CN111477716B - 一种1t相硫化钨双极性异质结窄带近红外光电探测器及其制备方法 - Google Patents

一种1t相硫化钨双极性异质结窄带近红外光电探测器及其制备方法 Download PDF

Info

Publication number
CN111477716B
CN111477716B CN202010289646.1A CN202010289646A CN111477716B CN 111477716 B CN111477716 B CN 111477716B CN 202010289646 A CN202010289646 A CN 202010289646A CN 111477716 B CN111477716 B CN 111477716B
Authority
CN
China
Prior art keywords
dimensional
silicon substrate
narrow
sio
monocrystalline silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010289646.1A
Other languages
English (en)
Other versions
CN111477716A (zh
Inventor
于永强
毕然
程旭
徐艳
何圣楠
卢志坚
许高斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei Luyang Technology Innovation Group Co.,Ltd.
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN202010289646.1A priority Critical patent/CN111477716B/zh
Publication of CN111477716A publication Critical patent/CN111477716A/zh
Application granted granted Critical
Publication of CN111477716B publication Critical patent/CN111477716B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0328Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/11Devices sensitive to infrared, visible or ultraviolet radiation characterised by two potential barriers, e.g. bipolar phototransistors
    • H01L31/1105Devices sensitive to infrared, visible or ultraviolet radiation characterised by two potential barriers, e.g. bipolar phototransistors the device being a bipolar phototransistor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

本发明公开了一种1T相硫化钨双极性异质结窄带近红外光电探测器及其制备方法,该探测器的结构为:在单晶硅衬底的上、下表面皆设置有SiO2绝缘层;在各层SiO2绝缘层的中心皆形成有一盲孔;在两盲孔内皆沉积二维1T‑WS2材料,两层二维1T‑WS2材料与单晶硅衬底形成1T‑WS2/Si/1T‑WS2双极性异质结;上、下两层二维1T‑WS2材料外表面分别设置有顶电极和底电极。本发明所制备的探测器具有近红外窄带响应、响应速度快、易集成等优势,同时还具有制备方法简单、成本低、稳定性高、兼容性强等优点,将在研发低成本、高速、稳定、高集成度的窄带近红外探测器中具有广阔的应用前景。

Description

一种1T相硫化钨双极性异质结窄带近红外光电探测器及其制 备方法
技术领域
本发明涉及一种1T相硫化钨双极性异质结窄带近红外光电探测器及其制备方法,属于半导体光电器件技术领域。
背景技术
光电探测器是光电子器件的核心器件之一,近红外光探测器因在光通信、生物诊断、夜视、环境监测及遥感等领域有着广泛的应用而引起了人们的广泛关注。具有高灵敏度和窄带响应特性的近红外光电探测器在光谱学、临床医学、化学元素分析等领域具有巨大的潜力应用价值。当前,窄带光探测器大多数是通过在宽光谱光电探测器中引入滤光片而实现窄带探测器,这种引入滤光片的方法加大了研究的难度和操作的复杂程度,并且也增加了成本和窄带探测器的体积。此外,目前商用的光学滤波器由于固有限制并不能满足需求。近年来,随着新型光电材料的制备及光电特性的研究深入,关于新型材料无滤光片的窄带探测器有了相关的报道,例如基于钙钛矿和有机染料分子制备的窄带光电探测器[J.Li;J.Wang;J.Ma;H.Shen;et al.Nature Communications.2019,10,806;Y.Fang;Q.Dong;Y.Shao;et al.Nature Photonics.2015,9.679.],这些窄带光电探测器响应具有光谱可调和灵敏度高等优异特性,但面临在常温下不稳定且具有毒性、抗干扰能力差、难于集成等问题。
近十几年来,新型二维半导体异质结探测器正成为国际前端纳米科学、材料科学以及新型半导体器件研究中的焦点。研究发现二维过渡金属硫属化合物材料在室温红外探测中具有潜在的应用前景,1T相过渡金属硫族化合物具有较宽的红外光谱吸收,可避免缺陷调控等材料特性问题,将为二维过渡金属硫族化合物在红外探测中的应用拓展新的研究方向,但其面临材料制备及性能优化等诸多方面的关键问题。因此研发一种廉价、结构简单、无公害、易集成的高效窄带近红外光探测器有着重要的意义。
发明内容
针对上述现有技术存在的缺点与不足,本发明旨在提供一种硅兼容的1T-WS2双极性异质结窄带近红外光电探测器及其制备方法,所要解决的技术问题是通过脉冲激光沉积的方法构造双极性异质结,同时使制备的器件具有高响应速度、高探测率、抗可见光干扰性强等特性。
本发明为解决技术问题,采用如下技术方案:
本发明公开的一种1T相硫化钨双极性异质结窄带近红外光电探测器,其特点在于:所述近红外光电探测器是以单晶硅衬底作为基底,在所述单晶硅衬底的上、下表面皆设置有SiO2绝缘层;在各层SiO2绝缘层的中心、沿SiO2绝缘层的厚度方向皆形成有一盲孔,所述盲孔的深度与所述SiO2绝缘层的厚度相等;在两盲孔内皆沉积有二维1T-WS2材料,且二维1T-WS2材料的厚度与盲孔深度相等;两层二维1T-WS2材料分别位于单晶硅衬底的上、下表面,形成1T-WS2/Si/1T-WS2双极性异质结;
在位于单晶硅衬底上表面的二维1T-WS2材料上设置有顶电极,在位于单晶硅衬底下表面的二维1T-WS2材料上设置有底电极,所述顶电极及所述底电极均与相应的二维1T-WS2材料形成欧姆接触。
进一步地,所述单晶硅衬底的厚度为100μm-500μm。
进一步地,所述SiO2绝缘层的厚度为50-200nm。
进一步地,所述底电极为Au电极或Ag电极,所述底电极的厚度为20nm-300nm。
进一步地,所述顶电极为石墨烯电极。
本发明所述的1T相硫化钨双极性异质结窄带近红外光电探测器的制备方法,包括如下步骤:
a、在单晶硅衬底的上、下表面氧化生成SiO2绝缘层;
b、在各层SiO2绝缘层的中心、沿SiO2绝缘层的厚度方向通过光刻各生成一盲孔,且盲孔的深度与所述SiO2绝缘层的厚度相等,以暴露单晶硅衬底;
c、在两盲孔内分别利用脉冲激光沉积法制备二维1T-WS2材料,且二维1T-WS2材料的厚度与盲孔深度相等、大小与盲孔相同;两层二维1T-WS2材料分别位于单晶硅衬底的上、下表面,形成1T-WS2/Si/1T-WS2双极性异质结;
d、在位于单晶硅衬底下表面的二维1T-WS2材料上蒸镀底电极,在位于单晶硅衬底上表面的二维1T-WS2材料上设置顶电极,所述顶电极及所述底电极完全覆盖相应的二维1T-WS2材料,所述顶电极及所述底电极均与相应的二维1T-WS2材料形成欧姆接触,即完成1T相硫化钨双极性异质结窄带近红外光电探测器的制备。
进一步地,步骤c中,利用脉冲激光沉积法制备二维1T-WS2材料的工艺条件为:激光功率为40~500mJ、激光波长为248nm、脉冲频率为1~20Hz、气压为0.1~10-5Pa。
与已有技术相较,本发明的有益效果体现在:
本发明所制备的探测器具有近红外窄带响应、响应速度快、易集成等优势,同时还具有制备方法简单、成本低、稳定性高、兼容性强等优点,将在研发低成本、高速、稳定、高集成度的探测器中具有广阔的应用前景。
附图说明
图1为本发明1T相硫化钨双极性异质结窄带近红外光电探测器的平面结构示意图;
图2为实施例1所制备的光电探测器的归一化光谱响应曲线;
图3为实施例1所制备的光电探测器在零偏下的响应度随波长变化曲线;
图4为实施例1所制备的光电探测器的时间响应曲线;
图中标号:1为二维1T-WS2材料;2为顶电极;3为SiO2绝缘层;4为单晶硅衬底;5为底电极。
具体实施方式
下面对本发明的实施例作详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
实施例1
如图1所示,本实施例1T相硫化钨双极性异质结窄带近红外光电探测器,是以单晶硅衬底4作为基底,在单晶硅衬底4的上、下表面皆设置有SiO2绝缘层3;在各层SiO2绝缘层3的中心、沿SiO2绝缘层的厚度方向皆形成有一盲孔,盲孔的深度与SiO2绝缘层的厚度相等;在两盲孔内皆沉积有二维1T-WS2材料1,且二维1T-WS2材料的厚度与盲孔深度相等;两层二维1T-WS2材料分别位于单晶硅衬底4的上、下表面,形成1T-WS2/Si/1T-WS2双极性异质结;
在位于单晶硅衬底上表面的二维1T-WS2材料上设置有顶电极2,在位于单晶硅衬底下表面的二维1T-WS2材料上设置有底电极5,顶电极2及底电极5均与相应的二维1T-WS2材料1形成欧姆接触。
具体的,本实施例中:所用单晶硅衬底4的厚度为100μm;SiO2绝缘层3的厚度为100nm;底电极5为约50nm厚的Au电极;顶电极2为石墨烯电极。
本实施例1T相硫化钨双极性异质结窄带近红外光电探测器的制备方法,包括如下步骤:
a、在单晶硅衬底的上、下表面氧化生成厚度为100nm的SiO2绝缘层。
b、在各层SiO2绝缘层的中心、沿SiO2绝缘层的厚度方向通过光刻各生成一直径5μm的盲孔,且盲孔的深度与SiO2绝缘层的厚度相等,以暴露单晶硅衬底。
c、在两盲孔内分别利用脉冲激光沉积法制备二维1T-WS2材料,且二维1T-WS2材料的厚度与盲孔深度相等、大小与盲孔相同;两层二维1T-WS2材料分别位于单晶硅衬底的上、下表面,形成1T-WS2/Si/1T-WS2双极性异质结;
利用脉冲激光沉积法制备二维1T-WS2材料的工艺条件为:激光功率为150mJ、激光波长为248nm、脉冲频率为3Hz、气压为1×10-3Pa。
d、在位于单晶硅衬底下表面的二维1T-WS2材料上蒸镀约50nm厚的Au电极作为底电极,通过湿法转移在位于单晶硅衬底上表面的二维1T-WS2材料上转移石墨烯作为顶电极,顶电极及底电极完全覆盖相应的二维1T-WS2材料,顶电极及底电极均与相应的二维1T-WS2材料形成欧姆接触,即完成1T相硫化钨双极性异质结窄带近红外光电探测器。
图2为本实施例所制备光电探测器的归一化光谱响应曲线,可以看出器件对800-1200nm近红外光具有明显的光响应,而对可见光基本没明显的光响应,表明制备的器件具有窄带近红外光响应特性。
图3为本实施例所制备光电探测器在零偏下的响应度随波长变化曲线,可以看出器件在近红外光范围具有高的响应度,最高可达0.65AW-1,高于可见光2-3个数量级,表明器件对近红外光具有高的灵敏度。
图4为本实施例所制备的光探测器的时间响应曲线,可以看出器件在50H近红外脉冲光照下具有稳定的响应,上升时间/下降时间,高达0.5μs/1.5μs,表明器件具有高的响应速度。
综合来看,本实施例制备的光探测器具有明显的窄带近红外光响应、高响应度、高响应速度等优异特性。
实施例2
如图1所示,本实施例1T相硫化钨双极性异质结窄带近红外光电探测器,是以单晶硅衬底4作为基底,在单晶硅衬底4的上、下表面皆设置有SiO2绝缘层3;在各层SiO2绝缘层3的中心、沿SiO2绝缘层的厚度方向皆形成有一盲孔,盲孔的深度与SiO2绝缘层的厚度相等;在两盲孔内皆沉积有二维1T-WS2材料1,且二维1T-WS2材料的厚度与盲孔深度相等;两层二维1T-WS2材料分别位于单晶硅衬底4的上、下表面,形成1T-WS2/Si/1T-WS2双极性异质结;
在位于单晶硅衬底上表面的二维1T-WS2材料上设置有顶电极2,在位于单晶硅衬底下表面的二维1T-WS2材料上设置有底电极5,顶电极2及底电极5均与相应的二维1T-WS2材料1形成欧姆接触。
具体的,本实施例中:所用单晶硅衬底4的厚度为500μm;SiO2绝缘层3的厚度为50nm;底电极5为约100nm厚的Ag电极;顶电极2为石墨烯电极。
本实施例1T相硫化钨双极性异质结窄带近红外光电探测器的制备方法,包括如下步骤:
a、在单晶硅衬底的上、下表面氧化生成厚度为50nm的SiO2绝缘层。
b、在各层SiO2绝缘层的中心、沿SiO2绝缘层的厚度方向通过光刻各生成一直径5μm的盲孔,且盲孔的深度与SiO2绝缘层的厚度相等,以暴露单晶硅衬底。
c、在两盲孔内分别利用脉冲激光沉积法制备二维1T-WS2材料,且二维1T-WS2材料的厚度与盲孔深度相等、大小与盲孔相同;两层二维1T-WS2材料分别位于单晶硅衬底的上、下表面,形成1T-WS2/Si/1T-WS2双极性异质结;
利用脉冲激光沉积法制备二维1T-WS2材料的工艺条件为:激光功率为250mJ、激光波长为248nm、脉冲频率为1Hz、气压为1×10-4Pa。d、在位于单晶硅衬底下表面的二维1T-WS2材料上蒸镀约100nm厚的Ag电极作为底电极,通过湿法转移在位于单晶硅衬底上表面的二维1T-WS2材料上转移石墨烯作为顶电极,顶电极及底电极完全覆盖相应的二维1T-WS2材料,顶电极及底电极均与相应的二维1T-WS2材料形成欧姆接触,即完成1T相硫化钨双极性异质结窄带近红外光电探测器。
本实施例所制备的器件性能参数与实施例1所列器件参数非常接近,同样具有800-1200nm波长范围的明显窄带近红外响应特性,且零偏压响应度最高达0.7AW-1,响应速度与实施例1在同一数量级。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种1T相硫化钨双极性异质结窄带近红外光电探测器,其特征在于:所述近红外光电探测器是以单晶硅衬底(4)作为基底,在所述单晶硅衬底(4)的上、下表面皆设置有SiO2绝缘层(3);在各层SiO2绝缘层(3)的中心、沿SiO2绝缘层的厚度方向皆形成有一盲孔,所述盲孔的深度与所述SiO2绝缘层的厚度相等;在两盲孔内皆沉积有二维1T-WS2材料(1),且二维1T-WS2材料的厚度与盲孔深度相等;两层二维1T-WS2材料分别位于单晶硅衬底(4)的上、下表面,形成1T-WS2/Si/1T-WS2双极性异质结;
在位于单晶硅衬底上表面的二维1T-WS2材料上设置有顶电极(2),在位于单晶硅衬底下表面的二维1T-WS2材料上设置有底电极(5),所述顶电极(2)及所述底电极(5)均与相应的二维1T-WS2材料(1)形成欧姆接触。
2.根据权利要求1所述的1T相硫化钨双极性异质结窄带近红外光电探测器,其特征在于:所述单晶硅衬底(4)的厚度为100μm-500μm。
3.根据权利要求1所述的1T相硫化钨双极性异质结窄带近红外光电探测器,其特征在于:所述SiO2绝缘层(3)的厚度为50-200nm。
4.根据权利要求1所述的1T相硫化钨双极性异质结窄带近红外光电探测器,其特征在于:所述底电极(5)为Au电极或Ag电极;所述底电极(5)的厚度为20nm-300nm。
5.根据权利要求1所述的1T 相硫化钨双极性异质结窄带近红外光电探测器,其特征在于:所述顶电极(2)为石墨烯电极。
6.一种权利要求1~5中任意一项所述的1T相硫化钨双极性异质结窄带近红外光电探测器的制备方法,其特征在于,包括如下步骤:
a、在单晶硅衬底的上、下表面氧化生成SiO2绝缘层;
b、在各层SiO2绝缘层的中心、沿SiO2绝缘层的厚度方向通过光刻各生成一盲孔,且盲孔的深度与所述SiO2绝缘层的厚度相等,以暴露单晶硅衬底;
c、在两盲孔内分别利用脉冲激光沉积法制备二维1T-WS2材料,且二维1T-WS2材料的厚度与盲孔深度相等、大小与盲孔相同;两层二维1T-WS2材料分别位于单晶硅衬底的上、下表面,形成1T-WS2/Si/1T-WS2双极性异质结;
d、在位于单晶硅衬底下表面的二维1T-WS2材料上蒸镀底电极,在位于单晶硅衬底上表面的二维1T-WS2材料上设置顶电极,所述顶电极及所述底电极完全覆盖相应的二维1T-WS2材料,所述顶电极及所述底电极均与相应的二维1T-WS2材料形成欧姆接触,即完成1T相硫化钨双极性异质结窄带近红外光电探测器的制备。
7.根据权利要求6所述的制备方法,其特征在于:步骤c中,利用脉冲激光沉积法制备二维1T-WS2材料的工艺条件为:激光功率为40~400mJ、激光波长为248nm、脉冲频率为1~20Hz、气压为0.1~10-5Pa。
CN202010289646.1A 2020-04-14 2020-04-14 一种1t相硫化钨双极性异质结窄带近红外光电探测器及其制备方法 Active CN111477716B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010289646.1A CN111477716B (zh) 2020-04-14 2020-04-14 一种1t相硫化钨双极性异质结窄带近红外光电探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010289646.1A CN111477716B (zh) 2020-04-14 2020-04-14 一种1t相硫化钨双极性异质结窄带近红外光电探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN111477716A CN111477716A (zh) 2020-07-31
CN111477716B true CN111477716B (zh) 2021-07-27

Family

ID=71752000

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010289646.1A Active CN111477716B (zh) 2020-04-14 2020-04-14 一种1t相硫化钨双极性异质结窄带近红外光电探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN111477716B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113161442B (zh) * 2021-04-22 2022-10-14 合肥工业大学 一种硅肖特基结线阵列近红外光电探测器
CN114784125B (zh) * 2022-03-25 2024-04-02 国科大杭州高等研究院 一种非对称性诱导室温高灵敏光电探测器件及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105932091A (zh) * 2016-07-13 2016-09-07 合肥工业大学 一种自驱动二维碲化钼同型异质结近红外光电探测器及其制备方法
CN106315678A (zh) * 2016-08-22 2017-01-11 河南师范大学 一种1t相单层二硫化钨纳米片的制备方法
CN107302054A (zh) * 2017-06-05 2017-10-27 西安电子科技大学 双异质结光探测器及其制备方法
WO2018170531A1 (en) * 2017-03-21 2018-09-27 Newsouth Innovations Pty Ltd A light emitting device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6653166B2 (en) * 2001-05-09 2003-11-25 Nsc-Nanosemiconductor Gmbh Semiconductor device and method of making same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105932091A (zh) * 2016-07-13 2016-09-07 合肥工业大学 一种自驱动二维碲化钼同型异质结近红外光电探测器及其制备方法
CN106315678A (zh) * 2016-08-22 2017-01-11 河南师范大学 一种1t相单层二硫化钨纳米片的制备方法
WO2018170531A1 (en) * 2017-03-21 2018-09-27 Newsouth Innovations Pty Ltd A light emitting device
CN107302054A (zh) * 2017-06-05 2017-10-27 西安电子科技大学 双异质结光探测器及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
In Situ Fabrication of 2D WS2/Si Type-II Heterojunction for Self-;Enping Wu 等;《ACS Photonics》;20190109;第2卷(第6期);第565-572页 *

Also Published As

Publication number Publication date
CN111477716A (zh) 2020-07-31

Similar Documents

Publication Publication Date Title
CN111477716B (zh) 一种1t相硫化钨双极性异质结窄带近红外光电探测器及其制备方法
Xu et al. ZnO-based photodetector: from photon detector to pyro-phototronic effect enhanced detector
CN107316915B (zh) 可见光波段的集成石墨烯二硫化钼的光电探测器及其制备方法
CN100428500C (zh) 基于一维半导体纳米结构的光电传感器及其制作方法
CN106571405B (zh) 一种带有GaN纳米线阵列的紫外探测器及其制作方法
CN111341875B (zh) 一种石墨烯/二硒化钯/硅异质结自驱动光电探测器
CN108376716A (zh) 一种新型氧化镓基pin结构紫外光电探测器及其制备方法
CN110734036B (zh) 集成于纳米线的片上光谱仪及其探测器阵列的制备方法
CN110444618A (zh) 基于非晶氧化镓薄膜的日盲紫外探测器及其制备方法
CN110289335A (zh) 基于In2Se3/Si垂直结构异质结的自驱动近红外长波光电探测器及其制作方法
CN103011068B (zh) 一种金属纳米环的溶液法制备方法
CN107180890B (zh) 一种背照式窄带通日盲紫外探测器及其制备方法
CN112002785B (zh) 一种硅基微腔窄带近红外光电探测器
WO2022126933A1 (zh) 波长选择性响应的光电探测器的制备方法
CN104900746B (zh) 一种基于径向结叠层结构的三原色光电探测方法
CN105514210A (zh) 基于二氧化钛纳米棒阵列/硅异质结的紫外光探测器及其制备方法
CN110649162A (zh) 一种宽光谱自驱动无机钙钛矿光电探测器及其制备方法
CN114702960A (zh) 红外量子点层及其制备方法、红外探测器及其制备方法
WO2022088204A1 (zh) 一种紫外-可见-近红外硅基光电探测器及其制备方法
Shan et al. Improved responsivity of highly reproducible performance ZnO thin film flexible UV photodetectors by piezo-phototronic effect
Rathore et al. Surface Adsorption-Assisted Visible and Near-Infrared Photodetection in SrTiO3 Nanostructures
CN105576129A (zh) 基于CH3NH3PbI3材料的光电晶体管及其制作方法
Suman et al. Fabrication of a Red-Sensitive Heterojunction Photodetector by Using a Narrowband Organic Dye
CN110112233A (zh) 基于银纳米线-石墨烯/氧化镓纳米柱的光电探测结构、器件及制备方法
CN107123699B (zh) 一种基于铜硫酸钾准一维纳米结构的自驱动近红外光电探测器及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220114

Address after: 230001 floor 6, block B, blue diamond Shangjie, No. 335, Suixi Road, Bozhou road street, Luyang District, Hefei City, Anhui Province

Patentee after: Hefei Luyang Technology Innovation Group Co.,Ltd.

Address before: Tunxi road in Baohe District of Hefei city of Anhui Province, No. 193 230009

Patentee before: Hefei University of Technology