CN106910786B - 一种量子点增强的纳米线以及紫外光电探测器 - Google Patents

一种量子点增强的纳米线以及紫外光电探测器 Download PDF

Info

Publication number
CN106910786B
CN106910786B CN201710158556.7A CN201710158556A CN106910786B CN 106910786 B CN106910786 B CN 106910786B CN 201710158556 A CN201710158556 A CN 201710158556A CN 106910786 B CN106910786 B CN 106910786B
Authority
CN
China
Prior art keywords
nanowire
quantum dot
quantum dots
nano wire
sno
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710158556.7A
Other languages
English (en)
Other versions
CN106910786A (zh
Inventor
沈国震
娄正
李禄东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Semiconductors of CAS
Original Assignee
Institute of Semiconductors of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Semiconductors of CAS filed Critical Institute of Semiconductors of CAS
Priority to CN201710158556.7A priority Critical patent/CN106910786B/zh
Publication of CN106910786A publication Critical patent/CN106910786A/zh
Application granted granted Critical
Publication of CN106910786B publication Critical patent/CN106910786B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035218Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum dots
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种针对紫外光探测的量子点增强的纳米线以及紫外光电探测器,以具有低暗电流和快响应速度的宽禁带半导体纳米线作为主体,然后在其表面生长具有高光电导增益的宽禁带半导体材料的量子点,量子点在整个纳米线的表面均匀分布而且彼此分散,从而得到量子点修饰的纳米线一维异质结构,同时量子点与纳米线之间需要满足II型异质结构。紫外线光电探测器包括:量子点修饰的纳米线、衬底和源漏电极,量子点修饰的纳米线的两端连接源漏电极,量子点修饰的纳米线和源漏电极均位于衬底上,形成紫外线光电探测器,本发明可通过量子点修饰纳米线来增大光电探测器对紫外光的光电导增益而同时又避免器件暗电流和响应时间增大。

Description

一种量子点增强的纳米线以及紫外光电探测器
技术领域
本发明属于功能材料领域,尤其涉及一种针对紫外光探测的量子点增强的纳米线以及紫外光电探测器,其主要通过宽禁带量子点修饰宽禁带纳米线的方式来增大光电探测器的光电导增益而同时又避免器件暗电流和响应时间的增大。
背景技术
作为一种重要的光电子器件,紫外光电探测器在火警探测、生物分析、环境监测、空间探测、光通讯和紫外辐射监测等方面有着重要的应用。由于一维金属氧化物纳米结构具有大的比表面积、好的结晶度以及与德拜长度可比拟的小尺寸,因此被广泛用于研制紫外光电探测器。到目前为止,大多数研究者的工作主要集中于一维二元金属氧化物纳米结构,基于一维二元金属氧化物纳米结构的紫外光电探测器通常具有较高的光电导增益。然而,大多数基于纯的一维二元金属氧化物纳米结构的光电探测器都具有暗电流大、响应速度慢(一般大于1s)等缺点,很难满足实际应用的需求。还有一些宽禁带半导体材料,它们的一维纳米结构光电探测器具有低的暗电流和快的响应速度,但它们的光电导增益相对较低,这阻碍了它们的实际应用。由于大部分单一组分的宽禁带半导体材料不能同时具备高光电导增益、低暗电流和快响应速度等优点,因此使得获得同时具备这些优点的紫外光电探测器成为了一个难题。
发明内容
(一)要解决的技术问题
本发明的目的在于克服大部分单一组分的宽禁带半导体材料本身作为紫外光电探测器的固有缺点,提出一种针对紫外光探测的量子点增强的纳米线及其制备方法,使其既能具备高的光电导增益,又能同时具备快的响应速度以及低的暗电流;本发明还提供一种量子点增强的纳米线型高性能的紫外光电探测器及其制备方法,由量子点增强的纳米线制备而成。
(二)技术方案
本发明提供一种针对紫外光探测的量子点修饰的纳米线,包括纳米线和在其表面分布的量子点,所述量子点之间相互分离,所述量子点与所述纳米线之间形成II型异质结。
优选地,所述纳米线为具有低的暗电流和快的响应速度的宽禁带半导体材料,所述量子点为具有较高的光电导增益的宽禁带半导体材料。
优选地,
所述具有低的暗电流和快的响应速度的宽禁带半导体材料包括:Zn2SnO4、In2Ge2O7或ZnS;
所述具有较高的光电导增益的宽禁带半导体材料包括:ZnO、SnO2、Ga2O3、In2O3或CeO2
优选地,所述纳米线的直径小于500nm,所述量子点的直径小于或等于10nm。
本发明还提供一种量子点增强的纳米线型紫外光电探测器,包括衬底、源电极、漏电极和上述的纳米线,所述纳米线和源电极、漏电极均形成于衬底上,所述纳米线的两端分别连接源电极和漏电极。
优选地,在有紫外光照射时,所述量子点和纳米线均吸收紫外光并产生光生电子空穴对,量子点和纳米线之间形成的II型异质结分离所述光生电子空穴对,电子注入到纳米线中,空穴被量子点捕获,或者空穴注入到纳米线中,电子被量子点捕获,从而增大光电导增益。
优选地,
捕获了空穴的量子点起到栅极的作用,吸引电子靠近纳米线表面,排斥空穴留在纳米线中间,从而在纳米线中产生电子富集区和空穴富集区;
或者,
捕获了电子的量子点起到栅极的作用,吸引空穴靠近纳米线表面,排斥电子留在纳米线中间,从而在纳米线中产生电子富集区和空穴富集区,从而进一步减少载流子的复合,延长载流子的寿命,增大器件的光电导增益。
本发明提供一种量子点修饰的纳米线的制备方法,用于制备上述的纳米线,包括以下步骤:
制备纳米线;
在纳米线表面直接生长量子点,或者,
制备量子点,然后再将量子点分散到纳米线的表面。
优选地,
纳米线的制备方法包括:化学气相沉积法(CVD)、金属有机化合物化学气相沉积法(MOCVD)、分子束外延法(MBE)、水热法、溶剂热法或静电纺丝法;
量子点的制备方法包括:金属有机合成法、水相直接合成法、水热法、脉冲激光沉积法或化学气相沉积法。
本发明还提供一种量子点增强的纳米线型紫外光电探测器的制备方法,用于制备上述的纳米线型紫外光电探测器,包括以下步骤:
采用上述的制备方法制备量子点修饰的纳米线;
将制备好的纳米线分散在溶液中;
将溶液滴在衬底上,自然风干后,纳米线被转移到衬底上;
在纳米线两端图形化出源电极和漏电极,形成所述紫外光电探测器。
(三)有益效果
本发明与现有技术相比具有以下特点和优点:
(1)本发明通过简单的两步法得到量子点修饰的纳米线制备流程简单,制备周期短,多涉及金属氧化物,安全环保,成本低廉,有利于工业化生产;
(2)本发明采用分立的量子点修饰纳米线的异质方式,而非包裹纳米线,从而尽量避免了高光电导增益的半导体材料的引入对纳米线本身的暗电流和响应时间的增大;
(3)在本发明中,量子点和纳米线之间形成了II型异质结,可以有效地分离两者产生的光生电子空穴对,减少载流子的复合,增大器件的光电导增益;
(4)在光照条件下,捕获了空穴(或电子)的量子点起到了栅极的作用,吸引电子(或空穴)靠近纳米线表面,排斥空穴(或电子)留在纳米线中间,从而在纳米线中产生了电子富集区和空穴富集区,从而进一步减少了载流子的复合,延长了载流子的寿命,增大了器件的光电导增益。
附图说明
图1是本发明实施例的紫外光电探测器的结构示意图;
图2(a)是本发明实施例的Zn2SnO4纳米线的低倍SEM照片;
图2(b)是本发明实施例的Zn2SnO4纳米线的高倍SEM照片;
图2(c)是本发明实施例的Zn2SnO4纳米线的EDX能谱图;
图2(d)是本发明实施例的Zn2SnO4纳米线的XRD能谱图;
图3(a)是本发明实施例的ZnO量子点修饰的Zn2SnO4纳米线的TEM照片;
图3(b)是本发明实施例的ZnO量子点修饰的Zn2SnO4纳米线的高分辨TEM照片;
图4(a)是本发明实施例的纯Zn2SnO4纳米线和ZnO量子点修饰的Zn2SnO4纳米线器件在无光照和300nm(0.67μW/cm2)单色光照射下的I-V曲线;
图4(b)是本发明实施例的纯Zn2SnO4纳米线和ZnO量子点修饰的Zn2SnO4纳米线器件在300nm(0.67μW/cm2)单色光周期性照射下的I-T曲线;
图4(c)是本发明实施例的ZnO量子点修饰的Zn2SnO4纳米线器件在5Hz周期性光照信号下的时间响应曲线;
图4(d)是本发明实施例的周期性光照信号下时间响应曲线一个周期的放大图;
图5是本发明实施例的ZnO量子点修饰的Zn2SnO4纳米线性能增强机制的示意图,其中,(a)和(c)分别为光照后载流子分离前后的能带示意图,(b)和(d)分别为光照后载流子分离前后的分布示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明作进一步的详细说明。
与单一组分相比,一维异质结构通常可以同时具有各个单一组分的一些特性,而且界面处的反应还可能展现出一些独特的性能。因此,要获得同时具备高光电导增益、低暗电流和快响应速度等优点的紫外光电探测器,可以把具有高光电导增益的材料和具有低暗电流和快响应速度的材料构建成一维异质结构,以期望将这些优点集于一身。
图1为本发明实施例的紫外光电探测器的结构示意图,如图1所示,本发明实施例以具有低暗电流和快响应速度的纳米线11作为主体,然后在其表面生长具有高光电导增益的半导体材料的量子点12,量子点12在整个纳米线11的表面均匀分布而且彼此分散,从而得到量子点修饰的纳米线1,量子点修饰的纳米线1为一种一维异质结构,同时量子点12与纳米线11之间形成II型异质结构。
紫外光电探测器包括:量子点修饰的纳米线1、衬底2、源电极3、漏电极4,量子点修饰的纳米线1的两端分别连接源电极3和漏电极4,量子点修饰的纳米线1和源、漏电极3、4均形成于衬底上,形成紫外光电探测器。
由于量子点之间是相互分立的,因此载流子的传输主要通过纳米线,所以在无光照时,纳米线光电探测器的暗电流仍与纳米线本身的暗电流相似。而当有紫外光照射时,量子点和纳米线均能吸收紫外光并产生光生电子空穴对,由于量子点和纳米线之间形成了II型异质结,因此界面处的光生电子空穴对会发生分离,电子(或空穴)注入到纳米线中,而空穴(或电子)被量子点捕获,这提升了纳米线中电子(或空穴)浓度并减少了载流子的复合。与此同时,捕获了空穴(或电子)的量子点起到了栅极的作用,吸引电子(或空穴)靠近纳米线表面,排斥空穴(或电子)留在纳米线中间,从而在纳米线中产生了电子富集区和空穴富集区,进一步减少了载流子的复合,延长了载流子的寿命。这些作用使得纳米线的光电导增益得到了巨大的提升。而同时,由于载流子的传输主要通过纳米线,因此器件的响应速度仍然会与纯纳米线光电探测器相近。
纳米线为具有低的暗电流和快的响应速度的宽禁带半导体材料,如Zn2SnO4(简称ZTO)、In2Ge2O7和ZnS等。纳米线的直径一般小于500nm,纳米线的长度大于源、漏电极的间距即可。纳米线的制备方法有很多,如化学气相沉积法(CVD)、金属有机化合物化学气相沉积法(MOCVD)、分子束外延法(MBE)、水热法、溶剂热法以及静电纺丝法等。
量子点分布在纳米线表面,并与纳米线之间形成II型异质结,量子点为具有较高的光电导增益的宽禁带半导体材料,如ZnO、SnO2、Ga2O3、In2O3和CeO2等。量子点的直径一般小于或等于10nm,在保证量子点之间相互分离的前提下,量子点在纳米线表面的密度越大越好,这样有利于在不增加光电探测器暗电流和响应时间的情况下充分提高器件的光电导增益。将量子点分布在纳米线表面的方式主要有两种,一种是在合成量子点的过程中直接将量子点生长在纳米线表面;另一种是先将量子点制备出来,然后再用旋涂或浸泡等方式将量子点分散到纳米线的表面。而制备量子点的方法也有很多,比如金属有机合成法、水相直接合成法、水热法、脉冲激光沉积法以及化学气相沉积法等。
满足以上条件的纳米线和量子点,均可用于构造量子点增强的纳米线型紫外光电探测器,使其既能具备高的光电导增益,又能同时具备快的响应速度以及低的暗电流。以ZnO量子点修饰的Zn2SnO4纳米线为例,具体的制备过程如下:
(1)Zn2SnO4纳米线的制备:Zn2SnO4纳米线的制备是通过化学气相沉积法,纳米线的生长机制为气-液-固(VLS)生长机制。
首先将0.02g Zn和0.009g Sn的混合粉末放在氧化铝陶瓷舟中;
再将陶瓷舟置于管式炉中心;
然后将覆盖有10nm金层的硅片置于靠近陶瓷舟的下风口处用于收集样品,使硅片上生成出Zn2SnO4纳米线。
管式炉的温度在30分钟内迅速升到1000℃,并保温30分钟,然后自然冷却。在升温时就通入氮气作为载流气体,气流量为80sccm。
图2(a)和(b)分别为所生长纳米线的低倍SEM照片和高倍SEM照片,所生长的纳米线长度可达几十微米,直径大致分布在100-300nm之间,其中图2(b)可以看出纳米线表面并不光滑,而是有一定台阶结构,这与文献中报道的Zn2SnO4纳米线表面形貌相符。图2(c)为所生长纳米线的EDX能谱,考虑到Cu和C元素来自铜网,所生长的纳米线主要包含Zn、Sn、O三种元素。图2(d)的XRD能谱进一步说明所生长的纳米线主要为ZTO纳米线,其中还存在极少量SnO2纳米线。
(2)在Zn2SnO4纳米线上修饰ZnO量子点:
在50mL容量的水热反应釜中加入25mL浓度为0.02mol/mL的乙酸锌乙醇溶液。
然后将长有Zn2SnO4纳米线的硅片浸没在溶液中。
接着,将密封后的反应釜在95℃下反应2h,就可以在纳米线表面生长出ZnO量子点。
反应完后,将硅片取出,用无水乙醇进行轻微的冲洗,然后自然晾干备用。
图3(a)和(b)分别给出了ZnO量子点修饰的Zn2SnO4纳米线的TEM照片和高分辨TEM照片,从图中我们可以看到纳米线表面长有许多半球状的量子点,量子点的直径主要分布在10nm以内。图3(b)中,在Zn2SnO4纳米线上我们可以观察到两组晶格间距,分别为0.50nm和0.43nm,它们分别与面心尖晶石结构的Zn2SnO4(JCPDS:24-1470)的和(200)晶面相对应。在图3(b)右上角量子点的放大图上我们也能看到两组晶面间距,分别为0.25nm和0.19nm,它们分别与六方纤锌矿的ZnO(JCPDS:36-1451)的(101)和(102)晶面形对应。
纳米线型紫外光电探测器的制备方法如下:
首先,配制纳米线溶液:先取一个空的小锥形管,称量其质量,接着用刀片将制备好的ZnO量子点修饰的Zn2SnO4纳米线,从生长衬底上刮进小锥形管中,再次称量其质量,从而得到纳米线的质量。然后,根据纳米线的质量,称取适量体积的异丙醇滴入小锥形管中,配成浓度约为0.5mg/ml纳米线溶液(浓度可以根据需要改变)。其中,异丙醇可以用乙醇等其他可以分散纳米线的溶液代替。将小锥形管放入超声机中超声10分钟,使纳米线在溶液中分散均匀。
接着,将所述纳米线转移到衬底上:将商用(100)晶面的SiO2/Si衬底切割成15×15mm2的方形小块(尺寸可以根据需要改变),在丙酮、乙醇和去离子水中分别超声清洗10分钟,然后吹干备用。取出清洗好的一片SiO2/Si衬底,用一次性滴管吸取少量混合均匀的纳米线溶液滴1滴在衬底上(滴数可以根据需要改变),自然风干,这样纳米线就被转移到衬底上了。其中,衬底可以用其他具有绝缘表面且表面较为平整的衬底,比如石英、玻璃、云母或塑料等。
之后在覆盖有所述纳米线的衬底上进一步加工,以形成所述的纳米线型紫外光电探测器:具体地,可以采用光刻、电子束曝光、打印电极或用镂空掩膜板遮挡衬底直接蒸镀电极等方式实现图形化源漏电极的制备,从而制备得到所述纳米线型紫外光电探测器。
以光刻工艺为例,所列出的实验参数为实验尝试中的优选参数。先将覆盖有所述纳米线的SiO2/Si衬底放到匀胶机中旋涂光刻胶,转速为2500转,时间为30s。再将其在100摄氏度下烘烤2分钟半。接着使用设计好的源漏电极掩膜版,使用紫外光刻机进行曝光,曝光时间为12s。曝光完后在对应的显影液中显影,显影时间约为15s。然后利用真空镀膜机在显影完的SiO2/Si衬底表面蒸镀金属电极,电极由10nm的Cr和50nm的Au组成(厚度和电极种类可以根据需要改变)。最后在丙酮溶液中进行电极剥离,得到连接纳米线两端的源电极和漏电极,源、漏电极间距约为10μm(间距可以根据需要改变)。所制备的ZnO量子点修饰的Zn2SnO4纳米线紫外光电探测器的器件示意图如图1所示。
光电探测器性能测试:将器件的源漏电极通过探针与测试仪器(吉时利4200-SCS)相连,在无光照和光照条件下给其施加连续变化的偏压,可以得到对应偏压的暗电流和光电流曲线(I-V曲线),或者在固定偏压下对器件进行周期性的光照,可以得到随时间变化的电流曲线(I-T曲线)。为了了解ZnO量子点修饰的Zn2SnO4纳米线器件的性能是否有提高,我们也制备了纯Zn2SnO4纳米线器件作为对比。图4(a)给出了ZnO量子点修饰的Zn2SnO4纳米线器件与纯Zn2SnO4纳米线器件在无光照和300nm(0.67μW/cm2)单色光照射下的I-V曲线,从图中我们可以看到,在误差允许的范围内,两种器件具有相似大小的暗电流,而在光照条件下,ZnO量子点修饰的Zn2SnO4纳米线器件的光电流比纯Zn2SnO4纳米线器件的光电流高的多,几乎提高了一个量级。这说明了分立的ZnO量子点并没有提高器件的暗电流,但在光照下可以明显提高器件的光电导增益,这将显著提高器件的开关比和比探测率。加了ZnO量子点之后,器件在1V偏压300nm(0.67μW/cm2)单色光照射下的光电导增益由1.3×106上升到1.1×107,开关比(Ilight/Idark)从7.9×103上升到6.8×104,比探测率(D*)由1.1×1017Jones上升到9.0×1017Jones。图4(b)为两种器件在1V偏压300nm(0.67μW/cm2)单色光周期性照射下的I-T曲线,当入射光开启后两器件的电流迅速增大并很快达到稳定状态,而当入射光停止后电流又会迅速减小到初始值,说明两器件都具有快速的响应速度和优异的周期稳定性,可以看到,加了ZnO量子点之后,器件的响应速度依然很快,并没有出现变慢的现象。由于吉时利4200半导体参数仪在测量时间响应时受到仪器本身的限制,无法给出器件精确的响应速度,所以我们利用示波器和前置放大器对ZnO量子点修饰的Zn2SnO4纳米线器件进行了进一步的测试。如图4(c)所示,通过斩波器给出一个频率为5Hz的光照信号(如图中上方的方波信号),器件的时间响应信号如图中下方所示,可以看出,器件在5Hz的周期光照下依然能够给出一个对应的接近矩形的时间响应信号。图4(d)为图4(c)中一个周期的放大图,从图中我们可以看出,器件的上升时间约为50ms,下降时间约为80ms,比之前文献报道的纯Zn2SnO4纳米线器件的响应速度还要快上许多(文献中上升时间和下降时间分别为0.46s和0.42s,J.Mater.Chem.,2010,20,9858-9860),说明所制备的器件具有非常快的响应速度。
量子点修饰纳米线性能增强机制解释:通过对实验数据的分析,下面对于这种通过量子点修饰纳米线提高器件性能的增强机制给出以下解释。以ZnO量子点修饰的Zn2SnO4纳米线为例,由于ZnO量子点之间是相互分立,因此载流子的传输主要通过Zn2SnO4纳米线,所以在无光照时,纳米线光电探测器的暗电流仍与Zn2SnO4纳米线本身的暗电流相似。而当有紫外光照射时,ZnO量子点修饰的Zn2SnO4纳米线器件性能增强机制如图5所示,其中,图5(a)和(c)分别为光照后载流子分离前后的能带示意图,图5(b)和(d)分别为光照后载流子分离前后的分布示意图。ZnO量子点和Zn2SnO4纳米线均能吸收紫外光并产生光生电子空穴对,由于ZnO量子点和Zn2SnO4纳米线之间形成了II型异质结,因此界面处的光生电子空穴对会发生分离,电子注入到Zn2SnO4纳米线中,而空穴被ZnO量子点捕获,这提升了Zn2SnO4纳米线中电子浓度并减少了载流子的复合。与此同时,捕获了空穴的ZnO量子点起到了栅极的作用,吸引电子靠近纳米线表面,排斥空穴留在纳米线中间,从而在Zn2SnO4纳米线中产生了电子富集区和空穴富集区,进一步延长了载流子的寿命。这些作用使得Zn2SnO4纳米线的光电导增益得到了巨大的提升。而同时,由于载流子的传输主要通过Zn2SnO4纳米线,因此器件的响应速度仍然与纯Zn2SnO4纳米线光电探测器相近。
以上所述为本发明的较佳实施例而已,但本发明不应该局限于该实施例所公开的内容。所以凡是不脱离本发明所公开的精神下完成的等效或修改,都落入本发明保护的范围。

Claims (9)

1.一种量子点修饰的纳米线,其特征在于,用于紫外光电探测器,包括纳米线和在其表面分布的量子点,所述量子点之间相互分离,所述量子点与所述纳米线之间形成II型异质结;其中,所述纳米线为具有低的暗电流和快的响应速度的宽禁带半导体材料,所述量子点为具有较高的光电导增益的宽禁带半导体材料,所述量子点修饰的纳米线为一维异质结构。
2.根据权利要求1所述的纳米线,其特征在于,
所述具有低的暗电流和快的响应速度的宽禁带半导体材料包括:Zn2SnO4、In2Ge2O7或ZnS;
所述具有较高的光电导增益的宽禁带半导体材料包括:ZnO、SnO2、Ga2O3、In2O3或CeO2
3.根据权利要求1所述的纳米线,其特征在于,所述纳米线的直径小于500nm,所述量子点的直径小于或等于10nm。
4.一种量子点增强的纳米线型紫外光电探测器,其特征在于,包括衬底、源电极、漏电极和如权利要求1所述的纳米线,所述纳米线和源电极、漏电极均形成于衬底上,所述纳米线的两端分别连接源电极和漏电极。
5.根据权利要求4所述的紫外光电探测器,其特征在于,在有紫外光照射时,所述量子点和纳米线均吸收紫外光并产生光生电子空穴对,量子点和纳米线之间形成的II型异质结分离所述光生电子空穴对,电子注入到纳米线中,空穴被量子点捕获,或者空穴注入到纳米线中,电子被量子点捕获,从而增大光电导增益。
6.根据权利要求5所述的紫外光电探测器,其特征在于,
捕获了空穴的量子点起到栅极的作用,吸引电子靠近纳米线表面,排斥空穴留在纳米线中间,从而在纳米线中产生电子富集区和空穴富集区;
或者,
捕获了电子的量子点起到栅极的作用,吸引空穴靠近纳米线表面,排斥电子留在纳米线中间,从而在纳米线中产生电子富集区和空穴富集区,从而进一步减少载流子的复合,延长载流子的寿命,增大器件的光电导增益。
7.一种量子点修饰的纳米线的制备方法,用于制备权利要求1-3任一项所述的纳米线,其特征在于,包括以下步骤:
制备纳米线;
在纳米线表面直接生长量子点,或者,
制备量子点,然后再将量子点分散到纳米线的表面。
8.根据权利要求7所述的纳米线的制备方法,其特征在于,
纳米线的制备方法包括:化学气相沉积法(CVD)、金属有机化合物化学气相沉积法(MOCVD)、分子束外延法(MBE)、水热法、溶剂热法或静电纺丝法;
量子点的制备方法包括:金属有机合成法、水相直接合成法、水热法、脉冲激光沉积法或化学气相沉积法。
9.一种量子点增强的纳米线型紫外光电探测器的制备方法,用于制备权利要求4-6任一项所述的纳米线型紫外光电探测器,其特征在于,包括以下步骤:
采用权利要求7或8所述的制备方法制备量子点修饰的纳米线;
将制备好的纳米线分散在溶液中;
将溶液滴在衬底上,自然风干后,纳米线被转移到衬底上;
在纳米线两端图形化出源电极和漏电极,形成所述紫外光电探测器。
CN201710158556.7A 2017-03-16 2017-03-16 一种量子点增强的纳米线以及紫外光电探测器 Active CN106910786B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710158556.7A CN106910786B (zh) 2017-03-16 2017-03-16 一种量子点增强的纳米线以及紫外光电探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710158556.7A CN106910786B (zh) 2017-03-16 2017-03-16 一种量子点增强的纳米线以及紫外光电探测器

Publications (2)

Publication Number Publication Date
CN106910786A CN106910786A (zh) 2017-06-30
CN106910786B true CN106910786B (zh) 2019-05-31

Family

ID=59187622

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710158556.7A Active CN106910786B (zh) 2017-03-16 2017-03-16 一种量子点增强的纳米线以及紫外光电探测器

Country Status (1)

Country Link
CN (1) CN106910786B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107564992B (zh) * 2017-08-18 2019-04-30 上海理工大学 一种快速响应的半导体异质结紫外光探测器及其制作方法
CN107579126B (zh) * 2017-09-01 2019-04-16 中国科学院长春光学精密机械与物理研究所 一种紫外探测器及其制作方法
CN108389947B (zh) * 2018-04-27 2024-03-26 芜湖德豪润达光电科技有限公司 发光二极管及其制备方法
CN108831969B (zh) * 2018-05-28 2020-02-11 北京大学 利用空气作为绝缘介质的半导体纳米线电注入发光器件
CN110628430A (zh) * 2018-06-22 2019-12-31 Tcl集团股份有限公司 一种量子点薄膜及量子点发光二极管
CN109298581B (zh) * 2018-11-09 2020-03-27 电子科技大学 一种半导体量子点-液晶复合结构器件的制备方法
CN109382087B (zh) * 2018-11-23 2021-06-25 西南交通大学 一种二氧化锡-锡酸锌核壳纳米线及制备方法
CN109560163B (zh) * 2018-11-26 2020-11-03 长春理工大学 一种基于量子点修饰的纳米线探测器
CN110729364B (zh) * 2019-10-12 2022-03-11 深圳第三代半导体研究院 一种提高GaN紫外探测器光开关频率的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103779499A (zh) * 2014-02-10 2014-05-07 苏州新锐博纳米科技有限公司 一种Ag纳米粒子点缀石墨烯复合薄膜材料及制备
CN105118887A (zh) * 2015-07-14 2015-12-02 合肥工业大学 一种铟纳米颗粒阵列修饰的石墨烯/硒化锌纳米带肖特基结蓝光光电开关及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103779499A (zh) * 2014-02-10 2014-05-07 苏州新锐博纳米科技有限公司 一种Ag纳米粒子点缀石墨烯复合薄膜材料及制备
CN105118887A (zh) * 2015-07-14 2015-12-02 合肥工业大学 一种铟纳米颗粒阵列修饰的石墨烯/硒化锌纳米带肖特基结蓝光光电开关及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
《Enhanced photocurrent gain by CdTe quantum dot modified ZnO》;Lei Li 等;《Sensors and Actuators A: Physical》;20150622;292页左栏第1段至294页左栏第1段、295页右栏第2段至296页右栏第1段,附图4、7 *
《Ultrahigh quantum efficiency of CuO nanoparticle decorated In2Ge2O7 nanobelt deep-ultraviolet photodetectors》;Wei Tian 等;《Nanoscale》;20120808;6319页左栏第2段至第4段,附图3 *
Lei Li 等.《Enhanced photocurrent gain by CdTe quantum dot modified ZnO》.《Sensors and Actuators A: Physical》.2015, *

Also Published As

Publication number Publication date
CN106910786A (zh) 2017-06-30

Similar Documents

Publication Publication Date Title
CN106910786B (zh) 一种量子点增强的纳米线以及紫外光电探测器
Lam et al. High-sensitive ultraviolet photodetectors based on ZnO nanorods/CdS heterostructures
Prabhu et al. Fabrication of p-CuO/n-ZnO heterojunction diode via sol-gel spin coating technique
Reddy et al. One-step fabrication of 1D p-NiO nanowire/n-Si heterojunction: Development of self-powered ultraviolet photodetector
Zhang et al. Photosensing performance of branched CdS/ZnO heterostructures as revealed by in situ TEM and photodetector tests
Lin et al. High-performance self-powered photodetectors based on ZnO/ZnS core-shell nanorod arrays
Pradel et al. Optoelectronic properties of solution grown ZnO np or pn core–shell nanowire arrays
Ko et al. Fabrication and optimization of vertically aligned ZnO nanorod array-based UV photodetectors via selective hydrothermal synthesis
Hsu et al. Ultraviolet/visible photodetectors based on p–n NiO/ZnO nanowires decorated with Pd nanoparticles
Kumar et al. Visible-blind Au/ZnO quantum dots-based highly sensitive and spectrum selective Schottky photodiode
Spies et al. Nanowire photodetectors based on wurtzite semiconductor heterostructures
Yang et al. Dielectrophoretic-assembled single and parallel-aligned Ag nanowire–ZnO-branched nanorod heteronanowire ultraviolet photodetectors
CN108122999B (zh) 基于Pt纳米颗粒修饰GaN纳米线的紫外光电探测器及其制造方法
US20110155236A1 (en) Nanowire Solar Cell and Manufacturing Method of the Same
Shen et al. One-dimensional nanostructures for photodetectors
Young et al. ZnO-based ultraviolet photodetectors with novel nanosheet structures
CN103579415A (zh) 一种氧化锌纳米线阵列紫外光电探测器的制备方法
Liu et al. High-detectivity and sensitive UVA photodetector of polycrystalline CH3NH3PbCl3 improved by α-Ga2O3 nanorod array
Rastialhosseini et al. Three-dimensional ZnO nanorods growth on ZnO nanorods seed layer for high responsivity UV photodetector
CN103227230A (zh) 一种侧向生长ZnMgO纳米线日盲区紫外探测器及其制备方法
Rajab et al. Laser induced hydrothermal growth of ZnO rods for UV detector application
Zhang et al. Single-crystal Sb2S3 tube prepared by chemical vapor deposition for a 1 cm photodetector application
Abed et al. Comparative study of UV-ZnO NRs photodetectors based on seeded porous silicon by RF-sputtering and drop-casting methods
Zhu et al. In-situ composition development of Zn/In-doped Ga2O3 nanowire with ultrahigh responsivity and long-term stability for deep-UV photodetector
Azam et al. Various applications of nanowires

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant