CN112002781B - 一种硅兼容双极性异质结紫外-近红外双波段光电探测器及其制备方法 - Google Patents

一种硅兼容双极性异质结紫外-近红外双波段光电探测器及其制备方法 Download PDF

Info

Publication number
CN112002781B
CN112002781B CN202010931651.8A CN202010931651A CN112002781B CN 112002781 B CN112002781 B CN 112002781B CN 202010931651 A CN202010931651 A CN 202010931651A CN 112002781 B CN112002781 B CN 112002781B
Authority
CN
China
Prior art keywords
dimensional
mose
silicon substrate
sio
monocrystalline silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010931651.8A
Other languages
English (en)
Other versions
CN112002781A (zh
Inventor
于永强
徐艳
宋龙梅
夏宇
许高斌
马渊明
陈兴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei Luyang Technology Innovation Group Co.,Ltd.
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN202010931651.8A priority Critical patent/CN112002781B/zh
Publication of CN112002781A publication Critical patent/CN112002781A/zh
Application granted granted Critical
Publication of CN112002781B publication Critical patent/CN112002781B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/1013Devices sensitive to infrared, visible or ultraviolet radiation devices sensitive to two or more wavelengths, e.g. multi-spectrum radiation detection devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种硅兼容双极性异质结紫外‑近红外双波段光电探测器及其制备方法,该探测器的结构为:在单晶硅衬底的上、下表面皆设置有SiO2绝缘层;在各层SiO2绝缘层的中心皆形成一盲孔;在上层盲孔内沉积有二维2H‑MoSe2材料,在下层盲孔内沉积有二维1T‑WS2材料,两种材料与单晶硅衬底形成2H‑MoSe2/Si/1T‑WS2双极性异质结;上层二维2H‑MoSe2材料和下层二维1T‑WS2材料外表面分别设置有顶电极和底电极。本发明所制备的探测器具有在紫外和近红外双波段的窄带响应,且响应速度快、易集成。

Description

一种硅兼容双极性异质结紫外-近红外双波段光电探测器及 其制备方法
技术领域
本发明涉及一种硅兼容双极性异质结紫外-近红外双波段光电探测器及其制备方法,属于半导体光电器件技术领域。
背景技术
光电探测器是将难以衡量和处理的光信号转换为易于量化和处理的电信号的仪器,是光电子器件的重要研究内容之一,在军事和国民生活中扮演着重要的角色。随着光电探测器的不断发展,各种不同类型的光电探测器被研制出来,譬如应用于军事上导弹制导的红外光电探测器、在食品医疗器械上有着广泛应用的紫外光电探测器。紫外-近红外双波段光电探测器在生物医学器械、成像系统等方面有着重要的作用,因而受到了广泛的研究。当前的双波段光电探测是在宽光谱光电探测器的基础上引入滤光片,将其它波段的光过滤从而实现紫外-近红外双波段探测器的功能。这种滤光片引入的方法不仅增加了研究的难度,还增加了器件的成本和体积,造成器件难以大规模的集成。随着研究的不断深入,近些年来关于无滤光片的双波段光电探测器有了相关的报道。例如利用InSe肖特基二极管和金等离子体纳米颗粒实现了紫外-可见光双波段探测[M.J.Dai;H.Y.Chen;F&R;et al.ACSNano.2018,12,8739],以及基于混合相MgZnO/i-MgO/p-Si双异质结的双色紫外光探测器[X.H.Xie;Z.Z.Zhang;C.X Shan;et al.Applied Physics Letters.2012,8,101],但是这些光电探测器存在着材料有毒、器件稳定性差、难以制备以及没有近红外探测等问题。因此,研制出一种无毒安全可靠、稳定性高、可控性好的高性能紫外-近红外窄带双波段光电探测器是非常有意义的。
近年来,新型二维过渡金属硫族化合物由于出色的电子学、光学以及物理学特性,在光电子器件领域上有着巨大的发展潜力,成为光电子器件研究的热点材料。2H-MoSe2由于其出色的半导体性质以及和紫外光相吻合的固有带隙,利用二维材料厚度光谱调控特性,可实现高性能的紫外探测。1T-WS2由于其金属性质,具有优异的红外吸收性能,在红外探测上有着巨大的潜力。因此,构建2H-MoSe2/Si/1T-WS2双极性异质结,利用二维材料的电学和光学特性以及厚度光谱调控特性,有望实现紫外-近红外高性能双波段探测。
发明内容
针对上述现有技术存在的缺点与不足,本发明旨在提供一种硅兼容的2H-MoSe2和1T-WS2双极性异质结紫外-近红外双波段光电探测器及其制备方法,所要解决的技术问题是通过脉冲激光沉积的方法构造双极性异质结,同时使制备的器件具有双波段光探测、高响应速度、抗可见光干扰性强等特性。
本发明为解决技术问题,采用如下技术方案:
本发明的一种硅兼容双极性异质结紫外-近红外双波段光电探测器,其特点在于:所述紫外-近红外双波段光电探测器是以单晶硅衬底作为基底,在所述单晶硅衬底的上、下表面皆设置有SiO2绝缘层;在各层SiO2绝缘层的中心、沿SiO2绝缘层的厚度方向皆形成有一盲孔,所述盲孔的深度与所述SiO2绝缘层的厚度相等;在单晶硅衬底上表面的盲孔内沉积有二维2H-MoSe2材料、下表面的盲孔内沉积有二维1T-WS2材料,且两种二维过渡金属硫属化合物材料的厚度与盲孔深度相等;所述二维2H-MoSe2材料与所述二维1T-WS2材料分别位于单晶硅衬底的上、下表面,形成2H-MoSe2/Si/1T-WS2双极性异质结;
在位于单晶硅衬底上表面的二维2H-MoSe2材料上设置有顶电极,在位于单晶硅衬底下表面的二维1T-WS2材料上设置有底电极,所述顶电极及所述底电极分别与相应的二维2H-MoSe2材料和二维1T-WS2材料形成欧姆接触。
当光从光电探测器的上方向下照射时,本发明的双波段光电探测器对200-400nm的紫外以及800-1200nm的近红外光具有明显的光响应,而对可见光无明显光响应,表明本发明的光电探测器具有紫外-近红外光双波段响应特性。
进一步地,所述单晶硅衬底的厚度为100μm-500μm。
进一步地,所述SiO2绝缘层的厚度为50-200nm。
进一步地,所述底电极为Au电极或Ag电极,所述底电极的厚度为20nm-300nm。
进一步地,所述顶电极为石墨烯电极。
本发明所述的硅兼容双极性异质结紫外-近红外双波段光电探测器的制备方法,包括如下步骤:
a、在单晶硅衬底的上、下表面氧化生成SiO2绝缘层;
b、在各层SiO2绝缘层的中心、沿SiO2绝缘层的厚度方向通过光刻各形成一盲孔,且盲孔的深度与所述SiO2绝缘层的厚度相等,以暴露单晶硅衬底;
c、通过脉冲激光沉积法,在单晶硅衬底上、下表面的盲孔内分别制备二维2H-MoSe2材料和二维1T-WS2材料,且二维2H-MoSe2材料和二维1T-WS2材料的厚度与盲孔深度相等、大小与盲孔相同;
d、在位于单晶硅衬底下表面的二维1T-WS2材料上蒸镀底电极,在位于单晶硅衬底上表面的二维2H-MoSe2材料上设置顶电极,所述顶电极及所述底电极完全覆盖相应的二维1T-WS2材料,即完成硅兼容双极性异质结紫外-近红外双波段光电探测器的制备。
进一步地,步骤c中,利用脉冲激光沉积法制备二维2H-MoSe2材料和二维1T-WS2材料的工艺条件为:激光功率为40~500mJ、激光波长为248nm、脉冲频率为1~20Hz、气压为0.1~10-5Pa。
与已有技术相较,本发明的有益效果体现在:
本发明所制备的探测器具有在紫外和近红外双波段的窄带响应,响应速度快、易集成,同时还具有制备方法简单、成本低、稳定性高、兼容性强等优点,将在研发低成本、高速、稳定、高集成度的双波段探测器中具有广阔的应用前景。
附图说明
图1为本发明硅兼容双极性异质结紫外-近红外双波段光电探测器的平面结构示意图;
图2为实施例1所制备的光电探测器的归一化光谱响应曲线;
图3为实施例1所制备的光电探测器的时间响应曲线;
图4为实施例2所制备的光电探测器的归一化光谱响应曲线;
图中标号:1为二维2H-MoSe2材料;2为二维1T-WS2材料;3为顶电极;4为SiO2绝缘层;5为单晶硅衬底;6为底电极。
具体实施方式
下面对本发明的实施例作详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
实施例1
如图1所示,本实施例基于2H相硒化钼和1T相硫化钨的硅兼容双极性异质结紫外-近红外双波段光电探测器,是以单晶硅衬底5作为基底,在单晶硅衬底5的上、下表面皆设置有SiO2绝缘层4;在各层SiO2绝缘层4的中心、沿SiO2绝缘层的厚度方向皆形成有一盲孔,盲孔的深度与SiO2绝缘层的厚度相等;在单晶硅衬底上表面的盲孔内沉积有二维2H-MoSe2材料1、下表面的盲孔内沉积有二维1T-WS2材料2,且两种二维过渡金属硫属化合物材料的厚度与盲孔深度相等;二维2H-MoSe2材料1与二维1T-WS2材料2分别位于单晶硅衬底5的上、下表面,形成2H-MoSe2/Si/1T-WS2双极性异质结;
在位于单晶硅衬底上表面的二维2H-MoSe2材料上设置有顶电极3,在位于单晶硅衬底下表面的二维1T-WS2材料下设置有底电极6,顶电极3及底电极6分别与相应的二维2H-MoSe2材料1和二维1T-WS2材料2形成欧姆接触。
具体的,本实施例中:所用单晶硅衬底5的厚度为500μm;SiO2绝缘层4的厚度为50nm;底电极6为约50nm厚的Au电极;顶电极3为石墨烯电极。
本实施例硅兼容双极性异质结紫外-近红外双波段光电探测器的制备方法,包括如下步骤:
a、在单晶硅衬底的上、下表面氧化生成厚度为50nm的SiO2绝缘层。
b、在各层SiO2绝缘层的中心、沿SiO2绝缘层的厚度方向通过光刻各形成一直径5μm的盲孔,且盲孔的深度与SiO2绝缘层的厚度相等,以暴露单晶硅衬底。
c、通过脉冲激光沉积法,在单晶硅衬底上、下表面的盲孔内分别制备二维2H-MoSe2材料和二维1T-WS2材料,且二维2H-MoSe2材料和二维1T-WS2材料的厚度与盲孔深度相等、大小与盲孔相同;
利用脉冲激光沉积法制备二维2H-MoSe2材料的工艺条件为:激光功率为150mJ、激光波长为248nm、脉冲频率为1Hz、气压为1×10-3Pa。
利用脉冲激光沉积法制备二维1T-WS2材料的工艺条件为:激光功率为100mJ、激光波长为248nm、脉冲频率为3Hz、气压为1×10-3Pa。
d、在位于单晶硅衬底下表面的二维1T-WS2材料上蒸镀约50nm厚的Au电极作为底电极,通过湿法转移在位于单晶硅衬底上表面的二维2H-MoSe2材料上转移石墨烯作为顶电极,顶电极及底电极完全覆盖相应的二维2H-MoSe2材料和二维1T-WS2材料,即完成硅兼容双极性异质结紫外-近红外双波段光电探测器的制备。
图2为本实施例所制备光电探测器的归一化光谱响应曲线,可以看出器件对200-400nm的紫外以及800-1200nm的近红外光具有明显的光响应且紫外响应较强,而对可见光基本没明显的光响应,表明制备的器件具有紫外-近红外光双波段响应特性。
图3为本实施例所制备的光探测器的时间响应曲线(使用980nm的近红外光进行测试,光照方向为从上至下,即从石墨烯电极上方向下照射),可以看出器件在80kHz近红外脉冲光照下具有稳定的响应,上升时间/下降时间高达0.6μs/1.25μs,表明器件具有高的响应速度。
综合来看,本实施例制备的光探测器具有明显的紫外-近红外双波段光响应、响应速度高、可见光盲等优异特性。
实施例2
如图1所示,本实施例基于2H相硒化钼和1T相硫化钨的硅兼容双极性异质结紫外-近红外双波段光电探测器,是以单晶硅衬底5作为基底,在单晶硅衬底5的上、下表面皆设置有SiO2绝缘层4;在各层SiO2绝缘层4的中心、沿SiO2绝缘层的厚度方向皆形成有一盲孔,盲孔的深度与SiO2绝缘层的厚度相等;在单晶硅衬底上表面的盲孔内沉积有二维2H-MoSe2材料1、下表面的盲孔内沉积有二维1T-WS2材料2,且两种二维过渡金属硫属化合物材料的厚度与盲孔深度相等;二维2H-MoSe2材料1与二维1T-WS2材料2分别位于单晶硅衬底5的上、下表面,形成2H-MoSe2/Si/1T-WS2双极性异质结;
在位于单晶硅衬底上表面的二维2H-MoSe2材料上设置有顶电极3,在位于单晶硅衬底下表面的二维1T-WS2材料上设置有底电极6,顶电极3及底电极6分别与相应的二维2H-MoSe2材料1和二维1T-WS2材料2形成欧姆接触。
具体的,本实施例中:所用单晶硅衬底5的厚度为500μm;SiO2绝缘层4的厚度为100nm;底电极6为约100nm厚的Ag电极;顶电极2为石墨烯电极。
本实施例硅兼容双极性异质结紫外-近红外双波段光电探测器的制备方法,包括如下步骤:
a、在单晶硅衬底的上、下表面氧化生成厚度为50nm的SiO2绝缘层。
b、在各层SiO2绝缘层的中心、沿SiO2绝缘层的厚度方向通过光刻各形成一直径5μm的盲孔,且盲孔的深度与SiO2绝缘层的厚度相等,以暴露单晶硅衬底。
c、通过脉冲激光沉积法,在单晶硅衬底上、下表面的盲孔内分别制备二维2H-MoSe2材料和二维1T-WS2材料,且二维2H-MoSe2材料和二维1T-WS2材料的厚度与盲孔深度相等、大小与盲孔相同;
利用脉冲激光沉积法制备二维2H-MoSe2材料的工艺条件为:激光功率为150mJ、激光波长为248nm、脉冲频率为1Hz、气压为1×10-3Pa。
利用脉冲激光沉积法制备二维1T-WS2材料的工艺条件为:激光功率为100mJ、激光波长为248nm、脉冲频率为3Hz、气压为1×10-3Pa。
d、在位于单晶硅衬底下表面的二维1T-WS2材料上蒸镀约100nm厚的Ag电极作为底电极,通过湿法转移在位于单晶硅衬底上表面的二维2H-MoSe2材料上转移石墨烯作为顶电极,顶电极及底电极完全覆盖相应的二维2H-MoSe2材料和二维1T-WS2材料,即完成硅兼容双极性异质结紫外-近红外双波段光电探测器的制备。
图4为本实施例所制备光电探测器的归一化光谱响应曲线,可以看出器件对200-400nm的紫外以及800-1200nm的近红外光具有明显的光响应且红外光响应较强,而对可见光基本没明显的光响应,表明制备的器件具有紫外-近红外光双波段响应特性。
本实施例所制备的器件性能参数与实施例1所列器件参数非常接近,同样具有200-400nm的紫外和800-1200nm近红外波长范围的明显双波段响应特性,响应速度与实施例1在同一数量级。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种硅兼容双极性异质结紫外-近红外双波段光电探测器,其特征在于:所述紫外-近红外双波段光电探测器是以单晶硅衬底(5)作为基底,在所述单晶硅衬底(5)的上、下表面皆设置有SiO2绝缘层(4);在各层SiO2绝缘层(4)的中心、沿SiO2绝缘层的厚度方向皆形成有一盲孔,所述盲孔的深度与所述SiO2绝缘层的厚度相等;在单晶硅衬底上表面的盲孔内沉积有二维2H-MoSe2材料(1)、下表面的盲孔内沉积有二维1T-WS2材料(2),且所述二维2H-MoSe2材料(1)与所述二维1T-WS2材料(2)的厚度与盲孔深度相等;
所述二维2H-MoSe2材料(1)与所述二维1T-WS2材料(2)分别位于单晶硅衬底(5)的上、下表面,形成2H-MoSe2/Si/1T-WS2双极性异质结;
在位于单晶硅衬底上表面的二维2H-MoSe2材料(1)上设置有顶电极(3),在位于单晶硅衬底下表面的二维1T-WS2材料(2)下设置有底电极(6),所述顶电极(3)及所述底电极(6)分别与相应的二维2H-MoSe2材料(1)和二维1T-WS2材料(2)形成欧姆接触。
2.根据权利要求1所述的硅兼容双极性异质结紫外-近红外双波段光电探测器,其特征在于:所述单晶硅衬底(5)的厚度为100μm-500μm。
3.根据权利要求1所述的硅兼容双极性异质结紫外-近红外双波段光电探测器,其特征在于:所述SiO2绝缘层(4)的厚度为50-200nm。
4.根据权利要求1所述的硅兼容双极性异质结紫外-近红外双波段光电探测器,其特征在于:所述底电极(6)为Au电极或Ag电极,所述底电极(6)的厚度为20nm-300nm。
5.根据权利要求1所述的硅兼容双极性异质结紫外-近红外双波段光电探测器,其特征在于:所述顶电极(3)为石墨烯电极。
6.一种权利要求1~5中任意一项所述的硅兼容双极性异质结紫外-近红外双波段光电探测器的制备方法,其特征在于,包括如下步骤:
a、在单晶硅衬底的上、下表面氧化生成SiO2绝缘层;
b、在各层SiO2绝缘层的中心、沿SiO2绝缘层的厚度方向通过光刻各形成一盲孔,且盲孔的深度与所述SiO2绝缘层的厚度相等,以暴露单晶硅衬底;
c、通过脉冲激光沉积法,在单晶硅衬底上、下表面的盲孔内分别制备二维2H-MoSe2材料和二维1T-WS2材料,且二维2H-MoSe2材料和二维1T-WS2材料的厚度与盲孔深度相等、大小与盲孔相同;
d、在位于单晶硅衬底下表面的二维1T-WS2材料上蒸镀底电极,在位于单晶硅衬底上表面的二维2H-MoSe2材料上设置顶电极,所述顶电极及所述底电极完全覆盖相应的二维1T-WS2材料,即完成硅兼容双极性异质结紫外-近红外双波段光电探测器的制备。
7.根据权利要求6所述的制备方法,其特征在于:步骤c中,利用脉冲激光沉积法制备二维2H-MoSe2材料和二维1T-WS2材料的工艺条件为:激光功率为40~400mJ、激光波长为248nm、脉冲频率为1~20Hz、气压为0.1~10-5Pa。
CN202010931651.8A 2020-09-08 2020-09-08 一种硅兼容双极性异质结紫外-近红外双波段光电探测器及其制备方法 Active CN112002781B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010931651.8A CN112002781B (zh) 2020-09-08 2020-09-08 一种硅兼容双极性异质结紫外-近红外双波段光电探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010931651.8A CN112002781B (zh) 2020-09-08 2020-09-08 一种硅兼容双极性异质结紫外-近红外双波段光电探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN112002781A CN112002781A (zh) 2020-11-27
CN112002781B true CN112002781B (zh) 2021-08-17

Family

ID=73468831

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010931651.8A Active CN112002781B (zh) 2020-09-08 2020-09-08 一种硅兼容双极性异质结紫外-近红外双波段光电探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN112002781B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105789367A (zh) * 2016-04-15 2016-07-20 周口师范学院 非对称电极二维材料/石墨烯异质结级联光电探测器及其制备方法
CN106024861A (zh) * 2016-05-31 2016-10-12 天津理工大学 二维黑磷/过渡金属硫族化合物异质结器件及其制备方法
CN109273543A (zh) * 2018-10-29 2019-01-25 华中科技大学 硫族化合物膜上涂覆纳米颗粒的晶体管及制备方法与应用
CN109285847A (zh) * 2017-07-19 2019-01-29 三星电子株式会社 光电转换元件以及包括该光电转换元件的光学传感器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102561102B1 (ko) * 2018-02-13 2023-07-28 삼성전자주식회사 2차원 절연체를 포함하는 근적외선 센서

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105789367A (zh) * 2016-04-15 2016-07-20 周口师范学院 非对称电极二维材料/石墨烯异质结级联光电探测器及其制备方法
CN106024861A (zh) * 2016-05-31 2016-10-12 天津理工大学 二维黑磷/过渡金属硫族化合物异质结器件及其制备方法
CN109285847A (zh) * 2017-07-19 2019-01-29 三星电子株式会社 光电转换元件以及包括该光电转换元件的光学传感器
CN109273543A (zh) * 2018-10-29 2019-01-25 华中科技大学 硫族化合物膜上涂覆纳米颗粒的晶体管及制备方法与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Scalable Production of a Few-Layer MoS2/WS2 Vertical Heterojunction Array and Its Application for Photodetectors;Xue, YZ等;《ACS NANO》;20160630;第10卷(第1期);第573-580页 *

Also Published As

Publication number Publication date
CN112002781A (zh) 2020-11-27

Similar Documents

Publication Publication Date Title
Young et al. Flexible ultraviolet photodetectors based on one-dimensional gallium-doped zinc oxide nanostructures
Goswami et al. Graphene quantum dot-sensitized ZnO-nanorod/GaN-nanotower heterostructure-based high-performance UV photodetectors
Prabhu et al. Fabrication of p-CuO/n-ZnO heterojunction diode via sol-gel spin coating technique
CN105493295B (zh) 来自溶液处理的无机半导体的空气稳定红外光探测器
Bo et al. Low-voltage high-performance UV photodetectors: an interplay between grain boundaries and debye length
Kumar et al. High performance, flexible and room temperature grown amorphous Ga2O3 solar-blind photodetector with amorphous indium-zinc-oxide transparent conducting electrodes
CN107316915B (zh) 可见光波段的集成石墨烯二硫化钼的光电探测器及其制备方法
Kumar et al. High-performance and self-powered alternating current ultraviolet photodetector for digital communication
John et al. Broadband infrared photodetector based on nanostructured MoSe2–Si heterojunction extended up to 2.5 μm spectral range
KR102051513B1 (ko) 감광성 채널층을 갖는 공핍형 부하 및 광 차단층을 갖는 증가형 드라이버를 포함하는 인버터 및 이를 이용한 광 검출기
Wei et al. Robust photodetectable paper from chemically exfoliated MoS2–MoO3 multilayers
Chen et al. Structural engineering of Si/TiO2/P3HT heterojunction photodetectors for a tunable response range
CN108281493B (zh) 二硒化钨和金属垂直型肖特基结自驱动光电探测器及制备
Bilgaiyan et al. Performance improvement of ZnO/P3HT hybrid UV photo-detector by interfacial Au nanolayer
Salvato et al. Single walled carbon nanotube/Si heterojunctions for high responsivity photodetectors
Ferhati et al. Post-annealing effects on RF sputtered all-amorphous ZnO/SiC heterostructure for solar-blind highly-detective and ultralow dark-noise UV photodetector
Selman et al. Fabrication of Cu2O nanocrystalline thin films photosensor prepared by RF sputtering technique
Yuan et al. Concurrent improvement of photocarrier separation and extraction in ZnO nanocrystal ultraviolet photodetectors
Chen et al. Enhanced photoresponsivity in carbon quantum dots-coupled graphene/silicon Schottky-junction photodetector
KR20210046641A (ko) 3차원 구조의 광검출 소자 및 그의 제조 방법
Humayun et al. Area‐Selective ZnO Thin Film Deposition on Variable Microgap Electrodes and Their Impact on UV Sensing
Dhyani et al. High speed MSM photodetector based on Ge nanowires network
CN111477716B (zh) 一种1t相硫化钨双极性异质结窄带近红外光电探测器及其制备方法
Shaker et al. High-Responsivity heterojunction photodetector based on Bi2O3-decorated MWCNTs nanostructure grown on silicon via laser ablation in liquid
CN112002781B (zh) 一种硅兼容双极性异质结紫外-近红外双波段光电探测器及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220118

Address after: 230001 floor 6, block B, blue diamond Shangjie, No. 335, Suixi Road, Bozhou road street, Luyang District, Hefei City, Anhui Province

Patentee after: Hefei Luyang Technology Innovation Group Co.,Ltd.

Address before: Tunxi road in Baohe District of Hefei city of Anhui Province, No. 193 230009

Patentee before: Hefei University of Technology