CN112002785B - 一种硅基微腔窄带近红外光电探测器 - Google Patents

一种硅基微腔窄带近红外光电探测器 Download PDF

Info

Publication number
CN112002785B
CN112002785B CN202010941539.2A CN202010941539A CN112002785B CN 112002785 B CN112002785 B CN 112002785B CN 202010941539 A CN202010941539 A CN 202010941539A CN 112002785 B CN112002785 B CN 112002785B
Authority
CN
China
Prior art keywords
silicon
insulating layer
narrow
silicon substrate
graphene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010941539.2A
Other languages
English (en)
Other versions
CN112002785A (zh
Inventor
于永强
宋龙梅
夏宇
刘佳杨
许高斌
马渊明
陈士荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN202010941539.2A priority Critical patent/CN112002785B/zh
Publication of CN112002785A publication Critical patent/CN112002785A/zh
Application granted granted Critical
Publication of CN112002785B publication Critical patent/CN112002785B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/108Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the Schottky type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

本发明公开了一种硅基微腔窄带近红外光电探测器,该探测器的结构为:以单晶硅衬底为基底;单晶硅衬底的上表面刻蚀为硅微孔阵列结构;在硅微孔阵列上设置有上绝缘层;在单晶硅衬底下表面转移有石墨烯薄膜,形成石墨烯‑硅肖特基异质结;在石墨烯薄膜下表面依次设置有下绝缘层和金属反射层。本发明所制备的探测器实现了可见光盲的窄带近红外响应,具有响应速度快、易集成等优势,同时还具有制备方法简单、成本低、稳定性高、兼容性强等优点。

Description

一种硅基微腔窄带近红外光电探测器
技术领域
本发明涉及一种硅基微腔窄带近红外光电探测器,属于半导体光电器件技术领域。
背景技术
传统红外光电探测在军事、遥感、通信、生命科学和宇宙探索等领域发挥着至关重要的作用,近些年来,人工智能、大数据、智慧城市等方面对红外信息的探测和智能感知的需求越来越强烈,窄带响应高灵敏度的近红外光电探测器在光谱学、临床医学、成像、化学元素分析等领域具有巨大的应用价值。当前,窄带光探测器通常使用以下三种方法实现:1)将宽光谱光电探测器与带通滤波器相结合,该方法需要高成本的滤波器、复杂的光学系统集成和设计,还会增加探测器的尺寸和重量;2)使用具有窄带吸收的光活性材料,该方法已成功应用于以宽禁带半导体为活性材料的短波光电探测器;3)通过等离子体效应增强特定波长范围内的吸收,该方法在其它非等离子体波长范围内受到非抑制吸收的限制[L.Shen;Y.Fang;H.Wei;et al.Advanced Materials.2016,28,2043-2048.]。针对红外波段的窄带探测器仍是目前市场的缺失,研发一种廉价、结构简单、无公害、易集成的高效窄带近红外光探测器有着重要的意义。
尽管在过去的几十年里人们已经研究了很多半导体材料,但硅仍然是应用最广泛的材料,除了优异的抗热性和抗氧化性外,硅还具有良好的载流子迁移率。然而,硅的间接带隙使其成为不理想的光敏材料,尤其是短波近红外区以外[W.Yang;J.Chen;Y.Zhang;etal.Advanced Function Materials.2019,29,1808182.]。随着微纳加工技术和半导体工艺的逐渐成熟,光学微腔得到了快速发展。光学微腔在探测器领域的应用主要是基于其谐振特性,这种特性使得光在较小的器件尺寸内即可累积获得足够长的有效吸收距离。JunfengSong等人提出了一种基于微环谐振腔的光电探测器,光探测器长度仅4μm,当工作在L带时,微环谐振器使这种探测器的响应度提升了2倍左右,但是该探测器的制备方法复杂,不易于与电子器件集成且成本高[J.Song;Andy Lim;et al.Optics express.2014,22,26976-26984.]。
与传统硅材料相比,硅材料的表面纳米结构或微结构由于具有良好的陷光效应,可以提高对光的吸收并有利于光生载流子的产生,进而提高基于硅微纳结构的光电探测器的器件性能。此外,硅材料的各种表面修饰有效地增强了1100nm以外的光谱响应,扩大了硅基光电探测器的应用范围。具有表面修饰的单晶硅也可作为构建异质结和调整器件带宽的优良衬底,异质结界面附近的内置电场有效地促进了光生载流子的电荷分离,并产生许多高性能的硅兼容器件。石墨烯-硅异质结是近年发展起来的一种高性能光电探测器。一方面,这种简单的器件结构易于在平面硅上实现,起到肖特基二极管的作用,结的势垒取决于硅的浓度,因此是可控的。另一方面,石墨烯-硅异质结与成熟的硅基平台兼容,具有集成到光探测器网络和读出电路中的潜力。
发明内容
针对上述现有技术存在的缺点与不足,本发明旨在提供一种硅基微腔窄带近红外光电探测器,所要解决的技术问题是通过硅基微腔器件结构的设置,获得具有近红外窄带响应、响应速度快、易集成等优点的近红外光电探测器。
本发明为解决技术问题,采用如下技术方案:
本发明公开的一种硅基微腔窄带近红外光电探测器,其特点在于:所述硅基微腔窄带近红外光电探测器是以单晶硅衬底作为基底,所述单晶硅衬底的上表面刻蚀为硅微孔阵列结构,在硅微孔阵列上设置有上绝缘层;在所述单晶硅衬底的下表面转移有一层石墨烯薄膜,形成石墨烯-硅肖特基异质结;在所述石墨烯薄膜下表面设置有下绝缘层;在所述下绝缘层的下表面设置有金属反射层;
在所述单晶硅衬底的上表面设置有顶电极,在所述石墨烯薄膜的下表面设置有底电极,所述顶电极与所述单晶硅衬底形成欧姆接触,所述底电极与所述石墨烯薄膜形成欧姆接触。
进一步地,所述单晶硅衬底的厚度为100-500μm,所述硅微孔直径为10-100μm、深度为5-20μm、相邻硅微孔的间距为10-300μm。
进一步地,所述上绝缘层的材料为SiO2或Al2O3,所述上绝缘层的厚度为10-100nm。
进一步地,所述石墨烯薄膜为单层或多层石墨烯。
进一步地,所述下绝缘层的材料为SiO2或Al2O3,所述下绝缘层的厚度为10-100nm。
进一步地,所述金属反射层的材料为Al,所述金属反射层的厚度为50-1000μm。
进一步地,所述顶电极为In/Ga电极,所述顶电极的厚度为40-100nm。
进一步地,所述底电极为In/Ga电极,所述底电极的厚度为40-100nm。
与已有技术相较,本发明的有益效果体现在:
在本发明的光电探测器中,硅微孔阵列上表面的绝缘层和石墨烯下表面的绝缘层之间形成谐振腔,使入射光集中在腔内,并选择近红外光进行放大,在石墨烯和硅衬底形成的肖特基异质结的作用下,可实现近红外光的快速、高效探测,同时金属反射层可以反射入射光线,进一步减小光损耗。本发明所制备的探测器具有响应速度快、易集成等优势,同时还具有制备方法简单、成本低、稳定性高、兼容性强等优点,为提高医学上的生物体内成像和病理监测可靠性提供了重要的研究途径。
附图说明
图1为本发明硅基微腔窄带近红外光电探测器的平面结构示意图;
图2为实施例1所制备的光电探测器的归一化光谱响应曲线;
图3为实施例1所制备的光电探测器的时间响应曲线;
图4为实施例1所制备的光电探测器在零偏压下的响应度随波长变化曲线;
图中标号:1为上绝缘层;2为单晶硅衬底;3为石墨烯薄膜;4为下绝缘层;5为金属反射层,6为顶电极,7为底电极。
具体实施方式
下面对本发明的实施例作详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
实施例1
如图1所示,本实施例的硅基微腔窄带近红外光电探测器,是以单晶硅衬底2作为基底,单晶硅衬底2的上表面刻蚀为硅微孔阵列结构,在硅微孔阵列上设置有上绝缘层1;在单晶硅衬底2的下表面转移有一层石墨烯薄膜3,形成石墨烯-硅肖特基异质结;在石墨烯薄膜3下表面设置有下绝缘层4;在下绝缘层4的下表面设置有金属反射层5;
在单晶硅衬底2的上表面设置有顶电极6,在石墨烯薄膜3的下表面设置有底电极7,顶电极6与单晶硅衬底2形成欧姆接触,底电极7与石墨烯薄膜3形成欧姆接触。
具体的,本实施例中:所用单晶硅衬底2的厚度为500μm,硅微孔直径为50μm、深度为20μm、相邻硅微孔的间距为150μm;上绝缘层1、下绝缘层4皆为10nm厚的SiO2绝缘层;金属反射层5为50μm厚的Al层;顶电极6为约60nm厚的In/Ga电极,底电极7为约60nm厚的In/Ga电极。
本实施例硅基微腔窄带近红外光电探测器的制备方法,包括如下步骤:
a、将清洗干净的硅片置于匀胶台转盘上吸紧,使用胶头滴管在硅片中央均匀滴上两滴光刻胶,开启匀胶台转盘,先以500rpm低速旋转10s,再以3000rpm高速旋转20s,待匀胶完毕将硅片置于干燥台上烘干5min,然后再重复一次上述的滴光刻胶、匀胶、烘干步骤。
将二次匀胶烘干后的硅片置于曝光机的工作台中间位置吸紧,与掩模版对准,打开氙气光源,并曝光100s。曝光结束后将硅片放入显影液浸泡5分钟。
将显影完的硅片放入真空仓中,关闭仓门进行抽真空操作,启动机械泵进行预抽,同时打开分子泵并达到稳定转速27000rpm,等真空计示数降到3.5Pa以下关闭预抽阀,对刻蚀室抽高真空。为了保证真空反应环境,真空仓压强达到5×10-3Pa即可。通入SF6作为刻蚀气体,待气体流量计到达40sccm时打开功率电源1和2,功率电源幅值分别设定为300W和80W,通过控制通电时间(~30min)调控刻蚀微孔的深度。刻蚀完毕使用正胶去膜剂将硅表面的光刻胶去除,即完成了硅微孔阵列的制备。
b、在硅微孔阵列上表面沉积一层SiO2绝缘层。
c、在生长有石墨烯的铜箔上表面旋涂一层PMMA,再将此铜箔置于酸刻蚀液中,刻蚀去除铜箔;然后通过有机玻璃载片将漂浮在刻蚀液上方的上表面附着有PMMA的石墨烯转移到去离子水中,使用滴管对石墨烯上残留的刻蚀液进行冲洗。清洗干净之后将石墨烯薄膜转移至硅基底的下表面,形成石墨烯-硅肖特基异质结。
d、覆盖石墨烯薄膜下表面一角的位置,然后在石墨烯薄膜的下表面先沉积一层SiO2绝缘层,再沉积一层Al金属层。
e、将单晶硅衬底上表面一角的SiO2绝缘层刮掉(也可以在沉积SiO2绝缘层时,用胶带覆盖一角,使其不沉积SiO2,为后续顶电极的制作预留位置),然后涂覆In/Ga电极作为顶电极;在石墨烯薄膜未沉积SiO2绝缘层和Al金属层的位置涂覆In/Ga电极作为底电极,即完成硅基微腔窄带近红外光电探测器的制备。
图2为本实施例所制备光电探测器的归一化光谱响应曲线,可以看出器件对950-1200nm近红外光具有明显的光响应,而对可见光没明显的光响应,表明制备的器件具有可见光盲窄带近红外光响应特性。
图3为本实施例所制备的光探测器的时间响应曲线,可以看出器件在50H近红外脉冲光照下具有稳定的响应,上升时间/下降时间达1.07μs/2.27μs,具有高的响应速度。
图4为本实施例所制备光电探测器在零偏压下的响应度随波长变化曲线,可以看出器件响应度最高达122mA/W,表明器件对近红外光具有高的灵敏度。
综合来看,本实施例制备的光探测器具有明显的窄带近红外光响应、高响应速度、稳定性好等优异特性。
实施例2
如图1所示,本实施例的硅基微腔窄带近红外光电探测器,是以单晶硅衬底2作为基底,单晶硅衬底2的上表面刻蚀为硅微孔阵列结构,在硅微孔阵列上设置有上绝缘层1;在单晶硅衬底2的下表面转移有一层石墨烯薄膜3,形成石墨烯-硅肖特基异质结;在石墨烯薄膜3下表面设置有下绝缘层4;在下绝缘层4的下表面设置有金属反射层5;
在单晶硅衬底2的上表面设置有顶电极6,在石墨烯薄膜3的下表面设置有底电极7,顶电极6与单晶硅衬底2形成欧姆接触,底电极7与石墨烯薄膜3形成欧姆接触。
具体的,本实施例中:所用单晶硅衬底2的厚度为500μm,硅微孔直径为20μm、深度为10μm、相邻硅微孔的间距为60μm;上绝缘层1为10nm厚的SiO2绝缘层、下绝缘层4为100nm厚的SiO2绝缘层;金属反射层5为50μm厚的Al层;顶电极6为约60nm厚的In/Ga电极,底电极7为约60nm厚的In/Ga电极。
本实施例硅基微腔窄带近红外光电探测器的制备方法与实施例1相同。
本实施例所制备的器件性能参数与实施例1所列器件参数非常接近,同样具有950-1200nm波长范围的明显窄带近红外响应特性,响应速度与实施例1在同一数量级。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (4)

1.一种硅基微腔窄带近红外光电探测器,其特征在于:所述硅基微腔窄带近红外光电探测器是以单晶硅衬底(2)作为基底,所述单晶硅衬底(2)的上表面刻蚀为硅微孔阵列结构,在硅微孔阵列上设置有上绝缘层(1);在所述单晶硅衬底(2)的下表面转移有一层石墨烯薄膜(3),形成石墨烯-硅肖特基异质结;在所述石墨烯薄膜(3)下表面设置有下绝缘层(4);在所述下绝缘层(4)的下表面设置有金属反射层(5);
在所述单晶硅衬底(2)的上表面设置有顶电极(6),在所述石墨烯薄膜(3)的下表面设置有底电极(7),所述顶电极(6)与所述单晶硅衬底(2)形成欧姆接触,所述底电极(7)与所述石墨烯薄膜(3)形成欧姆接触;
所述上绝缘层(1)的材料为SiO2或Al2O3,所述上绝缘层(1)的厚度为10-100 nm;所述下绝缘层(4)的材料为SiO2或Al2O3,所述下绝缘层(4)的厚度为10-100 nm;
所述单晶硅衬底(2)的厚度为100-500 μm;所述硅微孔直径为10-100 μm,深度为5-20μm,相邻硅微孔的间距为10- 300 μm;
所述金属反射层(5)的材料为Al;所述金属反射层(5)的厚度为50-1000 μm。
2.根据权利要求1所述的硅基微腔窄带近红外光电探测器,其特征在于:所述石墨烯薄膜(3)为单层或多层石墨烯。
3.根据权利要求1所述的硅基微腔窄带近红外光电探测器,其特征在于:所述顶电极(6)为In/Ga电极;所述顶电极(6)的厚度为40-100 nm。
4.根据权利要求1所述的硅基微腔窄带近红外光电探测器,其特征在于:所述底电极(7)为In/Ga电极;所述底电极(7)的厚度为40-100 nm。
CN202010941539.2A 2020-09-09 2020-09-09 一种硅基微腔窄带近红外光电探测器 Active CN112002785B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010941539.2A CN112002785B (zh) 2020-09-09 2020-09-09 一种硅基微腔窄带近红外光电探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010941539.2A CN112002785B (zh) 2020-09-09 2020-09-09 一种硅基微腔窄带近红外光电探测器

Publications (2)

Publication Number Publication Date
CN112002785A CN112002785A (zh) 2020-11-27
CN112002785B true CN112002785B (zh) 2022-08-19

Family

ID=73469609

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010941539.2A Active CN112002785B (zh) 2020-09-09 2020-09-09 一种硅基微腔窄带近红外光电探测器

Country Status (1)

Country Link
CN (1) CN112002785B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113054109B (zh) * 2021-03-12 2022-07-08 浙江大学 有机-无机复合可见盲窄波段近红外光电探测器
CN113161442B (zh) * 2021-04-22 2022-10-14 合肥工业大学 一种硅肖特基结线阵列近红外光电探测器
CN113972295B (zh) * 2021-10-25 2023-04-07 中国科学院半导体研究所 光探测器及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE504086T1 (de) * 2007-05-28 2011-04-15 Consiglio Nazionale Ricerche Fotovoltaikvorrichtung mit verbesserter lichtsammlung
CN104600131A (zh) * 2015-01-16 2015-05-06 浙江大学 一种界面钝化的石墨烯/硅光电探测器及其制备方法
CN107768452A (zh) * 2017-10-19 2018-03-06 厦门大学 一种增强型石墨烯‑硅异质结光电探测芯片及其制备方法
CN107659824A (zh) * 2017-10-20 2018-02-02 哈尔滨市舍科技有限公司 基于用户视角的虚拟播放器
CN109192807A (zh) * 2018-08-31 2019-01-11 中国电子科技集团公司第四十四研究所 微透镜陷光结构的近红外响应光电探测器及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Silicon Meets Graphene for a New Family of Near-Infrared Schottky Photodetectors;Maurizio Casalino;《Applied Science》;20190905;第9卷(第3677期);正文第7页、图7 *

Also Published As

Publication number Publication date
CN112002785A (zh) 2020-11-27

Similar Documents

Publication Publication Date Title
CN112002785B (zh) 一种硅基微腔窄带近红外光电探测器
CN107342345B (zh) 一种基于铁电栅介质和薄层二硫化钼沟道的光电晶体管
CN111341875B (zh) 一种石墨烯/二硒化钯/硅异质结自驱动光电探测器
CN102509743B (zh) 基于二氧化钛/钛酸锶异质结的紫外光探测器及制备方法
CN107146830B (zh) 一种制备柔性透明的石墨烯/硅金属-半导体-金属光电探测器的方法
US11948951B2 (en) Wide spectrum multi-band detection structure with selective absorption enhancement and preparation method thereof
CN109659387A (zh) 基于杂化型等离子共振增强的红外探测器
CN106356421B (zh) 基于垂直导电方向的TiO2‑NiO异质P‑N结所形成光控传输沟道的紫外探测器及其制备方法
CN102226715A (zh) 一种基于一维硅纳米结构阵列的可见光电化学探测器
CN112885922B (zh) 基于PtSe2与硅纳米柱阵列的光电探测器及其制备方法
WO2020155810A1 (zh) 一种透红外的高灵敏可见光探测器及其制备方法
WO2022126933A1 (zh) 波长选择性响应的光电探测器的制备方法
CN101419092A (zh) 平面化热绝缘结构的热释电红外探测器及其制备方法
CN112614946B (zh) 一种具有金字塔结构的柔性钙钛矿光电探测器及其制备
CN105810828A (zh) 基于PDHF/TiO2/PDHF双异质结型空穴增益紫外探测器及其制备方法
JP2003098338A (ja) 光吸収膜およびその製造方法
WO2022100053A1 (zh) 含有金属硅化物红外吸收层的石墨烯场效应电荷耦合器件
CN112002784B (zh) 一种自滤光可见盲硅兼容的红外光电探测器
CN107359217B (zh) 一种快速响应紫外光探测器及制备方法
CN113161442B (zh) 一种硅肖特基结线阵列近红外光电探测器
CN102194915B (zh) 自组装纳米TiO2薄膜紫外光探测器及其制备方法
CN111477716A (zh) 一种1t相硫化钨双极性异质结窄带近红外光电探测器及其制备方法
CN207866749U (zh) 一种集成化湿度传感器
CN111341874B (zh) 基于Si微米孔/CuO垂直结构异质结的自驱动宽带光电探测器及其制备方法
CN114300551A (zh) 石墨烯/等离子激元黑硅近红外探测器结构及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant