CN110729364B - 一种提高GaN紫外探测器光开关频率的方法 - Google Patents

一种提高GaN紫外探测器光开关频率的方法 Download PDF

Info

Publication number
CN110729364B
CN110729364B CN201910969076.8A CN201910969076A CN110729364B CN 110729364 B CN110729364 B CN 110729364B CN 201910969076 A CN201910969076 A CN 201910969076A CN 110729364 B CN110729364 B CN 110729364B
Authority
CN
China
Prior art keywords
gan
layer
detector
substrate
switching frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910969076.8A
Other languages
English (en)
Other versions
CN110729364A (zh
Inventor
仇志军
叶怀宇
张国旗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest University of Science and Technology
Original Assignee
Shenzhen Third Generation Semiconductor Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Third Generation Semiconductor Research Institute filed Critical Shenzhen Third Generation Semiconductor Research Institute
Priority to CN201910969076.8A priority Critical patent/CN110729364B/zh
Publication of CN110729364A publication Critical patent/CN110729364A/zh
Application granted granted Critical
Publication of CN110729364B publication Critical patent/CN110729364B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • H01L31/1848Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P comprising nitride compounds, e.g. InGaN, InGaAlN
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

本发明公开了一种提高GaN紫外探测器光开关频率的方法,包括:1)Si衬底上生长外延层;2)在探测器上淀积SiO2纳米颗粒;3)刻蚀Si衬底底部形成凹槽;4)红外线照射探测器。在探测紫外光的同时,采用红外照射的方法加热探测器以辅助光开关响应测试。首先,本发明利用载流子热激发和红外激发的作用,降低陷阱中心对光生载流子的俘获几率,加速光生载流子的直接跃迁复合,以此提高探测器的光响应速度;其次,本发明能够适用于多种结构光伏型GaN紫外探测器,有助于探测器能够实现快速、高灵敏度的紫外光探测。

Description

一种提高GaN紫外探测器光开关频率的方法
技术领域
本发明涉及紫外探测领域,具体为一种提高GaN紫外探测器光开关频率的方法。
背景技术
GaN是第三代宽禁带半导体材料之一,其禁带宽度高达3.4eV,是发展蓝光激光器和紫外探测器的核心材料,非常适用于高度集成的电子器件及光电子器件。然而,由于材料中缺陷能级的存在,如图1的b所示,在GaN紫外探测器中,紫外光激发形成的光生载流子会有一部分被陷阱中心俘获,导致紫外光关闭的时候,陷阱所俘获的载流子无法立即复合而快速恢复到光照之前的状态。显然,陷阱俘获中心的存在会导致探测器的响应时间变慢或者开关频率受到影响,尤其是响应时间的下降沿变长如图1的a所示,产生持续光响应现象,无法满足GaN紫外探测器的快速响应
发明内容
基于上述提到的GaN紫外探测器问题以及发展需求,本发明创新性的提出了一种提高GaN紫外探测器光开关频率的方法对陷阱俘获中心起到抑制作用,减少陷阱俘获中心对光生载流子的俘获。
方法包括:
1)衬底上生长包含高阻GaN缓冲层和本征参杂GaN层的外延层;
2)光刻形成图案化外延层;
3)在所述图案化外延层上沉积SiO2纳米颗粒;
4)刻蚀衬底底部形成凹槽;
5)红外线不间断照射所述外延层表面。
在探测紫外线的同时,采用红外辐射不间断的照射GaN探测器以测试光开关的响应。首先,利用SiO2纳米颗粒吸收红外光产生热量,并利用半绝缘GaN层和衬底凹槽来阻挡衬底导热,起到隔热效果,以使热量局限在外延层上,温度的提高会热激发陷阱中心里的载流子使其跃迁至导带,从而抑制陷阱中心的俘获并加速或者提高导带至价带的直接跃迁几率。
其次,在测试上利用红外光照射探测器,一部分红外光加热衬底,另一部分红外光穿过SiO2层,被GaN陷阱中心内的电子吸收,促使陷阱中心的电子跃迁至导带能级,抑制陷阱中心的俘获,来加速或者提高载流子从导带至价带的直接跃迁几率。因此,通过热激发和光激发的共同作用,可以将陷阱中心俘获载流子的几率大幅降低,其结果会导致GaN探测器的电流随紫外光的开和关而快速的上升和下降,极大地提高探测器的开关频率。此外,该方法可以作为一种近乎通用的方法应用到其他宽禁带紫外探测器上,以提高探测器的响应频率,实现快速、高灵敏的紫外光探测。
优选地,所述1)中生长外延层包括
1.1衬底上依次生长高阻GaN缓冲层和n型掺杂GaN层;
1.2所述n型掺杂GaN层上生长本征掺杂GaN层;
1.3所述本征掺杂GaN层上生长p型掺杂AlGaN层。
优选地,所述1.1中的高阻GaN缓冲层为半绝缘的GaN,其厚度为0.2μm~4μm;
优选地,其特征在于:所述2)中的SiO2纳米颗粒层厚度为20nm~200nm;
优选地,所述3)中的凹槽深度为50μm~250μm;
优选地,所述4)中的红外线波长为3~4μm。
本发明的优点在于:
A.本发明利用热激发和红外激发的作用,降低陷阱中心对载流子的俘获,加速陷阱中心内光生载流子的直接跃迁复合,提高探测器的光响应速度。
B.本发明不局限于传统的PIN结构,也可以适用于其他光伏型紫外探测器结构,有助于探测器能够实现快速、高灵敏度的紫外光探测。
附图说明
为了使本发明的目的、技术方案和有益效果更加清楚,本发明提供如下附图进行说明:
图1的b为本发明能带结构示意图。
图1的a为本发明探测器的光响应与时间关系曲线。
图2为本发明的结构与测试示意图。
图3为本发明实施例1的器件制备与测试流程图。
图4为本发明实施例2的器件制备与测试流程图。
图5为本发明实施例3的器件制备与测试流程图。
Si衬底1,高阻GaN缓冲层2,n型掺杂GaN层3,本征掺杂GaN层4,p型掺杂AlGaN层5,SiO2纳米颗粒6。
具体实施方式
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
本实施案例提供一种提高GaN紫外探测器光开关频率的方法,器件的剖面如图2所示,它由Si衬底1、GaN缓冲层2、n型掺杂GaN层3、本征掺杂GaN层4、p型掺杂AlGaN层5和SiO2纳米颗粒6组成。
如图3所示,方法包括:
1)取样衬底并对其表面进行预处理,在衬底之上外延生长1μm高阻GaN缓冲层2;
2)在高阻GaN缓冲层2上,依次外延生长n型掺杂GaN层、本征掺杂GaN层和p型掺杂AlGaN层形成外延层;
3)通过光刻、刻蚀等工艺,将外延层图案化;
4)在图案化的外延层上沉积20nm厚SiO2纳米颗粒层6;
5)在Si衬底1上,选择性刻蚀以制备隔热凹槽,凹槽深度50μm;
6)在紫外光探测或测试时,使用光波长为3μm的红外光照射GaN探测器光敏面以辅助光响应测试。
实施例2
本实施案例提供一种提高GaN紫外探测器光开关频率的方法,具体制备工艺流程如图4所示,包括:
1)取样衬底并对其表面进行预处理,在衬底之上外延生长2μm高阻GaN缓冲层2;
2)在高阻GaN缓冲层2上,依次外延生长n型掺杂GaN层、本征掺杂GaN层和p型掺杂AlGaN层形成外延层;
3)通过光刻、刻蚀等工艺,将外延层图案化;
4)在图案化的外延层上沉积80nm厚SiO2纳米颗粒层6;
5)在Si衬底1上,选择性刻蚀以制备隔热凹槽,凹槽深度150μm;
6)在紫外光探测或测试时,使用光波长为3.5μm的红外光照射GaN探测器光敏面以辅助光响应测试。
实施例3
具体制备工艺流程如图5所示,包括:
1)取样衬底并对其表面进行预处理,在衬底之上外延生长3μm高阻GaN缓冲层2。
2)在高阻GaN缓冲层2上,依次外延生长n型掺杂GaN层、本征掺杂GaN层和p型掺杂AlGaN层形成外延层;
3)通过光刻、刻蚀等工艺,将外延层图案化;
4)在图案化的外延层上沉积180nm厚SiO2纳米颗粒层6;
5)在Si衬底1上,选择性刻蚀以制备隔热凹槽,凹槽深度250μm;
6)在紫外光探测或测试时,使用光波长为4.0μm的红外光照射GaN探测器光敏面以辅助光响应测试。
最后说明的是,以上优选实施例仅用以说明本发明的技术方案而非限制,尽管通过上述优选实施例已经对本发明进行了详细的描述,但本领域技术人员应当理解,可以在形式上和细节上对其作出各种各样的改变,而不偏离本发明权利要求书所限定的范围。

Claims (5)

1.一种提高GaN紫外探测器光开关频率的方法,其特征在于:包括
1)衬底上生长包含高阻GaN缓冲层和本征掺杂GaN层的外延层;
2)光刻形成图案化外延层;
3)在所述图案化外延层上沉积SiO2纳米颗粒形成SiO2纳米颗粒层;所述SiO2纳米颗粒层厚度为20nm~200nm;
4)刻蚀衬底底部形成凹槽;
5)红外线不间断照射所述外延层表面;
一部分红外光加热所述衬底,另一部分红外光穿过所述SiO2纳米颗粒层,被GaN陷阱中心内的电子吸收,促使所述GaN陷阱中心的电子跃迁至导带能级,抑制所述GaN陷阱中心的俘获,来加速或者提高载流子从导带至价带的直接跃迁几率。
2.根据权利要求1所述的提高GaN紫外探测器光开关频率的方法,其特征在于:所述1)中生长外延层包括
1.1衬底上依次生长高阻GaN缓冲层和n型掺杂GaN层;
1.2所述n型掺杂GaN层上生长本征掺杂GaN层;
1.3所述本征掺杂GaN层上生长p型掺杂AlGaN层。
3.根据权利要求2所述的提高GaN紫外探测器光开关频率的方法,其特征在于:所述1.1中的高阻GaN缓冲层为半绝缘的GaN,其厚度为0.2μm~4μm。
4.根据权利要求1所述的提高GaN紫外探测器光开关频率的方法,其特征在于:所述3)中的凹槽深度为50μm~250μm。
5.根据权利要求1所述的提高GaN紫外探测器光开关频率的方法,其特征在于:所述4)中的红外线波长为3~4μm。
CN201910969076.8A 2019-10-12 2019-10-12 一种提高GaN紫外探测器光开关频率的方法 Active CN110729364B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910969076.8A CN110729364B (zh) 2019-10-12 2019-10-12 一种提高GaN紫外探测器光开关频率的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910969076.8A CN110729364B (zh) 2019-10-12 2019-10-12 一种提高GaN紫外探测器光开关频率的方法

Publications (2)

Publication Number Publication Date
CN110729364A CN110729364A (zh) 2020-01-24
CN110729364B true CN110729364B (zh) 2022-03-11

Family

ID=69219961

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910969076.8A Active CN110729364B (zh) 2019-10-12 2019-10-12 一种提高GaN紫外探测器光开关频率的方法

Country Status (1)

Country Link
CN (1) CN110729364B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111446329A (zh) * 2020-03-20 2020-07-24 苏州巧云信息科技有限公司 一种新型红外探测器及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102231403A (zh) * 2011-06-20 2011-11-02 中国石油大学(北京) 一种紫外光探测器
CN106910786A (zh) * 2017-03-16 2017-06-30 中国科学院半导体研究所 一种量子点增强的纳米线以及紫外光电探测器
US10128389B2 (en) * 2011-10-24 2018-11-13 Rosestreet Labs, Llc Nitride UV light sensors on silicon substrates
CN109216493A (zh) * 2018-08-09 2019-01-15 镇江镓芯光电科技有限公司 一种基于GaN材料的p-i-n结构紫外探测器及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102231403A (zh) * 2011-06-20 2011-11-02 中国石油大学(北京) 一种紫外光探测器
US10128389B2 (en) * 2011-10-24 2018-11-13 Rosestreet Labs, Llc Nitride UV light sensors on silicon substrates
CN106910786A (zh) * 2017-03-16 2017-06-30 中国科学院半导体研究所 一种量子点增强的纳米线以及紫外光电探测器
CN109216493A (zh) * 2018-08-09 2019-01-15 镇江镓芯光电科技有限公司 一种基于GaN材料的p-i-n结构紫外探测器及其制备方法

Also Published As

Publication number Publication date
CN110729364A (zh) 2020-01-24

Similar Documents

Publication Publication Date Title
Qiu et al. Trap assisted bulk silicon photodetector with high photoconductive gain, low noise, and fast response by Ag hyperdoping
Monroy et al. Analysis and modeling of Al x Ga 1− x N-based Schottky barrier photodiodes
Hu et al. Dependence of ion-implant-induced LBIC novel characteristic on excitation intensity for long-wavelength HgCdTe-based photovoltaic infrared detector pixel arrays
Tampo et al. Improvement of minority carrier lifetime and conversion efficiency by Na incorporation in Cu2ZnSnSe4 solar cells
CN109494275B (zh) 一种AlGaN基日盲紫外光电晶体管探测器及其制作方法
US7855098B2 (en) Method of forming, modifying, or repairing a semiconductor device using field-controlled diffusion
Stoll et al. Proton‐implanted optical waveguide detectors in GaAs
CN110729364B (zh) 一种提高GaN紫外探测器光开关频率的方法
Yao et al. GaN‐based p–i–n X‐ray detection
Carrano et al. Improved detection of the invisible
CN109873047A (zh) 一种新型异质结光子型红外探测器及制备方法及应用
CN111106204B (zh) 基于ⅲ-ⅴ族半导体高电子迁移率晶体管的日盲紫外探测器及制作方法
KR102279914B1 (ko) 매우 효율적인 광-전기 변환 디바이스들
Jose et al. A review on ZnO heterojunction photodetector for UV application
Ketlhwaafetse Comparative study of dilute nitride and bismide sub-junctions for tandem solar cells
Sun et al. Pulse laser sulfur-hyperdoping of germanium and high quantum efficiency photodiodes
Baumgartner et al. Fabrication of lateral npn‐phototransistors with high gain and sub‐μm spatial resolution
Kondratenko et al. Carrier dynamics and recombination in silicon doped InAs/GaAs quantum dot solar cells with AlAs cap layers
Ke et al. Interface state calculation of the wafer-bonded Ge/Si single-photon avalanche photodiode in Geiger mode
Rogalski et al. Theoretical modeling of long wavelength n+‐on‐p HgCdTe photodiodes
Mansouri Studies on Radiation-induced Defects in InP/InAsP Nanowire-based Quantum Disc-in wire Photodetectors
Nichetti Development of avalanche photodiodes with engineered band gap based upon III-V semiconductors
KR100798052B1 (ko) 자외선 수광소자의 제조방법
CN110797421B (zh) 一种日盲紫外单光子雪崩探测器
Yuang et al. High‐speed GaAs metal‐semiconductor‐metal photodetectors with recessed metal electrodes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20230419

Address after: No. 1088, Xueyuan Avenue, Taoyuan Street, Nanshan District, Shenzhen City, Guangdong Province

Patentee after: SOUTH University OF SCIENCE AND TECHNOLOGY OF CHINA

Address before: Taizhou building, No. 1088, Xueyuan Avenue, Xili University Town, Nanshan District, Shenzhen City, Guangdong Province

Patentee before: SHENZHEN THIRD GENERATION SEMICONDUCTOR Research Institute

TR01 Transfer of patent right