CN113013263A - 一种增强型二维半导体光电探测器及其制备方法 - Google Patents

一种增强型二维半导体光电探测器及其制备方法 Download PDF

Info

Publication number
CN113013263A
CN113013263A CN202110233659.1A CN202110233659A CN113013263A CN 113013263 A CN113013263 A CN 113013263A CN 202110233659 A CN202110233659 A CN 202110233659A CN 113013263 A CN113013263 A CN 113013263A
Authority
CN
China
Prior art keywords
dimensional semiconductor
noble metal
enhanced
electrode
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110233659.1A
Other languages
English (en)
Inventor
李春
胡浩
兰长勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202110233659.1A priority Critical patent/CN113013263A/zh
Publication of CN113013263A publication Critical patent/CN113013263A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明涉及到一种增强型二维半导体光电探测器及其制备方法,本发明包括由下至上的绝缘衬底1、金属电极2、二维半导体薄膜3和贵金属纳米颗粒4。在绝缘衬底上光刻制备电极,化学气相沉积(CVD)方法制备二维半导体材料,物理蒸镀的贵金属薄膜经过高温退火形成贵金属纳米颗粒。将制备的二维半导体薄膜和贵金属纳米颗粒依次转移到制备的电极上,构建复合结构的光电探测器。本发明所涉及的光电探测器制备方法简单,其具有低的暗电流和高的开关比。

Description

一种增强型二维半导体光电探测器及其制备方法
技术领域
本发明属于二维半导体光电探测器制备领域,特别涉及到二维半导体光电探测器的制备和器件性能提升的方法,更具体的涉及到引入贵金属纳米颗粒的一种增强型二维半导体光电探测器及其制备方法。
背景技术
在光电子系统中,光电探测器件是重要且关键的部件之一,在射线测量与探测、光度计量和红外热成像等领域都有广泛运用。传统的半导体光电探测器主要基于硅(Si)、锗(Ge)和一些Ⅲ-Ⅴ族化合物材料,这些材料制备的光电导型探测器,其器件结构简单、成本低和响应度高。即使高精端集成技术能够使这些材料制备的器件商业化多年,但仍具有较高的暗电流和较低的归一化探测率等不足。虽然PN结和PIN结的光电探测器可以有效降低暗态电流,但成本相对较高。二维半导体以其强烈的光与物质相互作用特性、带隙可调的宽光谱、柔性和易于集成等特点,或将成为下一代光电探测器材料之一。目前,由于新型二维半导体掺杂相对困难,难以构建PN结或PIN结,阻碍其发展应用。光电导型探测器是二维半导体探测器应用的重要发展方向,因为其结构简单和成本相对较低等优点。针对如何简化制备工艺,高效快速、低成本提高探测器的响应度;如何降低探测器的暗电流提高归一化探测率。本发明公开了一种增强型二维半导体光电导探测器及其制备方法。通过引入贵金属来修饰二维半导体材料,从而提高探测器性能。利用贵金属纳米颗粒与光之间的相互作用,提高材料对光的吸收,从而提高响应度。同时,在暗态下二维半导体中的一部分载流子能够被运输到贵金属纳米颗粒中,起到减小暗电流的效果。该方法制备的光电探测器具有结构简单,低的暗电流和高的开关比的优点。
发明内容
本发明的目的在于提供一种增强型二维半导体光电探测器及其制备方法。通过将物理蒸镀后退火的贵金属纳米颗粒转移到二维半导体材料上,制备结构简单的光导型光电探测器,该探测器具有较高的响应度和极低的暗电流。
为实现上述目的,本发明提供了一种增强型二维半导体光电探测器及其制备方法,包括从下到上的绝缘衬底、金属电极、二维半导体材料以及贵金属纳米颗粒。其中二维半导体材料是通过化学气相沉积(CVD)的方法制备,贵金属纳米颗粒是通过先物理镀薄层贵金属膜,再经过高温退火制备。贵金属膜通过高温退火方式形成贵金属纳米颗粒,再将贵金属纳米颗粒转移到二维半导体材料上,其具备以下3个创新点:
(1)通过对贵金属膜高温退火形成贵金属纳米颗粒,不仅高效快速的制备贵金属纳米颗粒还降低成本。同时,不同厚度的贵金属薄膜经过高温退火后,其形成的贵金属颗粒大小也不同。
(2)引入的贵金属纳米颗粒与光相互作用,形成等离激元促进了二维半导体材料对入射光的吸收。
(3)在二维半导体/贵金属纳米颗粒的复合结构中,贵金属的功函数大于二维半导体二维半导体的功函数,二维半导体材料中一部分电子会转移到贵金属纳米颗粒中,减少暗态下二维半导体中的载流子数目,起到减小暗电流的作用。
本发明提供了一种增强型二维半导体光电探测器及其制备方法,包括如下步骤:
步骤1:在绝缘衬底上用光刻的方法制备阵列电极形状。
步骤2:在步骤1刻好电极形状的基底上制备金属电极。
步骤3:将制备的二维半导体薄膜转移到步骤2的电极上。
步骤4:将贵金属颗粒转移到步骤3的二维半导体薄膜上,形成复合结构。
在本发明的所述步骤1中光刻方法如下:
步骤1-1:将所述绝缘衬底上旋涂双层光刻胶。
步骤1-2:将旋涂过双层光刻胶的绝缘衬底进行紫外曝光。
步骤1-3:将经过曝光的绝缘衬底放入显影液中去除曝光部分。
在本发明的所述步骤2中电极制备方法如下:
步骤2-1:在所述显影液浸泡过的绝缘衬底上蒸镀金属电极。
步骤2-2:用热的N-甲基吡咯烷酮溶液浸泡所述金属电极的绝缘衬底,以去除绝缘衬底上的光刻胶。
在本发明所述步骤3中二维半导体材料生长和转移方法如下:
步骤3-1:用化学气相沉积的方法,在蓝宝石上生长多层二维半导体薄膜,其中二维半导体薄膜厚度在4-15nm。
步骤3-2:旋涂聚苯乙烯溶液到所述生长有二维半导体薄膜的蓝宝石上,高温烘干后,放入碱性溶液中浸泡,以去除蓝宝石薄层,从而使二维半导体材料与衬底分离。。
步骤3-3:把脱落的二维半导体薄膜转移到步骤2中所述有电极的绝缘衬底上。
步骤3-4:用甲苯溶液去除所述聚苯乙烯薄膜。
在本发明所述步骤4中的贵金属颗粒制备和转移方法如下:
步骤4-1:在干净的硅/二氧化硅片衬底上物理蒸镀薄层的贵金属膜。
步骤4-2:将所述步骤4-1中镀有贵金属薄膜的硅/二氧化硅片置于氩气的氛围中高温退火。
步骤4-3:旋涂聚甲基丙烯酸甲酯溶液到所述步骤4-2中退火的硅/二氧化硅片上,高温烘干后,放入氢氟酸溶液中浸泡,以去除二氧化硅,从而使贵金属颗粒与衬底分离。
步骤4-4:用步骤3-3中所述有电极和二维半导体的硅/二氧化硅片捞取脱落的贵金属薄膜。
步骤4-5:用丙酮溶液去除所述聚苯乙烯薄膜。
本发明的优越之处是利用物理蒸镀贵金属膜后,再经过高温退火形成贵金属纳米颗粒,能快速高效得到这种贵金属纳米颗粒结构。同时制备的探测器器件结构简单,不仅二维半导体/金纳米颗粒复合结构光电探测器响应度得到了提高,而且暗电流减低,开关比和归一化探测率也增大。
以下将结合附图对本发明的构思、具体结构及产生的技术效果作进一步说明,以充分地了解本发明的目的、特征和效果。
