CN109273543B - 硫族化合物膜上涂覆纳米颗粒的晶体管及制备方法与应用 - Google Patents

硫族化合物膜上涂覆纳米颗粒的晶体管及制备方法与应用 Download PDF

Info

Publication number
CN109273543B
CN109273543B CN201811268952.6A CN201811268952A CN109273543B CN 109273543 B CN109273543 B CN 109273543B CN 201811268952 A CN201811268952 A CN 201811268952A CN 109273543 B CN109273543 B CN 109273543B
Authority
CN
China
Prior art keywords
film
transition metal
metal chalcogenide
electrode
chalcogenide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201811268952.6A
Other languages
English (en)
Other versions
CN109273543A (zh
Inventor
曾祥斌
郭振宇
王文照
胡一说
吴少雄
周广通
曾洋
任婷婷
靳雯
鲁基昌
曾薏蓉
肖永红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN201811268952.6A priority Critical patent/CN109273543B/zh
Publication of CN109273543A publication Critical patent/CN109273543A/zh
Application granted granted Critical
Publication of CN109273543B publication Critical patent/CN109273543B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0324Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIVBVI or AIIBIVCVI chalcogenide compounds, e.g. Pb Sn Te
    • H01L31/0325Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIVBVI or AIIBIVCVI chalcogenide compounds, e.g. Pb Sn Te characterised by the doping material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier
    • H01L31/103Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier being of the PN homojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明公开了一种硫族化合物膜上涂覆纳米颗粒的晶体管及制备方法与应用,属于微电子及光电子技术领域。包括具有二氧化硅绝缘层的硅衬底、1T相过渡金属硫族化合物膜、2H相过渡金属硫族化合物膜、电极A、电极B和纳米颗粒层。本发明中1T‑WS2与2H‑WS2通过范德华力相连,使得光生载流子能够在交界面上分离,且1T‑WS2具有很高的电子迁移率,能够极大地提升光响应;另外,纳米颗粒的近场振荡、散射效应以及从纳米颗粒到WS2的载流子的注入效应能增加光电流、加快响应速率。这种光探测器不仅具有优异的响应特性,而且制备方法简单、成本较低,在光电领域具有非常好的应用前景。

Description

硫族化合物膜上涂覆纳米颗粒的晶体管及制备方法与应用
技术领域
本发明属于微电子及光电子技术领域,更具体地,涉及一种硫族化合物膜上涂覆纳米颗粒的晶体管及制备方法与应用。
背景技术
在信息技术高度发达的今天,越来越多的物理信号需要被转换为电信号再由计算机处理,而其中光探测器成为了影响我们日常生活的众多技术的核心。目前光探测器主要用于光通信、光探测、自动化控制、生物医学成像、夜视、遥感等方面。在应用领域的规模和多样性不断增长的同时,对光探测器更加优异的响应特性的需求也在不断增大。
二维过渡金属硫族化合物由于其优异的光学、电学、机械、润滑及催化性能而备受关注。二硫化钨(WS2)薄膜是二维过渡金属硫族化合物中的一种,这种材料虽然具有和可见光相匹配的禁带宽度、但其在光响应率与载流子迁移率方面仍有许多进步的空间。
发明内容
本发明解决了现有技术中的光探测器的光响应度弱以及光响应速度慢的技术问题。
按照本发明的第一方面,提供了一种过渡金属硫族化合物膜上涂覆纳米颗粒的晶体管,所述晶体管包括具有二氧化硅绝缘层的硅衬底、1T相过渡金属硫族化合物膜、2H相过渡金属硫族化合物膜、电极A、电极B和纳米颗粒层;所述1T相过渡金属硫族化合物膜位于具有二氧化硅绝缘层的硅衬底的上表面;所述2H相过渡金属硫族化合物膜位于1T相过渡金属硫族化合物膜的上表面;所述电极A和电极B位于2H相过渡金属硫族化合物膜上表面,且所述电极A和电极B相互不接触;所述纳米颗粒层位于2H相过渡金属硫族化合物膜上表面。
优选地,所述1T相过渡金属硫族化合物膜为1T相WS2膜或1T相MoS2膜;所述2H相过渡金属硫族化合物膜为2H相WS2膜或2H相MoS2膜;所述1T相过渡金属硫族化合物膜和2H相过渡金属硫族化合物膜通过范德华力连接。
优选地,所述电极A和电极B的下层为Cr,所述电极A和电极B的上层为Au。
优选地,所述纳米颗粒层为Au纳米颗粒层、Ag纳米颗粒层或Al纳米颗粒层。
按照本发明的另一方面,提供了一种过渡金属硫族化合物膜上涂覆纳米颗粒的晶体管的制备方法,含有以下步骤:
(1)在绝缘衬底上制备2H相过渡金属硫族化合物膜;在具有二氧化硅绝缘层的硅衬底的绝缘表面上旋涂四硫代钨酸铵溶液或四硫代钼酸铵溶液,将所述四硫化钨酸铵溶液或四硫代钼酸铵溶液加热烘干得到反应源膜,对所述反应源膜的上表面进行激光照射,使所述反应源薄膜形成1T相过渡金属硫族化合物膜;
(2)在步骤(1)所述的2H相过渡金属硫族化合物膜表面旋涂溶胶,将所述溶胶烘干后,将所述2H相过渡金属硫族化合物膜与溶胶层从绝缘衬底上撕下,并转移至步骤(1)所述的1T相过渡金属硫族化合物膜表面,然后去除溶胶层,得到样品A;
(3)在步骤(2)所述样品A表面分别蒸镀源电极和漏电极,得到样品B;将金属纳米颗粒溶液旋涂在样品B表面,即得到过渡金属硫族化合物膜上涂覆纳米颗粒的晶体管。
优选地,步骤(1)所述在绝缘衬底上制备2H相过渡金属硫族化合物膜采用化学气相沉积法。
优选地,步骤(3)所述电极的下层为Cr,步骤(3)所述电极的上层为Au;所述电极下层金属的厚度为10nm-20nm,所述电极上层金属的厚度为50nm-100nm。
优选地,步骤(3)所述金属纳米颗粒为Au纳米颗粒、Ag纳米颗粒或Al纳米颗粒;所述金属纳米颗粒的直径为10nm~20nm;步骤(3)中旋涂纳米颗粒的转速为800转每分钟~1000转每分钟,旋涂的时间为50s-70s。
优选地,所述1T相过渡金属硫族化合物膜为1T相WS2膜或1T相MoS2膜;所述2H相过渡金属硫族化合物膜为2H相WS2膜或2H相MoS2膜。
