另一侧蒸镀沉积Ag薄膜,再进行退火形成Ag纳米颗粒层,即得自驱动光电探测器。
优选的,步骤1)所述InN缓冲层的生长温度为600℃~800℃。
优选的,步骤1)所述InGaN缓冲层的生长温度为700℃~900℃。
优选的,步骤1)所述n-InGaN层的生长温度为700℃~900℃。
优选的,步骤2)所述光刻的具体操作为:先涂覆光刻胶,再烘干后进行曝光和显影。
优选的,所述烘干的时间为35s~45s。
优选的,所述曝光的时间为5s~10s。
优选的,所述显影的时间为35s~45s。
优选的,步骤2)中进行光刻后还对形成的第一金属电极制备区域和第二金属电极制备区域进行了氧等离子体处理。
优选的,所述氧等离子体处理的时间为90s~180s。
优选的,步骤2)所述蒸镀的速率为0.20nm/min~0.24nm/min。
优选的,步骤3)所述蒸镀的速率为0.30nm/min~0.40nm/min。
优选的,步骤3)所述退火在600℃~650℃下进行。
一种紫外-可见光电探测装置,其包含上述自驱动光电探测器。
本发明的自驱动光电探测器的设计思路如下:
1)设计自驱动光电探测器的外延结构:针对InGaN材料与衬底之间的晶格失配(>16.1%)和热失配(>34.2%)较大因而容易导致的高密度缺陷和裂纹的问题,通过设计InN缓冲层和InGaN缓冲层来有效控制外延层的应力以及缺陷密度,从而提高InGaN材料的质量;
2)采用MOCVD技术在衬底上生长高质量的InGaN材料:通过MOCVD技术先在衬底上高温生长InN/InGaN缓冲层,再生长n-InGaN层,抑制相分离,实现高质量InGaN材料的生长;
3)自驱动光电探测器及其异质结的优化设计:设计自驱动光电探测器的器件结构,利用2D GaS材料可以与InGaN材料形成II型异质结结构这一特性,在n-InGaN层上的部分区域先沉积Ag薄膜,再经过退火工艺制备Ag纳米颗粒,实现表面等离激元与InGaN基光电探测器的耦合,增加了InGaN材料对入射光的吸收,从而提高了光电探测器的外量子效率和响应度;
4)自驱动光电探测器的制备工艺改进:优化探测器的制备工艺,通过光刻蒸镀工艺在暴露n-InGaN层以及2D GaS层上制备Ni/Au金属电极;改变光刻曝光显影等时间、氧等离子处理时间、电极材料种类、电极接触面积、蒸镀速率等工艺参数,提升自驱动光电探测器的灵敏度和响应度。
本发明的有益效果是:本发明的自驱动光电探测器具有自驱动效应强、暗电流小、响应度及灵敏度高等优点,在紫外及可见光波段均拥有极高的带宽与响应度,且其制备过程简单、省时高效、能耗低,适合进行大规模工业化生产和应用。
具体来说:
1)本发明的自驱动光电探测器中的n-InGaN层与2D GaS层(2D GaS材料的禁带宽度为3.05eV,且为天然p型)可以形成Ⅱ型异质结,且界面上可以形成内建电场,可以实现自驱动,有助于进行光生载流子的有效分离和传输(电子向2D GaS层迁移,空穴向n-InGaN层迁移),使得光电探测器在紫外及可见光波段均拥有极高的带宽和响应度;
2)本发明的自驱动光电探测器中的n-InGaN层的表面沉积有Ag纳米颗粒,其产生的局域表面等离激元共振可以提高光电探测器的性能,从而可以使光电探测器实现高量子效率和高响应度;
3)本发明的自驱动光电探测器与蓝光探测器不同,采用的GaS材料具有更宽的带隙,对能量低于其带隙的蓝光不发生响应,从而保证了其对紫外及可见光的分辨效果;
4)本发明通过优化探测器件的电极接触面积、种类等参数,增强了电极对光生载流子的收集能力,提升了光电探测器在紫外及可见光波段的量子效率,并在异质结界面进行界面改性,有效实现了异质结构的可控性,从而实现了光电探测器的高灵敏度探测;
5)本发明先采用MOCVD技术在InN/InGaN缓冲层上生长n-InGaN层,再在n-InGaN层上沉积2D GaS层,再形成Ag纳米颗粒层来制备紫外-可见光电探测器,具有以下突出优势:a)MOCVD技术适合大面积材料生长,可以获得大面积的InGaN薄膜;b)采用缓冲层结构,可以降低晶格失配,且InGaN为薄层,可以降低相分离(InGaN材料自身容易发生相分离),从而可以提升n-InGaN薄膜的质量;c)设计II型异质结结构,通过内建电场使器件获得自驱动能力,同时大幅提升器件的响应度、灵敏度等参数,从而获得高性能的紫外-可见光电探测器;d)使用Ag纳米颗粒对n-InGaN层表面进行修饰,一方面,入射光和金属银中的电子振荡发生共振耦合,入射光子能量能够快速通过Ag纳米颗粒传递给n-InGaN层,增加被激发载流子数目,另一方面,Ag纳米颗粒会对入射光进行散射,从而可以增加对n-InGaN层入射光的吸收,提高了光电探测器的外量子效率和响应度;
6)本发明的自驱动光电探测器的制备过程简单、省时高效、能耗低,适合进行大规模工业化生产和应用。
附图说明
图1为本发明的自驱动光电探测器的剖面图。
图2为本发明的自驱动光电探测器的俯视图。
附图标识说明:10、衬底;20、InN/InGaN缓冲层;30、n-InGaN层;40、2D GaS层;50、第一金属电极;60、Ag纳米颗粒层;70、第二金属电极。
图3为实施例1的自驱动光电探测器的响应曲线。
图4为对比例1的光电探测器在不同光强下的外加偏压响应图。
具体实施方式
下面结合具体实施例对本发明作进一步的解释和说明。
实施例1:
一种自驱动光电探测器(剖面图如图1所示,俯视图如图2所示),其由衬底10、InN/InGaN缓冲层20、n-InGaN层30、2D GaS层40、第一金属电极50、Ag纳米颗粒层60和第二金属电极70组成;衬底10、InN/InGaN缓冲层20和n-InGaN层30自下而上依次层叠设置;InN/InGaN缓冲层20包含层叠设置的InN缓冲层和InGaN缓冲层,InN缓冲层与衬底10接触,InGaN缓冲层与n-InGaN层30接触;2D GaS层40、第一金属电极50和Ag纳米颗粒层60设置在n-InGaN层30远离InN/InGaN缓冲层20的那一面;第二金属电极70设置在2D GaS层40远离n-InGaN层30的那一面;n-InGaN层30与2D GaS层40形成Ⅱ型异质结,且界面上形成内建电场。
上述自驱动光电探测器的制备方法包括以下步骤:
1)采用MOCVD技术在蓝宝石衬底(大小规格为10mm×5mm×460μm)上依次生长厚度为350nm的InN缓冲层、厚度为500nm的InGaN缓冲层和厚度为150nm的n-InGaN层,InN缓冲层的生长温度为640℃,InGaN缓冲层的生长温度为740℃,n-InGaN层的生长温度为810℃,n-InGaN层中掺杂有Si,掺杂浓度为2.0×1018cm-3
2)采用CVD技术在n-InGaN层上的一侧生长2D GaS层(大小规格为3mm×3mm×5nm),再涂覆光刻胶,再烘干35s、曝光5s和显影35s,再对形成的第一金属电极制备区域和第二金属电极制备区域进行90s的氧等离子体处理,再控制蒸镀的速率为0.20nm/min,分别在第一金属电极制备区域和第二金属电极制备区域各蒸镀厚度为80nm的Ni和厚度为80nm的Au,形成第一金属电极(呈半球形,底面半径为1.5mm;第一金属电极和2D GaS层之间存在间隔,不相互接触)和第二金属电极(呈半球形,底面半径为1.5mm);
3)采用真空蒸镀技术控制反应室内氩气压强为10-4Pa、蒸镀的速率为0.30nm/min在n-InGaN层上的另一侧蒸镀沉积厚度为6nm的Ag薄膜,再650℃退火形成Ag纳米颗粒层(Ag纳米颗粒只存在于n-InGaN层表面,而第一金属电极、第二金属电极和2D GaS层的表面上均不存在Ag纳米颗粒),即得自驱动光电探测器。
性能测试:
本实施例的自驱动光电探测器在外加偏压为-3V~3V、波长380nm光源不同光强下的响应曲线如图3(图中从下到上,实线、划线和点划线分别代表暗电流、弱光强对应的光电流和强光强对应的光电流)所示。
由图3可知:自驱动光电探测器在0V下的暗电流为1×10-9A,光电流为7×10-9A,说明光电探测器具有自供电性能(即自驱动)。
实施例2:
一种自驱动光电探测器(结构同实施例1),其制备方法包括以下步骤:
1)采用MOCVD技术在蓝宝石衬底(大小规格为10mm×5mm×460μm)上依次生长厚度为360nm的InN缓冲层、厚度为550nm的InGaN缓冲层和厚度为160nm的n-InGaN层,InN缓冲层的生长温度为680℃,InGaN缓冲层的生长温度为780℃,n-InGaN层的生长温度为840℃,n-InGaN层中掺杂有Si,掺杂浓度为2.0×1018cm-3
2)采用CVD技术在n-InGaN层上的一侧生长2D GaS层(大小规格为3mm×3mm×6nm),再涂覆光刻胶,再烘干35s、曝光5s和显影35s,再对形成的第一金属电极制备区域和第二金属电极制备区域进行90s的氧等离子体处理,再控制蒸镀的速率为0.20nm/min,分别在第一金属电极制备区域和第二金属电极制备区域各蒸镀厚度为80nm的Ni和厚度为80nm的Au,形成第一金属电极(呈半球形,底面半径为1.5mm;第一金属电极和2D GaS层之间存在间隔,不相互接触)和第二金属电极(呈半球形,底面半径为1.5mm);
3)采用真空蒸镀技术控制反应室内氩气压强为10-4Pa、蒸镀的速率为0.30nm/min在n-InGaN层上的另一侧蒸镀沉积厚度为6nm的Ag薄膜,再650℃退火形成Ag纳米颗粒层(Ag纳米颗粒只存在于n-InGaN层表面,而第一金属电极、第二金属电极和2D GaS层的表面上均不存在Ag纳米颗粒),即得自驱动光电探测器。
经测试,本实施例的自驱动光电探测器与实施例1的自驱动光电探测器性能十分接近。
实施例3:
一种自驱动光电探测器(结构同实施例1),其制备方法包括以下步骤:
1)采用MOCVD技术在蓝宝石衬底(大小规格为10mm×5mm×460μm)上依次生长厚度为370nm的InN缓冲层、厚度为600nm的InGaN缓冲层和厚度为180nm的n-InGaN层,InN缓冲层的生长温度为720℃,InGaN缓冲层的生长温度为820℃,n-InGaN层的生长温度为870℃,n-InGaN层中掺杂有Si,掺杂浓度为3.0×1018cm-3
2)采用CVD技术在n-InGaN层上的一侧生长2D GaS层(大小规格为3mm×3mm×7nm),再涂覆光刻胶,再烘干35s、曝光5s和显影35s,再对形成的第一金属电极制备区域和第二金属电极制备区域进行90s的氧等离子体处理,再控制蒸镀的速率为0.20nm/min,分别在第一金属电极制备区域和第二金属电极制备区域各蒸镀厚度为80nm的Ni和厚度为80nm的Au,形成第一金属电极(呈半球形,底面半径为1.5mm;第一金属电极和2D GaS层之间存在间隔,不相互接触)和第二金属电极(呈半球形,底面半径为1.5mm);
3)采用真空蒸镀技术控制反应室内氩气压强为10-4Pa、蒸镀的速率为0.30nm/min在n-InGaN层上的另一侧蒸镀沉积厚度为6nm的Ag薄膜,再650℃退火形成Ag纳米颗粒层(Ag纳米颗粒只存在于n-InGaN层表面,而第一金属电极、第二金属电极和2D GaS层的表面上均不存在Ag纳米颗粒),即得自驱动光电探测器。
经测试,本实施例的自驱动光电探测器与实施例1的自驱动光电探测器性能十分接近。
实施例4:
一种自驱动光电探测器(结构同实施例1),其制备方法包括以下步骤:
1)采用MOCVD技术在蓝宝石衬底(大小规格为10mm×5mm×460μm)上依次生长厚度为400nm的InN缓冲层、厚度为650nm的InGaN缓冲层和厚度为200nm的n-InGaN层,InN缓冲层的生长温度为760℃,InGaN缓冲层的生长温度为860℃,n-InGaN层的生长温度为900℃,n-InGaN层中掺杂有Si,掺杂浓度为4.0×1018cm-3
2)采用CVD技术在n-InGaN层上的一侧生长2D GaS层(大小规格为3mm×3mm×8nm),再涂覆光刻胶,再烘干35s、曝光5s和显影35s,再对形成的第一金属电极制备区域和第二金属电极制备区域进行90s的氧等离子体处理,再控制蒸镀的速率为0.20nm/min,分别在第一金属电极制备区域和第二金属电极制备区域各蒸镀厚度为80nm的Ni和厚度为80nm的Au,形成第一金属电极(呈半球形,底面半径为1.5mm;第一金属电极和2D GaS层之间存在间隔,不相互接触)和第二金属电极(呈半球形,底面半径为1.5mm);
3)采用真空蒸镀技术控制反应室内氩气压强为10-4Pa、蒸镀的速率为0.30nm/min在n-InGaN层上的另一侧蒸镀沉积厚度为6nm的Ag薄膜,再650℃退火形成Ag纳米颗粒层(Ag纳米颗粒只存在于n-InGaN层表面,而第一金属电极、第二金属电极和2D GaS层的表面上均不存在Ag纳米颗粒),即得自驱动光电探测器。
经测试,本实施例的自驱动光电探测器与实施例1的自驱动光电探测器性能十分接近。
对比例:
一种光电探测器(结构同实施例1),其制备方法包括以下步骤:
1)采用MOCVD技术在蓝宝石衬底(大小规格为10mm×5mm×460μm)上依次生长厚度为350nm的InN缓冲层、厚度为500nm的InGaN缓冲层和厚度为150nm的n-InGaN层,InN缓冲层的生长温度为640℃,InGaN缓冲层的生长温度为740℃,n-InGaN层的生长温度为810℃,n-InGaN层中掺杂有Si,掺杂浓度为2.0×1018cm-3
2)采用CVD技术在n-InGaN层上的一侧生长2D GaS层(大小规格为3mm×3mm×100nm),再涂覆光刻胶,再烘干35s、曝光5s和显影35s,再对形成的第一金属电极制备区域和第二金属电极制备区域进行90s的氧等离子体处理,再控制蒸镀的速率为0.20nm/min,分别在第一金属电极制备区域和第二金属电极制备区域各蒸镀厚度为80nm的Ni和厚度为80nm的Au,形成第一金属电极(呈半球形,底面半径为1.5mm;第一金属电极和2D GaS层之间存在间隔,不相互接触)和第二金属电极(呈半球形,底面半径为1.5mm);
3)采用真空蒸镀技术控制反应室内氩气压强为10-4Pa、蒸镀的速率为0.30nm/min在n-InGaN层上的另一侧蒸镀沉积厚度为6nm的Ag薄膜,再650℃退火形成Ag纳米颗粒层(Ag纳米颗粒只存在于n-InGaN层表面,而第一金属电极、第二金属电极和2D GaS层的表面上均不存在Ag纳米颗粒),即得光电探测器。
性能测试:
本对比例的光电探测器在不同光强下(测试波长范围为360nm~420nm)的外加偏压响应图如图4所示。
由图4可知:由于2D GaS层的厚度增加,导致量子限域效应大大降低,降低了材料的带隙宽度,使得探测的波长发生红移,同时降低了光电探测器在紫光波段的吸收能力,导致响应度达到0.017A/W。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.一种自驱动光电探测器,其特征在于,包括依次层叠设置的衬底、InN/InGaN缓冲层和n-InGaN层,还包括设置在n-InGaN层远离InN/InGaN缓冲层那一面的2D GaS层、第一金属电极和Ag纳米颗粒层;所述InN/InGaN缓冲层包含层叠设置的InN缓冲层和InGaN缓冲层,InN缓冲层与衬底接触,InGaN缓冲层与n-InGaN层接触;所述2D GaS层远离n-InGaN层的那一面还设置有第二金属电极;所述n-InGaN层与2D GaS层形成Ⅱ型异质结,且界面上形成内建电场。
2.根据权利要求1所述的自驱动光电探测器,其特征在于:所述衬底为蓝宝石衬底;所述衬底的厚度为450μm~460μm。
3.根据权利要求1所述的自驱动光电探测器,其特征在于:所述InN缓冲层的厚度为350nm~400nm;所述InGaN缓冲层的厚度为500nm~650nm。
4.根据权利要求1所述的自驱动光电探测器,其特征在于:所述n-InGaN层中掺杂有Si,掺杂浓度为1.0×1018cm-3~5.0×1018cm-3;所述n-InGaN层的厚度为150nm~200nm。
5.根据权利要求1所述的自驱动光电探测器,其特征在于:所述2D GaS层的厚度为5nm~8nm。
6.根据权利要求1~5中任意一项所述的自驱动光电探测器,其特征在于:所述第一金属电极包含层叠设置的Ni层和Au层,Ni层与n-InGaN层接触;所述Ni层的厚度为70nm~110nm;所述Au层的厚度为70nm~110nm。
7.根据权利要求1~5中任意一项所述的自驱动光电探测器,其特征在于:所述第二金属电极包含层叠设置的Ni层和Au层,Ni层与2D GaS层接触;所述Ni层的厚度为70nm~110nm;所述Au层的厚度为70nm~110nm。
8.一种如权利要求1~7中任意一项所述的自驱动光电探测器的制备方法,其特征在于,包括以下步骤:
1)采用MOCVD技术在衬底上依次生长InN缓冲层、InGaN缓冲层和n-InGaN层;
2)采用CVD技术在n-InGaN层上的一侧生长2D GaS层,再进行光刻在n-InGaN层上形成第一金属电极制备区域以及在2D GaS层上形成第二金属电极制备区域,再进行蒸镀形成第一金属电极和第二金属电极;
3)采用真空蒸镀技术在n-InGaN层上的另一侧蒸镀沉积Ag薄膜,再进行退火形成Ag纳米颗粒层,即得自驱动光电探测器。
9.根据权利要求8所述的制备方法,其特征在于:步骤1)所述InN缓冲层的生长温度为600℃~800℃;步骤1)所述InGaN缓冲层的生长温度为700℃~900℃;步骤1)所述n-InGaN层的生长温度为700℃~900℃;步骤3)所述退火在600℃~650℃下进行。
10.一种紫外-可见光电探测装置,其特征在于,包含权利要求1~7中任意一项所述的自驱动光电探测器。
CN202310595817.7A 2023-05-24 2023-05-24 一种自驱动光电探测器及其制备方法和应用 Pending CN116705894A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310595817.7A CN116705894A (zh) 2023-05-24 2023-05-24 一种自驱动光电探测器及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310595817.7A CN116705894A (zh) 2023-05-24 2023-05-24 一种自驱动光电探测器及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN116705894A true CN116705894A (zh) 2023-09-05

Family

ID=87824888

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310595817.7A Pending CN116705894A (zh) 2023-05-24 2023-05-24 一种自驱动光电探测器及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN116705894A (zh)

Similar Documents

Publication Publication Date Title
TWI705577B (zh) 二維電子元件與相關製造方法
CN106449854B (zh) 全耗尽铁电侧栅单根纳米线近红外光电探测器及制备方法
CN113224198B (zh) 一种2DWS2/InGaN II型异质结自驱动蓝光探测器及其制备方法与应用
CN108122999B (zh) 基于Pt纳米颗粒修饰GaN纳米线的紫外光电探测器及其制造方法
CN110061089A (zh) 蓝宝石斜切衬底优化氧化镓薄膜生长及日盲紫外探测器性能的方法
CN110112233B (zh) 基于银纳米线-石墨烯/氧化镓纳米柱的光电探测结构、器件及制备方法
WO2022218141A1 (zh) 结合嵌入电极与钝化层结构的 InGaN/GaN 多量子阱蓝光探测器及其制备方法与应用
CN114267747A (zh) 具有金属栅结构的Ga2O3/AlGaN/GaN日盲紫外探测器及其制备方法
Dai et al. High-performance CdS@ CsPbBr3 core–shell microwire heterostructure photodetector
CN110165028B (zh) 基于局域表面等离激元增强的mis结构紫外led及其制备方法
CN109950359A (zh) 一种利用二氧化铪钝化增强型低维纳米探测器及制备方法
CN116705894A (zh) 一种自驱动光电探测器及其制备方法和应用
Pu et al. Effective CdS/ZnO nanorod arrays as antireflection coatings for light trapping in c-Si solar cells
CN116053338A (zh) 一种基于MoO3-x/Bi2O2Se异质集成的近红外光电传感器的制备方法
Zheng et al. High performance and self-powered photodetectors based on Se/CsPbBr 3 heterojunctions
Chen et al. Improved performance of a back-illuminated GaN-based metal-semiconductor-metal ultraviolet photodetector by in-situ modification of one-dimensional ZnO nanorods on its screw dislocations
CN209691770U (zh) 一种利用二氧化铪钝化增强型低维纳米探测器
Xu et al. Band gap engineering of amorphous MgSnO film for deep-ultraviolet photodetection
CN219040493U (zh) 一种2D Ga2S3/GaN II型异质结自驱动紫外光探测器
CN219800871U (zh) 一种2D h-BN/AlGaNⅡ型异质结自驱动紫外光探测器
Kurokawa et al. Fabrication of silicon nanowire based solar cells using TiO2/Al2O3 stack thin films
CN219800878U (zh) 一种p-GeS2/AlGaN/n-AlGaN II型异质结自驱动紫外光探测器
CN115188856A (zh) 一种2D GaS/AlGaN II型异质结自驱动紫外光探测器及其制备方法与应用
CN206282869U (zh) 全耗尽铁电侧栅单根纳米线近红外光电探测器
CN114171634B (zh) 日盲紫外光电探测器及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination