CN108428764A - 一种GaAs基LFET太赫兹红外光探测器和制备方法 - Google Patents

一种GaAs基LFET太赫兹红外光探测器和制备方法 Download PDF

Info

Publication number
CN108428764A
CN108428764A CN201810090440.9A CN201810090440A CN108428764A CN 108428764 A CN108428764 A CN 108428764A CN 201810090440 A CN201810090440 A CN 201810090440A CN 108428764 A CN108428764 A CN 108428764A
Authority
CN
China
Prior art keywords
source
gaas
resistance
lfet
uptake zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810090440.9A
Other languages
English (en)
Other versions
CN108428764B (zh
Inventor
邓惠勇
潘昌翊
殷子薇
谢经辉
张祎
李世民
王超
戴宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Technical Physics of CAS
Original Assignee
Shanghai Institute of Technical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Technical Physics of CAS filed Critical Shanghai Institute of Technical Physics of CAS
Priority to CN201810090440.9A priority Critical patent/CN108428764B/zh
Publication of CN108428764A publication Critical patent/CN108428764A/zh
Application granted granted Critical
Publication of CN108428764B publication Critical patent/CN108428764B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/112Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种GaAs基LFET太赫兹红外光探测器和制备方法,该探测器包括吸收区、阻挡区、源漏区、介电区和栅区六个部分,制备方法包括五个步骤,即通过光刻、离子注入、等离子体增强化学气相沉积法(PECVD)、热蒸发技术在高阻GaAs基底依次形成吸收区,源漏区(与阻挡区),介电区,源漏电极,以及栅区。本发明的优点是:栅区电压导致吸收区载流子耗尽有效降低了光生电子‑空穴对的复合速率,提高了内量子效率,从而提高了传统杂质光电导型光子探测器的探测率,并且与当前的半导体工艺技术相兼容。

Description

一种GaAs基LFET太赫兹红外光探测器和制备方法
技术领域
本发明涉及一种基于LFET(类场效应晶体管)和杂质带吸收光电导原理的THz红外探测器和制备方法,特别适合于波长处于40-300微米范围的THz红外光的探测。
背景技术
红外探测技术在气象预报、环境监控、导弹制导、夜视成像等领域有重要的应用需求,这方面以HgCdTe、InGaAs等主流的红外探测器为主,主要响应1-20微米波段。这类器件是基于半导体pn结构光伏效应原理工作,因而,探测器的响应率高并且器件具有较高的工作温度(液氮),发展迅速。但受材料类型的制约,探测器的响应波长较短。
近年来,随着国家对深空红外探测技术的需求,阻挡杂质带(BIB)探测器日益得到重视,主要的器件类型及响应波段有:硅掺砷(Si:As)覆盖10~25μm,硅掺锑(Si:Sb)覆盖20~40μm,锗掺镓(Ge:Ga)覆盖40~70μm,应变锗掺镓(Ge:Ga)覆盖70~200μm,特别是GaAs掺碲(GaAs:Te)的响应波长范围长达30~300μm,是探测深空冷对象的最优探测器。由于探测波长较长,BIB探测器的工作原理利用杂质光电导效应,不同的是增加一层相同材料类型的高电阻阻挡层,有效降低了器件暗电流。为了提高器件的内量子效率,BIB器件工作时处于外偏压状态,目的是在吸收区形成一段载流子耗尽区,但较窄的耗尽层宽度影响了器件的探测率。
发明内容
本发明的目的是提供一种GaAs基LFET THz红外光探测器,并提供一种实现该结构的制备方法,解决了传统BIB探测器耗尽层较窄导致器件量子效率偏低的技术难题。所述的新型探测器的结构和工作方式不同于传统的FET和BIB探测器,其特征在于:
所述的探测器的吸收区和阻挡区代替了晶体管的沟道;
所述的介质层隔断了源漏电极;
所述的探测器的工作方式在于:源漏区和栅区分别施加固定大小的偏压,被探测光背入射至吸收区,通过监控源漏区之间电流的变化来探测入射光。
所述的GaAs基底是高阻型半导体材料,载流子浓度范围1×1012-8×1012cm-3,使阻挡区载流子浓度基本处于本征值,从而阻挡吸收区杂质带载流子通过。
一种实现该探测器的制备方法,包括如下步骤:
①利用光刻工艺在高阻GaAs基底表面形成掩膜层,接着离子注入吸收杂质形成吸收区;
②利用光刻工艺在GaAs基底表面形成掩膜层,接着离子注入重掺杂杂质形成源漏区和阻挡区;
③采用PECVD工艺在GaAs基底表面蒸镀一层Si3N4介质层;
④利用光刻工艺在介质层表面形成掩膜层,接着热蒸发金属膜形成源漏极欧姆接触;
⑤利用光刻工艺样品在表面再次形成掩膜层,接着热蒸发金属膜制备栅区。
本发明的优点是:
1.探测器结构吸收了FET晶体管和BIB探测器的优点,而弥补了BIB的不足,采用此结构的器件响应波长长,并且具有很高的探测率。
2.本发明结构简单,制备成本低,与当前的半导体工艺相兼容,并且容易推广应用到其它Ge、Si基器件。
附图说明
图1为GaAs基LFET THz红外光探测器结构图。
图2为本发明实施例的器件工艺流程示意图。
具体实施方式
下面结合附图1、2和具体的实施例来详细阐述利用本发明一种GaAs基LFET THz红外光探测器和制备方法制备GaAs:Zn FET THz红外探测器的工艺技术及工作方式:
选择低阻值高纯GaAs基底1,杂质浓度3×1012cm-3,清洗超声后利用掩膜曝光工艺在基底表面覆盖一层光刻胶71,露出吸收区2;
采用离子注入方法注入Zn原子形成吸收区2,杂质浓度和深度分别为3×1016cm-3和200nm;
利用套刻工艺在GaAs基底1表面覆盖露出源漏区3的图形光刻胶72,并利用离子注入Zn原子形成重掺杂的源漏区3和阻挡区11,杂质浓度5×1018cm-3
采用PECVD工艺在GaAs基底1表面蒸镀一层200nm厚的Si3N4介质层4;
利用光刻工艺在介质层4表面形成掩膜层73,接着热蒸发Ti、Au膜形成源漏极6欧姆接触;
最后,利用光刻工艺样品表面再次形成掩膜层74,接着热蒸发Au膜制备栅区(5)。
工作时,源漏区3和栅极5分别施加约1V和3V电压,当波长约40微米的红外光入射至吸收区,产生的电子-空穴对迅速被分开至源漏区3,导致流过Keithley 2601B电流表的电流值发生变化,即可算出响应率。

Claims (3)

1.一种GaAs基LFET太赫兹红外光探测器,包括GaAs基底(1)、吸收区(2)、阻挡区(11)、源漏区(3)、介电层(4)和栅区(5),其特征在于:
所述的吸收区(2)和阻挡区(11)代替了晶体管的沟道;
所述的介质层(4)隔断了源漏电极(6);
所述探测器的源漏区(3)和栅区(5)分别施加固定大小的偏压,被探测光背入射至吸收区,通过监控源漏区(3)之间电流的变化来探测入射光。
2.根据权利要求1所述的一种GaAs基LFET太赫兹红外光探测器,其特征在于,所述的GaAs基底(1)是高阻型半导体材料,载流子浓度范围1×1012-8×1012cm-3
3.一种制备如权利要求1所述的GaAs基LFET太赫兹红外光探测器的方法,其特征在于包括如下步骤:
①利用光刻工艺在高阻GaAs基底(1)表面形成掩膜层(71),接着离子注入吸收杂质形成吸收区(2);
②利用光刻工艺在GaAs基底(1)表面形成掩膜层(72),接着离子注入重掺杂杂质形成源漏区(3)和阻挡区(11);
③采用PECVD工艺在GaAs基底(1)表面蒸镀一层Si3N4介质层(4);
④利用光刻工艺在介质层(4)表面形成掩膜层(73),接着热蒸发金属膜形成源漏极(6)欧姆接触;
⑤利用光刻工艺在样品表面再次形成掩膜层(74),接着热蒸发金属膜制备栅区(5)。
CN201810090440.9A 2018-01-30 2018-01-30 一种GaAs基LFET太赫兹红外光探测器和制备方法 Active CN108428764B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810090440.9A CN108428764B (zh) 2018-01-30 2018-01-30 一种GaAs基LFET太赫兹红外光探测器和制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810090440.9A CN108428764B (zh) 2018-01-30 2018-01-30 一种GaAs基LFET太赫兹红外光探测器和制备方法

Publications (2)

Publication Number Publication Date
CN108428764A true CN108428764A (zh) 2018-08-21
CN108428764B CN108428764B (zh) 2019-07-23

Family

ID=63156181

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810090440.9A Active CN108428764B (zh) 2018-01-30 2018-01-30 一种GaAs基LFET太赫兹红外光探测器和制备方法

Country Status (1)

Country Link
CN (1) CN108428764B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111739972A (zh) * 2020-07-01 2020-10-02 中国科学院上海技术物理研究所 一种双面环形Ge基长波红外和太赫兹探测器和制备方法
CN113690338A (zh) * 2021-08-13 2021-11-23 中国科学院上海技术物理研究所 一种MoS2和GaAs异质结红外探测器及制备方法
CN113725310A (zh) * 2021-08-13 2021-11-30 中国科学院上海技术物理研究所 一种多结型锗基长波红外探测器及制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5942771A (en) * 1997-04-14 1999-08-24 Mitsubishi Denki Kabushiki Kaisha Semiconductor photodetector
JP2010045313A (ja) * 2008-08-18 2010-02-25 Univ Of Tokyo 検出素子の製造方法及び遠赤外線検出器の製造方法。
CN102054891A (zh) * 2010-10-13 2011-05-11 中国科学院苏州纳米技术与纳米仿生研究所 室温太赫兹波探测器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5942771A (en) * 1997-04-14 1999-08-24 Mitsubishi Denki Kabushiki Kaisha Semiconductor photodetector
JP2010045313A (ja) * 2008-08-18 2010-02-25 Univ Of Tokyo 検出素子の製造方法及び遠赤外線検出器の製造方法。
CN102054891A (zh) * 2010-10-13 2011-05-11 中国科学院苏州纳米技术与纳米仿生研究所 室温太赫兹波探测器

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BINGBING WANG 等: "The dependence of dark current on temperature in epitaxial Si:P BIB detector", 《2015 INTERNATIONAL CONFERENCE ON NUMERICAL SIMULATION OF OPTOELECTRONIC DEVICES》 *
REICHERTZ L.A. 等: "First results on GaAs blocked impurity band (BIB) structures for far-infrared detector arrays", 《SPIE PROCEEDINGS》 *
廖开升: "用于远红外探测的Si:P阻挡杂质带红外探测器研制", 《红外与毫米波学报》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111739972A (zh) * 2020-07-01 2020-10-02 中国科学院上海技术物理研究所 一种双面环形Ge基长波红外和太赫兹探测器和制备方法
CN111739972B (zh) * 2020-07-01 2023-11-10 中国科学院上海技术物理研究所 一种双面环形Ge基长波红外和太赫兹探测器和制备方法
CN113690338A (zh) * 2021-08-13 2021-11-23 中国科学院上海技术物理研究所 一种MoS2和GaAs异质结红外探测器及制备方法
CN113725310A (zh) * 2021-08-13 2021-11-30 中国科学院上海技术物理研究所 一种多结型锗基长波红外探测器及制备方法
CN113725310B (zh) * 2021-08-13 2024-03-26 中国科学院上海技术物理研究所 一种多结型锗基长波红外探测器及制备方法

Also Published As

Publication number Publication date
CN108428764B (zh) 2019-07-23

Similar Documents

Publication Publication Date Title
Wang et al. Sensing infrared photons at room temperature: from bulk materials to atomic layers
Zhang et al. Ultrasensitive mid-wavelength infrared photodetection based on a single InAs nanowire
US8895839B2 (en) Multijunction photovoltaic device
Yadav et al. Sol-gel-based highly sensitive Pd/n-ZnO thin film/n-Si Schottky ultraviolet photodiodes
CN108428764B (zh) 一种GaAs基LFET太赫兹红外光探测器和制备方法
CN102169918B (zh) 一种低偏置电压下具有增益的硅光电探测器及其制备方法
JPH0576791B2 (zh)
CN107634090B (zh) 二维黑磷pn结、其制备方法及应用
CN102187469A (zh) 电磁辐射转换器和电池
Hazra et al. A p-silicon nanowire/n-ZnO thin film heterojunction diode prepared by thermal evaporation
Ilican et al. XPS Studies of Electrodeposited Grown F‐Doped ZnO Rods and Electrical Properties of p‐Si/n‐FZN Heterojunctions
Gautam et al. Analytical model of double gate MOSFET for high sensitivity low power photosensor
Kwon et al. Performance enhancement of graphene/Ge near-infrared photodetector by modulating the doping level of graphene
Wang et al. Wide-bandgap semiconductor microtubular homojunction photodiode for high-performance UV detection
CN111739972B (zh) 一种双面环形Ge基长波红外和太赫兹探测器和制备方法
Scagliotti et al. Large-area, high-responsivity, fast and broadband graphene/n-Si photodetector
Hao et al. Deep ultraviolet detectors based on wide bandgap semiconductors: a review
Chen et al. Ultrahigh Responsivity β-Ga 2 O 3/BP Junction Field Effect Phototransistors for UV/IR Dual-Band Detection
Alharbi et al. Selenium oxide based laser sensors designed for optoelectronic applications
Li et al. Study on dark current of extended wavelength InGaAs detectors
CN110896115B (zh) 光电晶体管、红外探测器和光电晶体管的制作方法
Yang et al. High-Performance Photodetectors With Polarization Sensitivity Based on pn and pp+ Black Phosphorus/Germanium Heterojunctions
US10177271B2 (en) Photodetectors exploiting electrostatic trapping and percolation transport
Cho et al. Highly Efficient Filterless Bilateral Majority Carrier‐Type Color Photodetectors
Tang et al. Boosting performances of ZnO microwire homojunction ultraviolet self-powered photodetector by coupled interfacial engineering and plasmonic effects

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant