CN105118887B - 一种铟纳米颗粒阵列修饰的石墨烯/硒化锌纳米带肖特基结蓝光光电开关及其制备方法 - Google Patents

一种铟纳米颗粒阵列修饰的石墨烯/硒化锌纳米带肖特基结蓝光光电开关及其制备方法 Download PDF

Info

Publication number
CN105118887B
CN105118887B CN201510418427.8A CN201510418427A CN105118887B CN 105118887 B CN105118887 B CN 105118887B CN 201510418427 A CN201510418427 A CN 201510418427A CN 105118887 B CN105118887 B CN 105118887B
Authority
CN
China
Prior art keywords
zinc selenide
graphene
nanometer particle
particle array
blue light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510418427.8A
Other languages
English (en)
Other versions
CN105118887A (zh
Inventor
罗林保
王元
郑坤
卢瑞
于永强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN201510418427.8A priority Critical patent/CN105118887B/zh
Publication of CN105118887A publication Critical patent/CN105118887A/zh
Application granted granted Critical
Publication of CN105118887B publication Critical patent/CN105118887B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier
    • H01L31/108Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier being of the Schottky type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/945Proximity switches
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明公开了一种铟纳米颗粒阵列修饰的石墨烯/硒化锌纳米带肖特基结蓝光光电开关及其制备方法,其是在绝缘衬底上表面分布有硒化锌纳米带,硒化锌纳米带的一端设置有与硒化锌纳米带呈欧姆接触的金电极,另一端设置有与硒化锌纳米带呈肖特基接触的石墨烯薄膜,在石墨烯薄膜的上表面修饰有呈六角点阵排布的铟纳米颗粒阵列。本发明中的蓝光光电开关通过利用排列规则的铟纳米颗粒阵列表面等离子体共振的特性,增强了对光的吸收,提高了对光的响应度;本发明制备方法简单,适合大规模生产,可制备响应速度快、抗电磁干扰强的蓝光光电开关,为硒化锌纳米材料在光电开关的应用中开拓了新的前景。

Description

一种铟纳米颗粒阵列修饰的石墨烯/硒化锌纳米带肖特基结蓝光光电开关及其制备方法
技术领域
本发明属于半导体光电开关领域,具体涉及石墨烯/硒化锌纳米带肖特基结蓝光光电开关及其制备方法。
背景技术
蓝色光是一种波长范围在440nm~475nm的可见光,在日常生活中十分常见,蓝色也是三原色中的一元。光电开关,又被称为光电传感器,是光电接近开关的简称,它是利用被检测物对光束的遮挡或反射,由同步回路选通电路,从而检测物体的有无,光电开关将输入电流在发射器上转换为光信号射出,接收器再根据接收到的光线的强弱或有无对目标物体进行探测。蓝光光电开关就是采用蓝色光作为检测光束,对微弱的蓝光信号的检测是光电开关的关键技术。现有的光电开关中,纳米光电开关与同种材质的薄膜光电开关相比,具有更快的反应速度及抗干扰能力,因此纳米光电开关具有很好的发展前景及潜在意义,例如安防系统中常见的光电开关烟雾报警器,工业中常用的机械手臂运动次数计数器等。
表面等离子体是指在金属表面存在的自由振动的电子与光子相互作用产生的沿着金属表面传播的电子疏密波,它能够被电子也能被光波激发。表面等离子体是目前纳米光电子学科的一个重要的研究方向,它受到了包括材料学家,化学家,物理学家,生物学家等多个领域人士的极大的关注。随着纳米技术的发展,表面等离子体被广泛研究用于光子学,数据存储,显微镜,太阳能电池和生物传感器等方面。
硒化锌是一种重要的II-VI族化合物半导体材料,它在室温下的直接禁带宽度约为2.7eV,对波长为460nm的蓝光有很强的吸收。一直以来,硒化锌都被视为是光电器件领域前景广阔的纳米材料,并在发光二极管(LEDs)、激光二极管(LDs)等方面得到广泛应用。和传统的半导体材料硅和砷化镓相比,硒化锌对蓝光及紫外光更具有灵敏性。
石墨烯是由单层碳原子周期性紧密堆积构成的结构类似苯环(六角形蜂巢结构)的一种二维碳材料。石墨烯是由英国曼切斯特大学的两位科学家首次发现的,当时他们通过对石墨片层层剥离得到了仅由一层碳原子构成的薄片,就是石墨烯。石墨烯是已知的世上最薄、最坚硬的纳米材料,它几乎是完全透明的,只吸收2.3%的光;导热系数高达5300W/m·K,高于碳纳米管和金刚石,常温下其电子迁移率超过15000cm2/V·s,又比纳米碳管或硅晶体高,而电阻率只约10-8Ω·m,比铜或银更低,为世上电阻率最小的材料。由于其独有的特性,石墨烯被称为“神奇材料”,科学家甚至预言其将“彻底改变21世纪”。由于高导电性、高强度、超轻薄等特性,石墨烯在航天军工领域的应用优势也是极为突出的。美国NASA开发出应用于航天领域的石墨烯传感器,能很好的对地球高空大气层的微量元素、航天器上的结构性缺陷等进行检测,并且石墨烯在超轻型飞机材料领域的应用上也发挥了重要的作用。因其电阻率极低,电子迁移的速度极快,因此被期待可用来发展更薄、导电速度更快的新一代电子元件或晶体管。
发明内容
本发明是为避免上述现有技术所存在的不足之处,充分利用石墨烯这一新型的二维纳米材料,以及金属纳米颗粒特殊的等离子体共振特性,提供一种结构新颖、制备工艺简单、光吸收能力强、响应速度快、且抗电磁干扰能力强的一种铟纳米颗粒阵列修饰的石墨烯/硒化锌纳米带肖特基结蓝光光电开关。
本发明为解决技术问题采用如下技术方案:
本发明铟纳米颗粒阵列修饰的石墨烯/硒化锌纳米带肖特基结蓝光光电开关,其特点在于:在绝缘衬底上表面分布有硒化锌纳米带,所述硒化锌纳米带的一端设置有与所述硒化锌纳米带呈欧姆接触的金电极,所述硒化锌纳米带的另一端设置有与所述硒化锌纳米带呈肖特基接触的石墨烯薄膜,在所述石墨烯薄膜的上表面修饰有呈六角点阵排布的铟纳米颗粒阵列,在所述石墨烯薄膜的一侧引出有与石墨烯薄膜呈欧姆接触的引出电极。金电极与石墨烯薄膜位于硒化锌纳米带的两侧,且通过硒化锌纳米带连通,两者彼此不接触;引出电极位于石墨烯薄膜上,与硒化锌纳米带不接触。
其中,所述硒化锌纳米带为本征硒化锌纳米带;所述石墨烯薄膜为本征石墨烯薄膜。
所述绝缘衬底是以单晶硅为基底、且二氧化硅层厚度不小于300nm的二氧化硅片。
所述金电极厚度为15-30nm。所述铟纳米颗粒阵列采用聚苯乙烯微球模板法制作而成,所用聚苯乙烯微球的直径为300-900nm。构成所述铟纳米颗粒阵列的各铟纳米颗粒直径为50-90nm。
本发明上述铟纳米颗粒阵列修饰的石墨烯/硒化锌纳米带肖特基结蓝光光电开关的制备方法是按如下步骤进行:
(1)将二氧化硅片依次用丙酮、酒精超声10分钟,再用去离子水超声5分钟,然后用氮气枪吹干,获得绝缘衬底;
(2)通过刮蹭的方式将硒化锌纳米带转移到绝缘衬底上的绝缘层上,并来回刮蹭使硒化锌纳米带分布均匀;
(3)通过紫外光刻与电子束镀膜在硒化锌纳米带的一侧蒸镀金电极;
(4)通过气-液界面自组装法,在表面生长有石墨烯的铜箔上铺设具有六角密堆积结构的聚苯乙烯微球薄膜,作为生长六角铟纳米颗粒阵列的模板,具体步骤为:
a、实验准备:
a1、玻璃片表面清洗:为了改善玻璃片表面亲水性,需要对玻璃片进行表面处理,用由氨水、双氧水及去离子水按体积比1:1:5构成的混合溶液对玻璃片进行浸泡1~2h,然后取出并用去离子水清洗、吹干备用;
a2、配制聚苯乙烯微球溶液:滴取浓度为5%的聚苯乙烯微球原溶液,加入两倍体积的铺展剂乙醇,再进行超声分散处理,使聚苯乙烯微球充分融入乙醇,获得聚苯乙烯微球溶液;
b、实验操作:
b1、在玻璃片上滴两滴聚苯乙烯微球溶液,使溶液均匀铺展在玻璃片上;
b2、将玻璃片慢慢倾斜地放入水中,使小球在水面上自组装形成单层有序排列;
b3、再在水中添加表面活性剂十二烷基硫酸钠,使聚苯乙烯微球更加紧密排列;
b4、将生长有石墨烯的铜箔慢慢放入水中,用提拉法把聚苯乙烯微球排列转移到铜箔的上表面,然后让铜箔上水自然蒸发,聚苯乙烯微球就在石墨烯的上表面形成一层聚苯乙烯微球薄膜。
(5)利用热蒸发工艺在铺设有聚苯乙烯微球薄膜的铜箔上表面蒸镀厚度为50nm的铟膜,将表面镀有铟膜的铜箔置于温度为70℃的酒精中浸泡10分钟,再将其置于甲苯溶液中均匀搅拌,使得石墨烯的上表面修饰呈六角点阵排布的铟纳米颗粒阵列;
用刻蚀液将铜箔刻蚀掉,获得上表面修饰有呈六角点阵排布的铟纳米颗粒阵列的石墨烯薄膜;
(6)利用湿法转移将石墨烯薄膜转移到绝缘衬底上,使其位于硒化锌纳米带的另一侧,具体操作方法为:使用掩膜版进行紫外光刻,使得硒化锌纳米带的另一侧出现光刻图形(即图形处无光刻胶覆盖,其余部分有光刻胶覆盖),将石墨烯薄膜转移到绝缘衬底上,100℃烘干2h,利用石墨烯与二氧化硅较强的附着力,通过丙酮冲洗,去除光刻胶及位于光刻胶位置处的石墨烯,使图形位置处的石墨烯薄膜保留,即完成。
(7)在石墨烯薄膜上表面点上银浆作为引出电极,即完成铟纳米颗粒阵列修饰的石墨烯/硒化锌纳米带异质结蓝光光电开关的制备。
本发明的肖特基结蓝光光电开关是基于金属纳米颗粒(铟纳米颗粒)特殊的表面等离子共振特性,增强器件的光电特性,具体工作原理如下:在以硒化锌和石墨烯的肖特基结为核心的器件结构上功能性修饰均匀分布的铟纳米颗粒,利用铟纳米颗粒对特定波长光(即蓝光,波长约460nm)的吸收能力,结合硒化锌本身带隙决定的对光的吸收峰,从而最大程度的提高整个器件对蓝光的吸收能力。金属纳米颗粒由于其特殊的结构特性,金属颗粒内部与表面存在大量自由电子,形成自由电子气团,即等离子体。当入射光与金属纳米结构表面自由电子气团的振动发生共振时就形成了表面等离子体共振,在光谱上表现为一种强共振吸收峰。吸收的入射光与自由电子紧密结合形成局部化表面态电磁运动模式,被称为表面等离激元,这种特殊的电磁运动模式将吸收的入射光子不断地耦合到与之接触的石墨烯及纳米带当中,形成增强的光电流,进而增强器件的光电特性。本发明采用CVD方法制备的本征硒化锌纳米带及石墨烯薄膜,石墨烯为弱P型类金属材料,石墨烯与硒化锌形成肖特基异质结。本征硒化锌纳米带制备方法简单,条件容易控制,方便以后大规模生产。通过简单的表面修饰铟纳米颗粒,利用表面等离子体共振原理提高器件的光电特性,相比以往通过掺杂、特殊的器件结构的方法,本发明利用简单的策略,以达到提高器件性能的目的,是未来制备光电器件不错的途径。
与已有技术相比,本发明的有益效果体现在:
1、本发明通过简单的工艺方法制备了铟纳米颗粒阵列修饰的石墨烯/硒化锌纳米带肖特基结蓝光光电开关,既有硒化锌对蓝光的灵敏性和铟纳米颗粒阵列的表面等离子体共振特性,又结合了石墨烯高透光率、低电阻率等优良特性,制备出了高性能蓝光光电开关;
2、本发明采用气-液界面自组装法,在石墨烯基底表面铺上一层致密的六角密堆积的聚苯乙烯微球,作为后续试验的模板,大大提高了六角铟纳米颗粒阵列的有序度;
3、本发明利用聚苯乙烯微球模板法制备的六角铟纳米颗粒阵列,颗粒大小均一,间距一致,能够很好的增强颗粒附近的电场强度和提高对特定波长光的吸收能力,所得蓝光光电开关具有光吸收能力强、响应速度快等特点。
附图说明
图1为本发明铟纳米颗粒阵列修饰的石墨烯/硒化锌纳米带肖特基结蓝光光电开关的结构示意图;
图2为本发明表面修饰有呈六角点阵排布的铟纳米颗粒阵列的石墨烯薄膜的结构示意图;
图3分别为本发明铟纳米颗粒阵列的SEM图(图3(a))和铟纳米颗粒阵列修饰石墨烯/硒化锌纳米带的SEM图(图3(b));
图4为本发明实施例中样品InNPs@Graphene/ZnSeNRs(图4(a))、样品Graphene/ZnSeNRs(图4(b))分别在黑暗和蓝光照射下的电流与电压关系特性曲线;
图5为本发明实施例中样品InNPs@Graphene/ZnSeNRs分别在黑暗和蓝光照射下的时间响应曲线,其中图5(a)为时间响应曲线,图5(b)表示上升时间(τr)与下降时间(τf);
图6为本发明实施例中样品Graphene/ZnSeNRs分别在黑暗和蓝光照射下的时间响应曲线,其中图6(a)为时间响应曲线,图6(b)表示上升时间(τr)与下降时间(τf);
图中标号:1为绝缘衬底;2为硒化锌纳米带;3为金电极;4为石墨烯薄膜;5为铟纳米颗粒阵列;6为引出电极。
具体实施方式:
实施例1
参见图1和图2,本实施例铟纳米颗粒阵列修饰的石墨烯/硒化锌纳米带肖特基结蓝光光电开关具有如下结构:在绝缘衬底1上表面分布有硒化锌纳米带2,硒化锌纳米带2的一端设置有与硒化锌纳米带2呈欧姆接触的金电极3,硒化锌纳米带2的另一端设置有与硒化锌纳米带2呈肖特基接触的石墨烯薄膜4,在石墨烯薄膜4的上表面修饰有呈六角点阵排布的铟纳米颗粒阵列5,在石墨烯薄膜4的一侧引出有与石墨烯薄膜呈欧姆接触的引出电极6。
本实施例中铟纳米颗粒阵列修饰的石墨烯/硒化锌纳米带肖特基结蓝光光电开关的制备方法是按如下步骤进行:
(1)将二氧化硅片依次用丙酮、酒精超声10分钟,再用去离子水超声5分钟,然后用氮气枪吹干,获得绝缘衬底;
