CN110473904A - 垂直GeSe/MoS2 p-n异质结构 - Google Patents

垂直GeSe/MoS2 p-n异质结构 Download PDF

Info

Publication number
CN110473904A
CN110473904A CN201910481813.XA CN201910481813A CN110473904A CN 110473904 A CN110473904 A CN 110473904A CN 201910481813 A CN201910481813 A CN 201910481813A CN 110473904 A CN110473904 A CN 110473904A
Authority
CN
China
Prior art keywords
gese
mos
layer
vertical
heterojunction structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201910481813.XA
Other languages
English (en)
Inventor
吉娜
程庆苏
渠开放
王伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Post and Telecommunication University
Original Assignee
Nanjing Post and Telecommunication University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Post and Telecommunication University filed Critical Nanjing Post and Telecommunication University
Priority to CN201910481813.XA priority Critical patent/CN110473904A/zh
Publication of CN110473904A publication Critical patent/CN110473904A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7391Gated diode structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/8611Planar PN junction diodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明公开了一种垂直GeSe/MoS2p‑n异质结构,由GeSe层、MoS2层、四个金属电极、SiO2/Si衬底组成;所述的MoS2层位于衬底上,GeSe层与MoS2层垂直异质,GeSe层与MoS2层两端分别与金属电极接触;所述的异质结构利用GeSe中的自然p型掺杂和MoS2中的n型掺杂,创建了所述的新GeSe/MoS2pn异质结,GeSe和MoS2之间的II型能带对准以及这两种材料中的互补自然掺杂可以使垂直隧穿场效应管p‑n结突变和缩短屏蔽隧道长度,适用于低功耗应用;在室温下,GeSe/MoS2p‑n异质结的IV曲线类似于典型的p‑n二极管特性,正向偏压(>100nA)的电流呈指数增加,反向偏压(~1nA)的电流小,具有整流特性。

Description

垂直GeSe/MoS2 p-n异质结构
技术领域
本发明涉及半导体异质结构,特别涉及一种垂直GeSe/MoS2 p-n异质结构。
背景技术
分层IV组单卤代化合物是一种新兴的材料平台。与石墨烯,过渡金属二硫化物和黑磷相比,层状单硫化物如SnS,SnSe,GeS和GeSe具有许多独特的电学,热学和光学性质,可用于各种应用,特别的,层状单硫族化合物具有斜方晶系结构并具有异常高的Grüneisen参数,导致超低的热导率和极高的热电品质因数,这使得它们有望用于热电应用。层状IV族单卤化物的带隙在0.5到1.5eV的范围内,与太阳光谱相当,这使得它们对太阳能电池和光电探测器也很有吸引力。此外,一些层状单硫族化合物的有效质量远小于过渡金属二硫化物的有效质量,导致电子应用中更高的载流子迁移率。在层状单卤化物中,GeSe是窄带隙半导体,对于近红外光电探测器和电子隧道器件特别有吸引力。GeSe在体中具有1.08eV的间接带隙,在单层中具有~1.7eV的直接带隙。具有化学计量组成的单晶GeSe在300K时具有95cm2/Vs的空穴迁移率,在112K具有663cm 2/Vs的空穴迁移率。理论上,据预测,单层GeSe的平均空穴迁移率在300K时高达1.1x103cm2/Vs。据报道,GeSe沿垂直于平面方向具有高的光响应性,尽管对单层GeSe晶体进行了大量研究并对单层进行了理论计算,但对GeSe和GeSe异质结构的各向异性电流传输的实验研究仍未实现。
发明内容
发明目的:本发明提供了一种具有各向异性和超陡的亚阈值摆幅的垂直GeSe/MoS2 p-n异质结构。
技术方案:本发明由GeSe层、MoS2层、四个金属电极、衬底组成;所述的MoS2呈位于衬底上,GeSe层与MoS2层垂直异质,GeSe层与MoS2层两端分别与四个金属电极接触。
进一步的,所述的GeSe层为单层,MoS2层为单层。
进一步的,所述的金属电极通过电子束光刻,金属沉积和剥离形成。
进一步的,所述的金属电极由25nm-35nm钛和15nm-25nm金组成。
进一步的,所述的衬底为SiO2/Si。
进一步的,所述的GeSe/MoS2 p-n异质结构能够实现互补金属氧化物半导体电路。
有益效果:与现有技术相比,本发明有以下显著效果:GeSe和MoS2之间的II型能带对准以及这两种材料中的互补自然掺杂可以使垂直隧穿场效应管pn结突变和缩短屏蔽隧道长度,并且这些隧穿场效应管具有超陡的亚阈值摆幅特性,适用于低功耗应用;在室温下,GeSe/MoS2 p-n异质结的IV曲线类似于典型的p-n二极管特性,正向偏压(>100nA)的电流呈指数增加,反向偏压(~1nA)的电流小,具有整流特性。
附图说明
图1为垂直GeSe/MoS2 p-n异质结构俯视图;
图2为GeSe晶体结构图。
具体实施方式
如图1及图2所示,本发明由GeSe层1、MoS2层2、四个金属电极3、衬底4组成;所述的MoS2层位于衬底上4,GeSe层1与MoS2层2垂直异质,GeSe层1与MoS2层2两端分别与金属电极3连接;
本发明利用GeSe中的自然p型掺杂和MoS2中的n型掺杂,创建了所述的新GeSe/MoS2pn异质结,首先剥离多层GeSe薄片并转移到衬底上,多层MoS2薄片从块状晶体上剥离并转移到由载玻片支撑的粘弹性印模上,然后使用机械显微操作台和显微镜定位载玻片以使薄片与GeSe的位置对齐,并通过压制并缓慢释放粘弹性印模来转移MoS2薄片,金属电极由25nm-35nm钛和15nm-25nm金组成,使用电子束光刻,金属沉积和剥离形成。测量有效质量时,采用Perdew-Burke-Eherenzoff交换相关电位。计算时,采用的PAW赝势用VASP代码执行。然后使用具有Perdew-Zunger(PZ)局部密度近似(LDA)交换相关函数的QE代码进行拉曼张量的DFT计算。最后使用QE的密度泛函扰动理论获得每个声子模式的拉曼张量。

Claims (5)

1.一种垂直GeSe/MoS2 p-n异质结构,其特征在于:由GeSe层(1)、MoS2层(2)、四个金属电极(3)、衬底(4)组成;所述的MoS2层(2)位于衬底上(4),GeSe层(1)与MoS2层(2)垂直异质,GeSe层(1)与MoS2层(2)两端分别与金属电极(3)接触。
2.根据权利要求1所述的垂直GeSe/MoS2 p-n异质结构,其特征在于:所述的异质结构中GeSe层(1)为单层、MoS2层(2)为单层。
3.根据权利要求1所述的垂直GeSe/MoS2 p-n异质结构,其特征在于:所述的金属电极(3)通过电子束光刻,金属沉积和剥离形成。
4.根据权利要求1所述的垂直GeSe/MoS2 p-n异质结构,其特征在于:所述的四个金属电极(3)由25nm-35nm钛和15nm-25nm金组成。
5.根据权利要求1所述的垂直GeSe/MoS2 p-n异质结构,其特征在于:所述的衬底为SiO2/Si。
CN201910481813.XA 2019-06-04 2019-06-04 垂直GeSe/MoS2 p-n异质结构 Withdrawn CN110473904A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910481813.XA CN110473904A (zh) 2019-06-04 2019-06-04 垂直GeSe/MoS2 p-n异质结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910481813.XA CN110473904A (zh) 2019-06-04 2019-06-04 垂直GeSe/MoS2 p-n异质结构

Publications (1)

Publication Number Publication Date
CN110473904A true CN110473904A (zh) 2019-11-19

Family

ID=68507359

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910481813.XA Withdrawn CN110473904A (zh) 2019-06-04 2019-06-04 垂直GeSe/MoS2 p-n异质结构

Country Status (1)

Country Link
CN (1) CN110473904A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114759104A (zh) * 2022-03-29 2022-07-15 华南师范大学 基于ⅱ型范德华异质结近红外偏振光电探测器及其制备方法
CN114975675A (zh) * 2022-06-30 2022-08-30 中国科学院半导体研究所 光电器件及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114759104A (zh) * 2022-03-29 2022-07-15 华南师范大学 基于ⅱ型范德华异质结近红外偏振光电探测器及其制备方法
CN114759104B (zh) * 2022-03-29 2024-01-30 华南师范大学 基于ⅱ型范德华异质结近红外偏振光电探测器及其制备方法
CN114975675A (zh) * 2022-06-30 2022-08-30 中国科学院半导体研究所 光电器件及其制备方法

Similar Documents

Publication Publication Date Title
JP6810753B2 (ja) 黒リン結晶及びその製造方法、光電検出器、二次元黒リンpn接合及びその製造方法並びに使用
US10529877B2 (en) Semiconductor devices including two-dimensional materials and methods of manufacturing the semiconductor devices
Dharmadasa et al. Scientific complications and controversies noted in the field of CdS/CdTe thin film solar cells and the way forward for further development
Zhang et al. Epitaxial growth of metal-semiconductor van der Waals heterostructures NbS2/MoS2 with enhanced performance of transistors and photodetectors
CN107634090B (zh) 二维黑磷pn结、其制备方法及应用
CN102770967A (zh) 太阳能电池
Zhang et al. ZnSe nanowire/Si p–n heterojunctions: device construction and optoelectronic applications
CN104300049B (zh) 带有应变源的GeSn量子阱红外发光器
Haque et al. Efficiency enhancement of WSe2 heterojunction solar cell with CuSCN as a hole transport layer: A numerical simulation approach
Burke et al. Minority carrier barrier heterojunctions for improved thermoelectric efficiency
Ma et al. Efficient doping modulation of monolayer WS2 for optoelectronic applications
CN110473904A (zh) 垂直GeSe/MoS2 p-n异质结构
Fu et al. Enhanced photoresponse in ZnO nanorod array/p-GaN self-powered ultraviolet photodetectors via coupling with CuO nanostructures
Basyoni et al. Investigation of base high doping impact on the npn solar cell microstructure performance using physically based analytical model
CN105324855B (zh) 硅异质结太阳能电池
Sun et al. Synthesis of ultrathin topological insulator β‐Ag2Te and Ag2Te/WSe2‐based high‐performance photodetector
WO2011100000A1 (en) Self assembled nano dots (sand) and non-self assembled nano-dots (nsand) structures to create spacers for energy transfer.
Zhang et al. Nanoscale p–n junctions based on p-type ZnSe nanowires and their optoelectronic applications
Ahmad et al. Effect of different metallic contacts on the device performance of a pn heterostructure of a topological insulator and silicon (p-Bi 2 Te 3/n-Si)
CN102569364B (zh) 一种高迁移率衬底结构及其制备方法
CN108428764A (zh) 一种GaAs基LFET太赫兹红外光探测器和制备方法
Le Borgne et al. Figure of merit based maximization of the quantum efficiency of (single-wall-carbon-nanotubes/n-type silicon) hybrid photovoltaic devices
KR102031961B1 (ko) 금속-절연체 전이 금속을 이용하는 열전소자
KR20140036080A (ko) Ⅲ-ⅴ족 화합물 태양전지 및 그 제조방법
Li et al. Enhanced efficiency of graphene-silicon Schottky junction solar cell through pyramid arrays texturation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20191119

WW01 Invention patent application withdrawn after publication