按照本发明的另一方面,提供了所述的过渡金属硫族化合物膜上涂覆纳米颗粒的晶体管作为光探测器的应用。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,主要具备以下的技术优点:
(1)本发明中,纳米颗粒的加入使光响应度增加。这归因于纳米颗粒的近场振荡、散射效应以及从纳米颗粒到过渡金属硫族化合物膜的载流子的注入效应。一方面,当有入射光加入时,会在金属纳米颗粒的周围产生等离子体的共振,从而造成近场增强即等离激元增强效应,与纳米颗粒耦合的过渡金属硫族化合物膜可以有效地将等离激元增强效应转换为电信号,从而增加光电流。另一方面,光与纳米颗粒相互作用,将加剧散射,增加光程,提高光吸收的能力,使光电流进一步提升。
(2)此外,当有光射入时,纳米颗粒表面的电子能量将升高,这会导致纳米颗粒中的电子注入到过渡金属硫族化合物膜中,相比于普通的薄膜,注入的电子可以更快地被1T相的过渡金属硫族化合物膜传输,在光电流提升的同时也可以加快响应速度。
(3)本发明采用1T-WS2/2H-WS2结构,1T-WS2具有很高的载流子传输能力,而2H-WS2具有很好的光吸收能力。将两者结合,不仅其晶格相匹配,而且可使电子空穴对在1T/2H-WS2的界面处分离,被分离的载流子由迁移率更大的1T-WS2传输,提高了光电流。
(4)本发明得到的光探测器不仅光响应度高,响应时间短,且成本较低,制备方法简单易行,具有良好的应用前景。
附图说明
图1是本发明实施例提供的1T-WS2/2H-WS2/纳米颗粒结构的光探测器结构示意图。
图2是本发明实施例提供的1T-WS2/2H-WS2/纳米颗粒结构的光探测器工艺流程图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
本发明提供的1T-WS2/2H-WS2/纳米颗粒结构的光探测器及其制备方法,其目的在于提高光响应度、加快响应速度。具体地,如图1所示,本发明中的1T-WS2/2H-WS2/纳米颗粒结构的光探测器,包括:自下而上设置的p型硅衬底,SiO2层,1T-WS2薄膜,2H-WS2薄膜,纳米颗粒以及Cr/Au源漏电极,其中,NP为纳米颗粒。
所述源漏电极与所述2H-WS2薄膜的表面接触。
在一个可选的实施方案中,所述纳米颗粒包括Au、Ag、Al中任意一种。
在本发明的实施例中,制备上述器件的方法如图2所示,图2是本发明实施例提供的1T-WS2/2H-WS2/纳米颗粒结构的光探测器工艺流程图,图2中的序号对应如下步骤:
①CVD制备2H-WS2
②旋涂PVP、PVA;
③激光制备1T-WS2
④剥离;
⑤2H-WS2转移到1T-WS2上;
⑥水浴加热,去除PVP、PVA;
⑦旋涂光刻胶、曝光、显影;
⑧电子束蒸发制备源漏电极;
⑨去除光刻胶及多余金属;
⑩旋涂纳米颗粒溶液,烘干。
具体包含以下步骤:
(1)准备三片单晶硅片,其厚度为500um,且上表面具有100nm氧化层,对其进行清洗干燥。具体操作为:先用丙酮溶液对硅片超声清洗去除有机污垢,再用酒精对硅片超声清洗去除丙酮,最后用去离子水超声并干燥。分别记作硅片A、硅片B、硅片C。
其中硅片A、硅片B、硅片C的尺寸分别为20mm×20mm、14mm×20mm、20mm×20mm。
(2)清洗并干燥两石英舟,记为一号石英舟和二号石英舟。石英舟内径为33mm。制备过程中用到的CVD管式炉具有两个温度可调控的温区,分别为靠近进气口的上游低温区和靠近出气口的下游高温区。在一号石英舟上铺上干燥的硫粉,置于上游低温区;在硅片B上,均匀平铺WO3粉末,将其置于二号石英舟内;再将硅片A倒扣在B的上方,将二号石英舟以及硅片A、硅片B一同置于下游高温区。在CVD管式炉内通Ar气,使管内保持Ar气的环境。将二号石英舟加热至550℃~650℃反应的同时将一号石英舟快速加热至130~140℃。保持两个温区的温度5~10min,硅片A上将生长出2H-WS2薄膜,之后自然降温。其中Ar气的气流量为50~100sccm,WO3的质量为1-3mg,S粉的质量为500-1000mg,硅片A与硅片B的间距为2~4mm。如图2中步骤①所示。
(3)对硅片C的SiO2表面上旋涂四硫代钨酸铵溶液并在空气中加热烘干得到反应源薄膜。对所述反应源薄膜的上表面进行激光照射,使所述反应源薄膜发生反应形成1T-WS2薄膜。如图2中步骤③所示。
(4)配置PVP(聚乙烯吡咯烷酮)和PVA(聚乙烯醇)溶液。PVP的具体配置方法为:将1.5gPVP、1.5mlNVP溶入0.75mlH2O中,再向混合液中加入乙醇,使混合溶液达到10ml。PVA溶液由2.47gPVA和25mlH2O配置。
将硅片A放置于匀胶机的真空吸附口上,并在硅片A的2H-WS2薄膜表面滴适量PVP溶液,以500转每分钟的转数旋涂30s,再以1500转每分钟的转数旋涂30s;将旋涂有PVP溶液的硅片放置在70℃的热板上烘烤1min。
将烘干后的硅片再次放置于匀胶机的真空吸附口上,在硅片表面滴适量PVA溶液,以500转每分钟的转数旋转30s,再以1500转每分钟的转数旋转30s;将旋涂有PVA溶液的硅片放置在70℃的热板上烘烤1min。
烘干后,可在硅片表面上观测到一层由PVP、PVA组成的半透明薄膜,用镊子将PVP、PVA以及2H-WS2薄膜一同从硅片A上剥离。如图2中步骤②和④所示。
(5)将(4)中剥离后的薄膜转移到硅片C的1T-WS2薄膜的上方。如图2中步骤⑤所示。
(6)将转移后的硅片置于68.9℃的水中,水浴加热20min,以去除所述2H-WS2薄膜表面的PVP、PVA,得到硅片D。如图2中步骤⑥所示。
(7)在硅片D的上表面旋涂光刻胶PMMA,将预先画好的电极版图导入连接光刻机的电脑,并通过电子束直写的方式对涂有光刻胶的硅片D曝光,曝光后用MIBK和异丙醇对其显影。如图2中步骤⑦所示。
(8)对曝光、显影后的硅片D采用电子束蒸发制备Cr/Au漏源电极,与2H-WS2接触的下方电极为Cr厚度为10nm,上方的电极为Au厚度为50nm。将电子束蒸发后的样品放入丙酮,去除光刻胶和多余的Cr/Au,得到硅片E。如图2中步骤⑧和⑨所示。
(9)将金属纳米颗粒的溶液旋涂在硅片E的表面,旋涂纳米颗粒时的转数为800~1000转每分钟,旋涂时间为50-70s。其中纳米颗粒为球状,其直径为10~20nm,其材料可以是Au、Ag、Al中的任意一种。旋涂后烘干。如图2中步骤⑩所示。
至此1T-WS2/2H-WS2/纳米颗粒结构的光探测器制备完成。
现借助具体实例进一步详细说明本发明提供的1T-WS2/2H-WS2/纳米颗粒结构的制备技术:
实施例1
(1)按上述方案完成三片硅片的清洗与干燥,记为硅片A、硅片B、硅片C。
(2)清洗并干燥两石英舟,记为一号石英舟和二号石英舟。石英舟内径为33mm。制备过程中用到的CVD管式炉具有两个温度可调控的温区,分别为靠近进气口的上游低温区和靠近出气口的下游高温区。在一号石英舟上铺上干燥的硫粉,置于上游低温区;在硅片B上,均匀平铺WO3粉末,将其置于二号石英舟内;再将硅片A倒扣在B的上方,将二号石英舟以及硅片A、硅片B一同置于下游高温区。在CVD管式炉内通Ar气,使管内保持Ar气的环境。将二号石英舟加热至650℃反应的同时将一号石英舟快速加热至140℃。保持两个温区的温度5min,硅片A上将生长出2H-WS2薄膜,之后自然降温。其中Ar气的气流量为100sccm,WO3的质量为3mg,S粉的质量为500mg。
(3)对硅片C的SiO2表面上旋涂四硫代钨酸铵溶液并在空气中加热烘干得到反应源薄膜。对所述反应源薄膜的上表面进行激光照射,使所述反应源薄膜发生反应形成1T-WS2薄膜。
(4)配置PVP(聚乙烯吡咯烷酮)和PVA(聚乙烯醇)溶液。PVP的具体配置方法为:将1.5gPVP、1.5mlNVP溶入0.75mlH2O中,再向混合液中加入乙醇,至10ml。PVA由2.47gPVA和25mlH2O配置。将硅片A放置于匀胶机的真空吸附口上,并在硅片A的2H-WS2薄膜表面滴适量PVP溶液,以500转每分钟的转数旋涂30s再以1500转每分钟的转数旋涂30s;将旋涂了PVP溶液的硅片放置在70℃的热板上烘烤1min。将烘干后的硅片再次放置于匀胶机的真空吸附口上,在硅片表面滴适量PVA溶液,以500转每分钟的转数旋转30s再以1500转每分钟的转数旋转30s;将旋涂了PVP溶液的硅片放置在70℃的热板上烘烤1min。烘干后,可在硅片表面上观测到一层由PVP、PVA组成的半透明薄膜,用镊子将PVP、PVA以及2H-WS2薄膜一同从硅片A上剥离。
(5)将(4)中剥离后的薄膜转移到硅片C的1T-WS2薄膜的上方。
(6)将转移后的硅片置于68.9℃的水中,水浴加热20min,以去除所述2H-WS2薄膜表面的PVP、PVA,得到硅片D。
(7)在硅片D的上表面旋涂光刻胶PMMA,将预先画好的电极版图导入连接光刻机的电脑,并通过电子束直写的方式对涂有光刻胶的硅片D曝光,曝光后用MIBK和异丙醇对其显影。
(8)对曝光、显影后的硅片D采用电子束蒸发制备Cr/Au漏源电极,与2H-WS2接触的下方电极为Cr、厚度为10nm,上方的电极为Au厚度为50nm。将电子束蒸发后的样品放入丙酮,去除光刻胶和多余的Cr/Au,得到硅片E。
(9)将金属纳米颗粒的溶液旋涂在硅片E的表面,旋涂纳米颗粒时的转数为800转每分钟,旋涂时间为60s。其中纳米颗粒为球状,其直径为10nm,其材料为Au。旋涂后烘干。
实施例2
(1)按上述方案完成三片硅片的清洗与干燥,记为硅片A、硅片B、硅片C。
(2)清洗并干燥两石英舟,记为一号石英舟和二号石英舟。石英舟内径为33mm。制备过程中用到的CVD管式炉具有两个温度可调控的温区,分别为靠近进气口的上游低温区和靠近出气口的下游高温区。在一号石英舟上铺上干燥的硫粉,置于上游低温区;在硅片B上,均匀平铺WO3粉末,将其置于二号石英舟内;再将硅片A倒扣在B的上方,将二号石英舟以及硅片A、硅片B一同置于下游高温区。在CVD管式炉内通Ar气,使管内保持Ar气的环境。将二号石英舟加热至650℃反应的同时将一号石英舟快速加热至140℃。保持两个温区的温度5min,硅片A上将生长出2H-WS2薄膜,之后自然降温。其中Ar气的气流量为100sccm,WO3的质量为3mg,S粉的质量为500mg。
(3)对硅片C的SiO2表面上旋涂四硫代钨酸铵溶液并在空气中加热烘干得到反应源薄膜。对所述反应源薄膜的上表面进行激光照射,使所述反应源薄膜发生反应形成1T-WS2薄膜。
(4)配置PVP(聚乙烯吡咯烷酮)和PVA(聚乙烯醇)溶液。PVP的具体配置方法为:将1.5gPVP、1.5mlNVP溶入0.75mlH2O中,再向混合液中加入乙醇,至10ml。PVA由2.47gPVA和25mlH2O配置。将硅片A放置于匀胶机的真空吸附口上,并在硅片A的2H-WS2薄膜表面滴适量PVP溶液,以500转每分钟的转数旋涂30s再以1500转每分钟的转数旋涂30s;将旋涂了PVP溶液的硅片放置在70℃的热板上烘烤1min。将烘干后的硅片再次放置于匀胶机的真空吸附口上,在硅片表面滴适量PVA溶液,以500转每分钟的转数旋转30s再以1500转每分钟的转数旋转30s;将旋涂了PVP溶液的硅片放置在70℃的热板上烘烤1min。烘干后,可在硅片表面上观测到一层由PVP、PVA组成的半透明薄膜,用镊子将PVP、PVA以及2H-WS2薄膜一同从硅片A上剥离。
(5)将(4)中剥离后的薄膜转移到硅片C的1T-WS2薄膜的上方。
(6)将转移后的硅片置于68.9℃的水中,水浴加热20min,以去除所述2H-WS2薄膜表面的PVP、PVA,得到硅片D。
(7)在硅片D的上表面旋涂光刻胶PMMA,将预先画好的电极版图导入连接光刻机的电脑,并通过电子束直写的方式对涂有光刻胶的硅片D曝光,曝光后用MIBK和异丙醇对其显影。
(8)对曝光、显影后的硅片D采用电子束蒸发制备Cr/Au漏源电极,与2H-WS2接触的下方电极为Cr、厚度为10nm,上方的电极为Au厚度为50nm。将电子束蒸发后的样品放入丙酮,去除光刻胶和多余的Cr/Au,得到硅片E。
(9)将金属纳米颗粒的溶液旋涂在硅片E的表面,旋涂纳米颗粒时的转数为1000转每分钟,旋涂时间为60s。其中纳米颗粒为球状,其直径为10nm,其材料为Au。旋涂后烘干。
由于制备太阳能电池的步骤是相同的,各个实施例之间的区别仅仅是各个参数的区别的,上述实例仅仅给出了个别实施例中的参数;具体实例如下表1所示,表1示出了1T-WS2/2H-WS2/纳米颗粒结构的光探测器的制备方法实施例。
表1
Figure BDA0001845558590000111
在本发明公开的1T-WS2/2H-WS2/纳米颗粒结构的光探测器的结构中光生载流子能在1T-WS2与2H-WS2的界面上有效的分离,电子能在1T-WS2中快速传输,能够极大地提升光响应;纳米颗粒的近场振荡和散射效应也能极大的增加光电流。这种光探测器不仅具有优异的响应特性,而且制备方法简单、成本较低,在光电领域具有非常好的应用前景。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种过渡金属硫族化合物膜上涂覆纳米颗粒的晶体管,其特征在于,所述晶体管包括具有二氧化硅绝缘层的硅衬底(1)、1T相过渡金属硫族化合物膜(2)、2H相过渡金属硫族化合物膜(3)、电极A(4)、电极B(5)和纳米颗粒层(6);所述1T相过渡金属硫族化合物膜(2)位于具有二氧化硅绝缘层的硅衬底(1)的上表面;所述2H相过渡金属硫族化合物膜(3)位于1T相过渡金属硫族化合物膜(2)的上表面;所述电极A(4)和电极B(5)位于2H相过渡金属硫族化合物膜(3)上表面,且所述电极A(4)和电极B(5)相互不接触;所述纳米颗粒层(6)位于2H相过渡金属硫族化合物膜(3)上表面。
2.如权利要求1所述的过渡金属硫族化合物膜上涂覆纳米颗粒的晶体管,其特征在于,所述1T相过渡金属硫族化合物膜(2)为1T相WS2膜或1T相MoS2膜;所述2H相过渡金属硫族化合物膜(3)为2H相WS2膜或2H相MoS2膜;所述1T相过渡金属硫族化合物膜(2)和2H相过渡金属硫族化合物膜(3)通过范德华力连接。
3.如权利要求1所述的过渡金属硫族化合物膜上涂覆纳米颗粒的晶体管,其特征在于,所述电极A(4)和电极B(5)的下层为Cr,所述电极A(4)和电极B(5)的上层为Au。
4.如权利要求1所述的过渡金属硫族化合物膜上涂覆纳米颗粒的晶体管,其特征在于,所述纳米颗粒层(6)为Au纳米颗粒层、Ag纳米颗粒层或Al纳米颗粒层。
5.一种过渡金属硫族化合物膜上涂覆纳米颗粒的晶体管的制备方法,其特征在于,含有以下步骤:
S1:在绝缘衬底上制备2H相过渡金属硫族化合物膜;在具有二氧化硅绝缘层的硅衬底的绝缘表面上旋涂四硫代钨酸铵溶液或四硫代钼酸铵溶液,将所述四硫代钨酸铵溶液或四硫代钼酸铵溶液加热烘干得到反应源膜,对所述反应源膜的上表面进行激光照射,使所述反应源膜形成1T相过渡金属硫族化合物膜;
S2:在步骤S1所述的2H相过渡金属硫族化合物膜表面旋涂溶胶,将所述溶胶烘干后,将所述2H相过渡金属硫族化合物膜与溶胶层从绝缘衬底上撕下,并转移至步骤S1所述的1T相过渡金属硫族化合物膜表面,然后去除溶胶层,得到样品A;
S3:在步骤S2所述样品A表面分别蒸镀源电极和漏电极,得到样品B;将金属纳米颗粒溶液旋涂在样品B表面,即得到过渡金属硫族化合物膜上涂覆纳米颗粒的晶体管。
6.如权利要求5所述的过渡金属硫族化合物膜上涂覆纳米颗粒的晶体管的制备方法,其特征在于,步骤S1所述在绝缘衬底上制备2H相过渡金属硫族化合物膜采用化学气相沉积法。
7.如权利要求5所述的过渡金属硫族化合物膜上涂覆纳米颗粒的晶体管的制备方法,其特征在于,步骤S3所述电极的下层为Cr,步骤S3所述电极的上层为Au;所述电极下层金属的厚度为10nm-20nm,所述电极上层金属的厚度为50nm-100nm。
8.如权利要求5所述的过渡金属硫族化合物膜上涂覆纳米颗粒的晶体管的制备方法,其特征在于,步骤S3所述金属纳米颗粒为Au纳米颗粒、Ag纳米颗粒或Al纳米颗粒;所述金属纳米颗粒的直径为10nm~20nm;步骤S3中旋涂纳米颗粒的转速为800转每分钟~1000转每分钟,旋涂的时间为50s-70s。
9.如权利要求5所述的过渡金属硫族化合物膜上涂覆纳米颗粒的晶体管的制备方法,其特征在于,所述1T相过渡金属硫族化合物膜为1T相WS2膜或1T相MoS2膜;所述2H相过渡金属硫族化合物膜为2H相WS2膜或2H相MoS2膜。
10.如权利要求1-4任一所述的过渡金属硫族化合物膜上涂覆纳米颗粒的晶体管作为光探测器的应用。
CN201811268952.6A 2018-10-29 2018-10-29 硫族化合物膜上涂覆纳米颗粒的晶体管及制备方法与应用 Expired - Fee Related CN109273543B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811268952.6A CN109273543B (zh) 2018-10-29 2018-10-29 硫族化合物膜上涂覆纳米颗粒的晶体管及制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811268952.6A CN109273543B (zh) 2018-10-29 2018-10-29 硫族化合物膜上涂覆纳米颗粒的晶体管及制备方法与应用

Publications (2)

Publication Number Publication Date
CN109273543A CN109273543A (zh) 2019-01-25
CN109273543B true CN109273543B (zh) 2020-05-19

Family

ID=65195522

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811268952.6A Expired - Fee Related CN109273543B (zh) 2018-10-29 2018-10-29 硫族化合物膜上涂覆纳米颗粒的晶体管及制备方法与应用

Country Status (1)

Country Link
CN (1) CN109273543B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112002781B (zh) * 2020-09-08 2021-08-17 合肥工业大学 一种硅兼容双极性异质结紫外-近红外双波段光电探测器及其制备方法
CN113013263A (zh) * 2021-03-03 2021-06-22 电子科技大学 一种增强型二维半导体光电探测器及其制备方法
CN113451423B (zh) * 2021-07-27 2023-03-24 湖南大学 一种基于等离激元效应的异质结光电突触器件
CN114520266A (zh) * 2021-10-22 2022-05-20 中国科学院重庆绿色智能技术研究院 硫化铅光电导探测器及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105047728A (zh) * 2015-06-11 2015-11-11 上海电力学院 增强二维半导体晶体材料光吸收效率的探测器及制作方法
CN106298259B (zh) * 2016-08-22 2018-03-06 河南师范大学 一种2h相单层二硫化钼纳米片的制备方法
CN106549064B (zh) * 2016-10-11 2019-06-11 北京科技大学 过渡金属硫族化合物同质结、同质结二极管及同质结的制备
CN108258058B (zh) * 2018-01-23 2020-08-11 福州大学 一种基于金/二氧化硅壳核微结构与二硫化钼复合薄膜晶体管的制备方法

Also Published As

Publication number Publication date
CN109273543A (zh) 2019-01-25

Similar Documents

Publication Publication Date Title
CN109273543B (zh) 硫族化合物膜上涂覆纳米颗粒的晶体管及制备方法与应用
CN107833940B (zh) 一种基于二维二硫化钼-二硫化铼异质结的光电子器件、制备方法及应用
CN107946470A (zh) 一种异质结太阳能电池及其制备方法
CN105118887B (zh) 一种铟纳米颗粒阵列修饰的石墨烯/硒化锌纳米带肖特基结蓝光光电开关及其制备方法
CN106449854B (zh) 全耗尽铁电侧栅单根纳米线近红外光电探测器及制备方法
Ko et al. Fabrication and optimization of vertically aligned ZnO nanorod array-based UV photodetectors via selective hydrothermal synthesis
CN107316915A (zh) 可见光波段的集成石墨烯二硫化钼的光电探测器及其制备方法
CN106549064A (zh) 过渡金属硫族化合物同质结、同质结二极管及同质结的制备
CN112614945B (zh) 具有沟槽阵列结构的微纳单晶柔性光电探测器及其制备
CN110416235B (zh) 一种中空表面等离激元结构的二维材料复合多色红外探测芯片
CN105552131A (zh) 基于量子点掺杂栅绝缘层的新型高性能光调制薄膜晶体管
CN112885922A (zh) 基于PtSe2与硅纳米柱阵列的光电探测器及其制备方法
CN113013263A (zh) 一种增强型二维半导体光电探测器及其制备方法
Xu et al. Surface engineering in SnO2/Si for high-performance broadband photodetectors
CN116314386A (zh) 混维范德瓦尔斯异质结光电探测器及其制备方法
CN111129198A (zh) 一种石墨烯/硫化铅红外探测器及其制备方法
CN109354057A (zh) 一种氧化锡纳米晶及其制备方法及太阳能电池制备方法
CN108649120A (zh) 一种具有陷光结构的钙钛矿光电探测器及制作方法
CN109950364B (zh) 基于二维硒化亚锗光电探测器的成像元件制备方法
CN111129199A (zh) 一种石墨烯/硫化铅/钙钛矿光电探测器及其制备方法
TWI357665B (zh)
CN109950359A (zh) 一种利用二氧化铪钝化增强型低维纳米探测器及制备方法
CN209691770U (zh) 一种利用二氧化铪钝化增强型低维纳米探测器
CN114203916A (zh) 一种包含光学微腔结构的钙钛矿太阳能电池
CN114256367B (zh) 石墨烯锗硅量子点集成的复合结构探测器及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200519

Termination date: 20211029

CF01 Termination of patent right due to non-payment of annual fee