(2)通过刮蹭的方式将硒化锌纳米带转移到绝缘衬底上,来回刮蹭使纳米带均匀分布;
(3)通过紫外光刻与电子束镀膜在硒化锌纳米带的一侧蒸镀金电极:利用掩膜板光刻工艺在绝缘层上刻出所需的电极图案,所用掩膜板为单电极掩膜板,以方便后续的二次光刻;采用电子束镀膜工艺在绝缘层上镀20nm金薄膜,并将镀有金薄膜的二氧化硅片置于丙酮中,以去除有光刻胶部分及其上附着的金薄膜,获得所需的金电极;
(4)通过气-液界面自组装法,在表面生长有石墨烯的铜箔上铺设具有六角密堆积结构的聚苯乙烯微球薄膜,作为生长六角铟纳米颗粒阵列的模板;具体步骤为:
a、实验准备:
a1、玻璃片表面清洗:为了改善玻璃片表面亲水性,需要对玻璃片进行表面处理,用氨水、双氧水及去离子水按体积比1:1:5构成的混合溶液对玻璃片进行浸泡1~2h,然后取出并用去离子水清洗、吹干备用;
a2、配制聚苯乙烯微球溶液:滴取浓度为5%的聚苯乙烯微球原溶液,加入两倍体积的铺展剂乙醇,再进行超声分散处理,使聚苯乙烯微球充分融入乙醇,获得聚苯乙烯微球溶液;
b、实验操作:
b1、在玻璃片上滴两滴聚苯乙烯微球溶液,使溶液均匀铺展在玻璃片上;
b2、将玻璃片慢慢倾斜地放入水中,使小球在水面上自组装形成单层有序排列;
b3、再在水中添加表面活性剂十二烷基硫酸钠,使聚苯乙烯微球更加紧密排列;
b4、将长有石墨烯的铜箔慢慢放入水中,用提拉法把聚苯乙烯微球排列转移到石墨烯的上表面,然后让铜箔上水自然蒸发,聚苯乙烯微球就在石墨烯上表面形成一层聚苯乙烯微球薄膜。
(5)利用热蒸发工艺在铺设有聚苯乙烯微球薄膜的铜箔上表面蒸镀厚度为50nm的铟膜,将表面镀有铟膜的铜箔置于温度为70℃的酒精中浸泡10分钟,再将其置于甲苯溶液中均匀搅拌,使得石墨烯的上表面修饰呈六角点阵排布的铟纳米颗粒阵列,其SEM图如图3(a)所示。
用刻蚀液将铜箔刻蚀掉,获得上表面修饰有呈六角点阵排布的铟纳米颗粒阵列的石墨烯薄膜;
(6)利用湿法转移将石墨烯薄膜转移到绝缘衬底上,使其位于硒化锌纳米带的另一侧;
(7)在石墨烯薄膜上表面点上银浆作为引出电极,即得铟纳米颗粒阵列修饰的石墨烯/硒化锌纳米带异质结蓝光光电开关,其SEM图如图3(b)所示,所得样品表示为InNPs@Graphene/ZnSeNRs。
为对比不同肖特基结蓝光光电开关的性能,做如下对比例:
按实施例1相同的方式制备石墨烯/硒化锌纳米带肖特基结蓝光光电开关,区别在于没有修饰铟纳米颗粒阵列,所得样品表示为Graphene/ZnSeNRs。
各样品在黑暗下(dark)和蓝光照射下(light)的电流与电压关系特性曲线如图4所示,各样品的时间响应图谱如图5和图6所示;
从图4中可以看出与Graphene/ZnSeNRs样品相比,InNPs@Graphene/ZnSeNRs样品在光照下电流有很大的提升。从图5和图6中可以看出InNPs@Graphene/ZnSeNRs样品具有较快的响应速度,有光照下,电流会迅速上升,关闭入射光,光电流迅速消失。通过截取上升和下降沿的10%到90%,计算可知修饰前后上升时间和下降时间分别0.92s/1.13s和0.07s/0.08s,可以看出修饰铟纳米颗粒阵列后,上升时间和下降时间都缩短了很多,这种通过修饰铟纳米颗粒阵列提高光电流强度及响应速度的制备方法为光电开关的发展开辟了新的途径。
铟纳米颗粒阵列修饰石墨烯使得器件的光电流有明显的提高,这是因为铟纳米颗粒在蓝光的照射下会发生表面等离子体共振的现象,并将光耦合进入纳米带当中,从而加强了对蓝光的吸收,提高了光电流的强度。

Claims (7)

1.一种铟纳米颗粒阵列修饰的石墨烯/硒化锌纳米带肖特基结蓝光光电开关,其特征在于:在绝缘衬底(1)上表面分布有硒化锌纳米带(2),所述硒化锌纳米带(2)的一端设置有与所述硒化锌纳米带(2)呈欧姆接触的金电极(3),所述硒化锌纳米带(2)的另一端设置有与所述硒化锌纳米带(2)呈肖特基接触的石墨烯薄膜(4),在所述石墨烯薄膜(4)的上表面修饰有呈六角点阵排布的铟纳米颗粒阵列(5),在所述石墨烯薄膜(3)的一侧引出有与石墨烯薄膜呈欧姆接触的引出电极(6)。
2.根据权利要求1所述的铟纳米颗粒阵列修饰的石墨烯/硒化锌纳米带肖特基结蓝光光电开关,其特征在于:所述硒化锌纳米带为本征硒化锌纳米带;所述石墨烯薄膜为本征石墨烯薄膜。
3.根据权利要求1所述的铟纳米颗粒阵列修饰的石墨烯/硒化锌纳米带肖特基结蓝光光电开关,其特征在于:所述绝缘衬底是以单晶硅为基底、且二氧化硅层厚度不小于300nm的二氧化硅片。
4.根据权利要求1所述的铟纳米颗粒阵列修饰的石墨烯/硒化锌纳米带肖特基结蓝光光电开关,其特征在于:所述金电极厚度为15-30nm。
5.根据权利要求1所述的铟纳米颗粒阵列修饰的石墨烯/硒化锌纳米带肖特基结蓝光光电开关,其特征在于:所述铟纳米颗粒阵列采用聚苯乙烯微球模板法制作而成,所用聚苯乙烯微球的直径为300-900nm。
6.根据权利要求1所述的铟纳米颗粒阵列修饰的石墨烯/硒化锌纳米带肖特基结蓝光光电开关,其特征在于:构成所述铟纳米颗粒阵列的各铟纳米颗粒直径为50-90nm。
7.一种权利要求1-6中任意一项所述的铟纳米颗粒阵列修饰的石墨烯/硒化锌纳米带肖特基结蓝光光电开关的制备方法,其特征是按如下步骤进行:
(1)将二氧化硅片依次用丙酮、酒精超声10分钟,再用去离子水超声5分钟,然后用氮气枪吹干,获得绝缘衬底;
(2)通过刮蹭方式将硒化锌纳米带转移到绝缘衬底上;
(3)通过紫外光刻与电子束镀膜在硒化锌纳米带的一侧蒸镀金电极;
(4)通过气-液界面自组装法,在表面生长有石墨烯的铜箔上铺设具有六角密堆积结构的聚苯乙烯微球薄膜,作为生长铟纳米颗粒阵列的模板;
(5)利用热蒸发工艺在铺设有聚苯乙烯微球薄膜的铜箔上表面蒸镀厚度为50nm的铟膜,然后置于温度为70℃的酒精中浸泡10分钟,再置于甲苯溶液中均匀搅拌,使得石墨烯的上表面修饰呈六角点阵排布的铟纳米颗粒阵列;
通过刻蚀液将铜箔刻蚀掉,获得上表面修饰有呈六角点阵排布的铟纳米颗粒阵列的石墨烯薄膜;
(6)利用湿法转移将所述石墨烯薄膜转移到绝缘衬底上,使其位于硒化锌纳米带的另一侧;
(7)在石墨烯薄膜上表面点上银浆作为引出电极,即得铟纳米颗粒阵列修饰的石墨烯/硒化锌纳米带异质结蓝光光电开关。
CN201510418427.8A 2015-07-14 2015-07-14 一种铟纳米颗粒阵列修饰的石墨烯/硒化锌纳米带肖特基结蓝光光电开关及其制备方法 Expired - Fee Related CN105118887B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510418427.8A CN105118887B (zh) 2015-07-14 2015-07-14 一种铟纳米颗粒阵列修饰的石墨烯/硒化锌纳米带肖特基结蓝光光电开关及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510418427.8A CN105118887B (zh) 2015-07-14 2015-07-14 一种铟纳米颗粒阵列修饰的石墨烯/硒化锌纳米带肖特基结蓝光光电开关及其制备方法

Publications (2)

Publication Number Publication Date
CN105118887A CN105118887A (zh) 2015-12-02
CN105118887B true CN105118887B (zh) 2016-11-30

Family

ID=54666832

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510418427.8A Expired - Fee Related CN105118887B (zh) 2015-07-14 2015-07-14 一种铟纳米颗粒阵列修饰的石墨烯/硒化锌纳米带肖特基结蓝光光电开关及其制备方法

Country Status (1)

Country Link
CN (1) CN105118887B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106910786B (zh) * 2017-03-16 2019-05-31 中国科学院半导体研究所 一种量子点增强的纳米线以及紫外光电探测器
CN107221577A (zh) * 2017-05-27 2017-09-29 合肥工业大学 一种基于ZnSe薄膜/石墨烯异质结的大面积柔性图像传感器的制备方法
CN109540327A (zh) * 2018-11-22 2019-03-29 北京石油化工学院 一种可精确控制和直接测温的制热装置
CN110137301A (zh) * 2019-04-25 2019-08-16 淮阴工学院 基于金属阵列结构的石墨烯光电探测器及其制备方法
CN111682089B (zh) * 2020-04-01 2022-07-05 湘潭大学 一种热辐射自控温复合材料薄膜及其制备方法及光探测器
CN115000212B (zh) * 2022-06-13 2023-05-23 河南大学 一种二维直接带隙半导体探测器及其制备方法
CN115172511A (zh) * 2022-07-18 2022-10-11 西安电子科技大学 一种具有石墨烯和极性j-tmd插入层的氧化镓日盲紫外探测器及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103824937A (zh) * 2014-02-26 2014-05-28 合肥工业大学 一种高速纳米两端非易失性存储器及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120121113A (ko) * 2011-04-26 2012-11-05 주식회사 줌톤 태양전지 셀의 제조방법
FR2981790A1 (fr) * 2011-10-19 2013-04-26 Solarwell Procede de croissance en epaisseur de feuillets colloidaux et materiaux composes de feuillets
CN103021574B (zh) * 2012-12-27 2016-01-13 上海交通大学 一种石墨烯/无机半导体复合薄膜及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103824937A (zh) * 2014-02-26 2014-05-28 合肥工业大学 一种高速纳米两端非易失性存储器及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
氧化石墨烯-硒化锌纳米光电材料的制备及其蓝光发射特性;董浩等;《发光学报》;20140731;第35卷(第7期);全文 *

Also Published As

Publication number Publication date
CN105118887A (zh) 2015-12-02

Similar Documents

Publication Publication Date Title
CN105118887B (zh) 一种铟纳米颗粒阵列修饰的石墨烯/硒化锌纳米带肖特基结蓝光光电开关及其制备方法
Wang et al. Broadband photodetectors based on 2D group IVA metal chalcogenides semiconductors
Yang et al. Three-dimensional topological insulator Bi2Te3/organic thin film heterojunction photodetector with fast and wideband response from 450 to 3500 nanometers
Li et al. Photodetectors based on inorganic halide perovskites: Materials and devices
Wu et al. Photovoltaic high-performance broadband photodetector based on MoS2/Si nanowire array heterojunction
Li et al. High performance photodetector based on 2D CH3NH3PbI3 perovskite nanosheets
Liu et al. Non-planar vertical photodetectors based on free standing two-dimensional SnS 2 nanosheets
Lin et al. Graphene/semiconductor heterojunction solar cells with modulated antireflection and graphene work function
Pudasaini et al. High efficiency hybrid silicon nanopillar–polymer solar cells
Mulazimoglu et al. Silicon nanowire network metal-semiconductor-metal photodetectors
Han et al. High-performance GaAs nanowire solar cells for flexible and transparent photovoltaics
CN111554757A (zh) 一种基于等离激元增强的石墨烯中红外光探测器及制备方法
Akgul et al. Fabrication and characterization of copper oxide-silicon nanowire heterojunction photodiodes
CN106129135A (zh) 基于石墨烯场效应晶体管的太赫兹探测器及其制备方法
CN105957955B (zh) 一种基于石墨烯平面结的光电探测器
CN104300027B (zh) 基于石墨烯/二氧化硅/硅的雪崩光电探测器及制备方法
CN109273543B (zh) 硫族化合物膜上涂覆纳米颗粒的晶体管及制备方法与应用
CN108630782B (zh) 一种宽探测波段双重等离子工作光电探测器的制备方法
CN106024968A (zh) 石墨烯/碳纳米管薄膜肖特基结光电探测器及其制备方法
Hu et al. Recent progress in piezo-phototronics with extended materials, application areas and understanding
Yang et al. Topological insulators photodetectors: Preparation, advances and application challenges
CN105702774B (zh) 一种基于硅纳米线阵列的自驱动肖特基结近红外光电探测器及其制备方法
Chen et al. Three-dimensional radial junction solar cell based on ordered silicon nanowires
CN108231945A (zh) 石墨烯/六方氮化硼/石墨烯紫外光探测器及制备方法
CN109449243A (zh) 基于二维二硫化钼纳米薄膜与碲化镉晶体的ii型异质结近红外光电探测器及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20161130

Termination date: 20190714

CF01 Termination of patent right due to non-payment of annual fee