附图说明
图1是本发明实施例中器件结构示意图。
图2是本发明实施例中所制备二维半导体/金复合结构光电探测器工艺流程图。
图3中a是本发明实施例中金颗粒高倍下原子力显微镜图片,b是实施例中金颗粒低倍下原子力显微镜图片。
图4是本发明实施例中所制备光电探测器的光电流与时间响应曲线。
具体实施方式
下面对本发明的具体实施方式进行描述,以便于本技术领域的技术人员理解本发明,但应该清楚,本发明不限于具体实施方式的范围,对本技术领域的普通技术人员来讲,只要各种变化在所附的权利要求限定和确定的本发明的精神和范围内,这些变化是显而易见的,一切利用本发明构思的发明创造均在保护之列。
该申请从工艺流程到物理模型设计始终围绕着如何提高材料对光的吸收利用来提高探测器响应度、减小暗电流来提高探测器的探测率二个主要问题来增强光导型探测器的性能指标。
基于本发明的实验方案设计,采用两次湿法转移的方法,将化学气相沉积(CVD)生长的多层二维半导体和经过高温退火的贵金属纳米颗粒分别大面积转移到金属电极上,在电极的沟道区域实现二维半导体/贵金属纳米颗粒结构的复合,从而提升探测器的性能。
本发明的技术步骤如下:
(1)光刻:在绝缘衬底上用光刻的方法刻出电极形状。
(2)制备电极:用物理
蒸镀的方法在步骤(1)刻好电极形状的基底上蒸镀金属电极。
(3)蒸镀贵金属膜:在干净硅/二氧化硅衬底物理蒸镀贵金属膜。
(4)制备贵金属颗粒:将步骤(3)蒸镀的贵金属膜放在管式炉中高温常压退火。
(5)制备二维半导体薄膜:用化学气相沉积的方法,在蓝宝石衬底上制备。
(6)转移二维半导体薄膜:将步骤(5)生长二维半导体薄膜转移到步骤(2)的电极上。
(7)转移贵金属颗粒:将步骤(4)制备的贵金属颗粒转移到步骤(6)的二维半导体薄膜上。
所述步骤(2)电极的沟道长度为1-50微米,宽度为50-500微米。金属电极的厚度在30-200纳米。
所述步骤(4)是在氩气氛围中进行高温常压退火。
所述步骤(6)中,用聚苯乙烯溶液旋涂到步骤(5)生长二维半导体材料的蓝宝石上,烘烤之后,浸泡在碱性溶液中待脱落转移。
所述步骤(7)中,用聚甲基丙烯酸甲酯溶液旋涂到步骤(4)退火后形成贵金属颗粒的硅/二氧化硅片上,烘烤之后,浸泡在氢氟酸溶液中待脱落转移。
实施例
如图1所示,一种制备增强型二硫化钨/金纳米颗粒复合结构光电探测器,包括由下至上结合的硅/二氧化硅衬底1、钛/金电极2、二硫化钨薄膜3和金纳米颗粒4。具体步骤如下:
1、首先采用光刻的技术在一片干净的硅/二氧化硅刻出方块电极的形状(其中选用的是双层光刻胶,LOR 3A作为牺牲层,AZ 703作为光敏层),利用热蒸镀的技术蒸镀钛/金电极,钛的厚度为5nm,金的厚度为50nm,之后在加热到100℃的N-甲基吡咯烷酮中浸泡15分钟来去除光刻胶。制备好的电极放入90分钟烘箱烘5h以备待用。
2、在二硫化钨材料的制备中,采用CVD(化学气相沉积)的方法合成二硫化钨。取50mg三氧化钨放置在管式炉的中心温度处,取2000mg硫粉放置在石英管前端,使用加热带进行加热,末端放入蓝宝石衬底,通入40sccm的氩气和4sccm的氢气,通过机械泵,将系统内的气压控制在1.8Pa。管式炉中的温度从室温加热到950℃,升温时间30分钟,并在950℃保持20分钟,当管式炉的中心温度达到700℃开始加热前端硫粉,加热温度为170℃。
3、在金纳米颗粒的制备中,采用热蒸发镀膜机在一片干净的硅/二氧化硅上蒸镀一层10纳米厚的金膜,然后放入管式炉中进行高温退火,通入氩气流量为50sccm,运行管式炉,从室温加热到860℃用时30分钟,并在860℃保持40分钟,整个操作是在常压在进行的。
4、在转移二硫化钨过程中,首先在所述生长有二硫化钨的蓝宝石上旋涂一层质量分数为90mg/ml聚苯乙烯(PS)溶液,旋涂转速为700r/分钟,旋涂时长为15s,再调高转速至3000r/分钟,旋涂60s,为使材料与上述聚苯乙烯薄膜结合紧密,在加热台烘烤30分钟,烘烤温度为上120℃,放入1mol/L氢氧化钠溶液中浸泡时长2h,剥离出的PS/WS2薄膜。再用清水泡洗三次以去除附着的氢氧化钠溶液,最后用上述做好电极的目标基底捞取薄膜,自然晾干后用甲苯溶液去除聚苯乙烯胶。
5、在转移金颗粒过程中,首先在上述有金颗粒的硅/二氧化硅上旋涂一层质量分数为40mg/ml的聚甲基丙烯酸甲酯(PMMA)溶液,旋涂转速为500r/分钟,旋涂时长为15s,再调高转速至2000r/分钟,旋涂60s。为了使材料与上述聚甲基丙烯酸甲酯胶结合紧密在加热台上90℃烘烤30分钟,放入0.5mol/L氢氟酸溶液中浸泡时长2h,剥离出的PMMA/Au薄膜用清水泡洗三次以清除氢氟酸,最后用上述转移好二硫化钨的目标基底捞取薄膜,自然晾干后用丙酮溶液去除甲基丙烯酸甲酯胶。
图1是本发明实施例中器件结构示意图。
图2是本发明实施例的工艺流程示意图。
图3中a是本发明实施例中金纳米颗粒高倍下原子力显微镜图片,b是实施例中金纳米颗粒低倍下原子力显微镜图片。
图4是实施例中所制备器件的光电流与时间响应曲线。
试验结果表明,本发明的二维半导体/贵金属复合结构光电探测器具有较低的暗电流,较大的开关比和较高的归一化探测率和响应度。

Claims (10)

1.一种增强型二维半导体光电探测器及其制备方法,其特征在于,如图1所示,包括由下至上依次堆叠的绝缘衬底1、金属电极2、二维半导体材料3和贵金属纳米颗粒结构4,制备步骤如下:
(1)光刻:在绝缘衬底上用光刻的方法刻出电极形状;
(2)制备电极:用物理蒸镀的方法在步骤(1)刻好电极形状的衬底上蒸镀金属电极;
(3)蒸镀贵金属膜:在干净硅/二氧化硅衬底物理蒸镀贵金属膜;
(4)制备贵金属颗粒:将步骤(3)蒸镀的贵金属膜放在管式炉中高温常压退火;
(5)制备二维半导体薄膜:运用化学气相沉积(CVD)方法,在蓝宝石衬底上生长二维半导体薄膜;
(6)转移二维半导体薄膜:将步骤(5)生长二维半导体薄膜转移到步骤(2)的电极上;
(7)转移贵金属颗粒:将步骤(4)制备的贵金属颗粒转移到步骤(6)的二维半导体薄膜上。
2.根据权利要求1所述的增强型二维半导体光电探测器及其制备方法,其特征在于,步骤(1)所述的电极的制备中,利用光刻技术在硅/二氧化硅材料上制作胶状结构,曝光后形成孔洞结构,再在上面沉积金属作为电极。
3.根据权利要求1所述的增强型二维半导体光电探测器及其制备方法,其特征在于,步骤(1)所述的电极形状并不局限于某一特定形状。
4.根据权利要求1所述的增强型二维半导体光电探测器及其制备方法,其特征在于,步骤(2)所述的电极为能够与二维半导体材料形成欧姆接触的导电材料。
5.根据权利要求1所述的增强型二维半导体光电探测器及其制备方法,其特征在于,步骤(3)所述贵金属是通过物理蒸镀的。
6.根据权利要求1所述的增强型二维半导体光电探测器及其制备方法,其特征在于,步骤(3)所述贵金属并不局限于金、银等材料。
7.根据权利要求1所述的增强型二维半导体光电探测器及其制备方法,其特征在于,步骤(4)所述贵金属纳米颗粒是通过在惰性气体中高温退火制备的。
8.根据权利要求1所述的增强型二维半导体光电探测器及其制备方法,其特征在于,步骤(5)所述二维半导体材料并不局限于某一种材料,包括如二硫化钨、二硫化钼和二硒化钨等过渡金属硫族化合物。
9.根据权利要求1所述的增强型二维半导体光电探测器及其制备方法,其特征在于,步骤(6)所述的转移,旋涂聚苯乙烯溶液到生长有二维半导体材料的蓝宝石上,烘烤后浸泡在碱性溶液待脱落转移。
10.根据权利要求1所述的增强型二维半导体光电探测器及其制备方法,其特征在于,步骤(7)中,旋涂聚甲基丙烯酸甲酯溶液到有贵金属颗粒硅/二氧化硅上,烘烤后浸泡在氢氟酸(HF)溶液中待脱落转移。
CN202110233659.1A 2021-03-03 2021-03-03 一种增强型二维半导体光电探测器及其制备方法 Pending CN113013263A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110233659.1A CN113013263A (zh) 2021-03-03 2021-03-03 一种增强型二维半导体光电探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110233659.1A CN113013263A (zh) 2021-03-03 2021-03-03 一种增强型二维半导体光电探测器及其制备方法

Publications (1)

Publication Number Publication Date
CN113013263A true CN113013263A (zh) 2021-06-22

Family

ID=76403333

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110233659.1A Pending CN113013263A (zh) 2021-03-03 2021-03-03 一种增强型二维半导体光电探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN113013263A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114899253A (zh) * 2022-07-12 2022-08-12 西安电子科技大学 一种基于局域表面等离激元效应的二硫化钼光电探测器
CN115000238A (zh) * 2022-05-09 2022-09-02 厦门大学 一种等离激元增强局域雪崩的紫外光电探测器及制备方法
CN116722080A (zh) * 2023-08-10 2023-09-08 长春理工大学 全空间尖端结构的等离子体增强型光电探测器的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106248735A (zh) * 2016-07-12 2016-12-21 电子科技大学 一种基于超薄硫化物薄膜的湿度传感器及其制备方法
CN107116231A (zh) * 2017-06-01 2017-09-01 云南大学 一种单层自组装金纳米颗粒/二硫化钼复合膜的制备方法
CN109273543A (zh) * 2018-10-29 2019-01-25 华中科技大学 硫族化合物膜上涂覆纳米颗粒的晶体管及制备方法与应用
CN109545865A (zh) * 2018-10-21 2019-03-29 天津大学 一种金颗粒增强型石墨烯光探测器及制备方法
CN110676218A (zh) * 2019-08-28 2020-01-10 西安工业大学 一种定向转移cvd法制备二维过渡金属硫化物的方法
CN110875402A (zh) * 2018-08-29 2020-03-10 电子科技大学 复合薄膜敏感材料、红外探测器及制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106248735A (zh) * 2016-07-12 2016-12-21 电子科技大学 一种基于超薄硫化物薄膜的湿度传感器及其制备方法
CN107116231A (zh) * 2017-06-01 2017-09-01 云南大学 一种单层自组装金纳米颗粒/二硫化钼复合膜的制备方法
CN110875402A (zh) * 2018-08-29 2020-03-10 电子科技大学 复合薄膜敏感材料、红外探测器及制备方法
CN109545865A (zh) * 2018-10-21 2019-03-29 天津大学 一种金颗粒增强型石墨烯光探测器及制备方法
CN109273543A (zh) * 2018-10-29 2019-01-25 华中科技大学 硫族化合物膜上涂覆纳米颗粒的晶体管及制备方法与应用
CN110676218A (zh) * 2019-08-28 2020-01-10 西安工业大学 一种定向转移cvd法制备二维过渡金属硫化物的方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JUNXIONG GUO等: "Near-infrared photodetector based on few-layer MoS2 with sensitivity enhanced by localized surface plasmon resonance", 《APPLIED SURFACE SCIENCE》 *
MOHAMMAD AMIN NAZIRZADEH等: "Random sized plasmonic nanoantennas on Silicon for low-cost broad-band near-infrared photodetection", 《SCIENTIFIC REPORT》 *
YU LIU等: "Plasmon resonance enhanced WS2 photodetector with ultra-high sensitivity and stability", 《APPLIED SURFACE SCIENCE》 *
李春 等: "二维原子晶体半导体转移技术研究进展", 《深圳大学学报理工版》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115000238A (zh) * 2022-05-09 2022-09-02 厦门大学 一种等离激元增强局域雪崩的紫外光电探测器及制备方法
CN114899253A (zh) * 2022-07-12 2022-08-12 西安电子科技大学 一种基于局域表面等离激元效应的二硫化钼光电探测器
CN116722080A (zh) * 2023-08-10 2023-09-08 长春理工大学 全空间尖端结构的等离子体增强型光电探测器的制备方法
CN116722080B (zh) * 2023-08-10 2023-10-31 长春理工大学 全空间尖端结构的等离子体增强型光电探测器的制备方法

Similar Documents

Publication Publication Date Title
CN113013263A (zh) 一种增强型二维半导体光电探测器及其制备方法
CN107833940B (zh) 一种基于二维二硫化钼-二硫化铼异质结的光电子器件、制备方法及应用
CN107221575B (zh) 基于二维材料垂直肖特基结近红外探测器及制备方法
CN111341875B (zh) 一种石墨烯/二硒化钯/硅异质结自驱动光电探测器
US11605743B2 (en) Photodetector based on PtSe2 and silicon nanopillar array and preparation method thereof
CN106449854B (zh) 全耗尽铁电侧栅单根纳米线近红外光电探测器及制备方法
CN109273543B (zh) 硫族化合物膜上涂覆纳米颗粒的晶体管及制备方法与应用
CN105118887B (zh) 一种铟纳米颗粒阵列修饰的石墨烯/硒化锌纳米带肖特基结蓝光光电开关及其制备方法
CN108630782B (zh) 一种宽探测波段双重等离子工作光电探测器的制备方法
CN111725348B (zh) 高光响应TiO2/MoS2异质结可见光探测器及制备
CN110690317A (zh) 一种基于单层MoS2薄膜/GaN纳米柱阵列的自供电紫外探测器及其制备方法
CN110690312A (zh) 生长在石墨烯基板上GaN纳米柱阵列的无损伤转移工艺获得柔性紫外探测器及方法
Xu et al. Surface engineering in SnO2/Si for high-performance broadband photodetectors
CN111081806A (zh) 一种基于超短沟道石墨烯的光电探测器及其制备方法
CN111129198A (zh) 一种石墨烯/硫化铅红外探测器及其制备方法
Abdul-Hameed et al. Fabrication of a high sensitivity and fast response self-powered photosensor based on a core-shell silicon nanowire homojunction
CN112054074B (zh) 光电探测器阵列及其制备方法、光电探测器及其制备方法
CN210805803U (zh) 一种基于单层MoS2薄膜/GaN纳米柱阵列的自供电紫外探测器
Peksu et al. Towards the fabrication of third generation solar cells on amorphous, flexible and transparent substrates with well-ordered and disordered Si-nanowires/pillars
CN116053338A (zh) 一种基于MoO3-x/Bi2O2Se异质集成的近红外光电传感器的制备方法
CN116895705A (zh) 一种叉指石墨烯型InGaN可见光探测器及其制备方法
TW200950109A (en) UV inspector for zinc oxide nano-pillar
CN211480068U (zh) 一种基于超短沟道石墨烯的光电探测器
CN111341874B (zh) 基于Si微米孔/CuO垂直结构异质结的自驱动宽带光电探测器及其制备方法
CN111211195B (zh) 一种利用新型化学改性手段制备高性能光电探测器的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20210622

WD01 Invention patent application deemed withdrawn after publication