CN111739972A - 一种双面环形Ge基长波红外和太赫兹探测器和制备方法 - Google Patents

一种双面环形Ge基长波红外和太赫兹探测器和制备方法 Download PDF

Info

Publication number
CN111739972A
CN111739972A CN202010623567.XA CN202010623567A CN111739972A CN 111739972 A CN111739972 A CN 111739972A CN 202010623567 A CN202010623567 A CN 202010623567A CN 111739972 A CN111739972 A CN 111739972A
Authority
CN
China
Prior art keywords
electrode
region
absorption
area
blocking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010623567.XA
Other languages
English (en)
Other versions
CN111739972B (zh
Inventor
邓惠勇
张祎
殷子薇
窦伟
单玉凤
张宗坤
潘昌翊
戴宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Technical Physics of CAS
Original Assignee
Shanghai Institute of Technical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Technical Physics of CAS filed Critical Shanghai Institute of Technical Physics of CAS
Priority to CN202010623567.XA priority Critical patent/CN111739972B/zh
Publication of CN111739972A publication Critical patent/CN111739972A/zh
Application granted granted Critical
Publication of CN111739972B publication Critical patent/CN111739972B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/1013Devices sensitive to infrared, visible or ultraviolet radiation devices sensitive to two or more wavelengths, e.g. multi-spectrum radiation detection devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种双面环形Ge基长波红外和太赫兹探测器和制备方法,该探测器包括上下二层,每一层由环状的吸收区、中心阻挡区、环状吸收区电极和中心阻挡区电极组成,层与层之间的吸收区和阻挡区电极分别通过欧姆接触串联,制备方法包括五个步骤,即通过光刻、离子注入、热蒸发技术在高阻Ge基底依次形成上吸收区,下吸收区,上电极区,下电极区,以及上下电极串联端。本发明的优点是:双面环形的器件结构有效增强了入射光子吸收和光生电子‑空穴对的产生效率,提高了量子效率,从而提高了传统BIB型光子探测器的探测率,并且与当前的半导体工艺技术相兼容。

Description

一种双面环形Ge基长波红外和太赫兹探测器和制备方法
技术领域
本发明涉及一种基于BIB(阻挡杂质带)杂质带吸收光电导原理的新型结构的红外/探测器和制备方法,特别适合于波长处于40-300微米范围的长波红外和太赫兹光的探测。
背景技术
红外探测技术在气象预报、环境监控、导弹制导、夜视成像等领域有重要的应用需求,这方面以HgCdTe、InGaAs等主流的红外探测器为主,主要响应1-20微米波段。这类器件是基于半导体pn结构光伏效应原理工作,因而,探测器的响应率高并且器件具有较高的工作温度(液氮),发展迅速。但受材料类型的制约,探测器的响应波长较短。
近年来,随着国家对深空红外探测技术的需求,阻挡杂质带(BIB)探测器日益得到重视,主要的器件类型及响应波段有:硅掺砷(Si:As)覆盖10~25μm,硅掺锑(Si:Sb)覆盖20~40μm,锗掺镓(Ge:Ga)覆盖40~70μm,应变锗掺镓(Ge:Ga)覆盖70~200μm,特别是GaAs掺碲(GaAs:Te)的响应波长范围长达30~300μm,是探测深空冷对象的最优探测器。由于探测波长较长,BIB探测器的工作原理利用杂质光电导效应,不同的是增加一层相同材料类型的高电阻阻挡层,有效降低了器件暗电流。然而,随着探测波长延长,大部分入射光子不能被基底材料吸收导致器件的量子效率急剧降低,一般Ge基BIB探测器的量子效率<40%,同时,BIB结构的探测器产生的有效光生载流子主要发生在吸收区和阻挡区之间的耗尽区,较短的耗尽区也不利于光子的有效吸收利用,限制了探测器的量子效率。
发明内容
本发明的目的是提供一种双面环形Ge基长波红外和太赫兹探测器,并提供一种实现该结构的制备方法,所述的新型探测器的结构和工作方式不同于传统的BIB探测器,其特征在于:
所述的探测器的环形吸收区和阻挡区代替了传统BIB探测器的背靠背结构,将耗尽区的长度增加了3倍;
所述的双面结构采用镜像方式,即上吸收区、上阻挡区、上吸收区电极和上阻挡区电极分别位于下吸收区、下阻挡区、下吸收区电极和下阻挡区电极的正上方;
所述的上吸收区电极和下吸收区电极为环形,上阻挡区电极和下阻挡区电极位于分别位于上阻挡区和下阻挡区的中心位置;
所述的上吸收区电极和下吸收区电极由吸收区串联导通,上阻挡区电极和下阻挡区电极由阻挡区串联导通;
所述的探测器的工作方式在于:吸收区串联端和阻挡区串联端分别施加固定大小的偏压,被探测光入射至上层器件表面,并穿透基底后入射至下层器件,通过监测电流的变化来探测入射光。
所述的Ge基底1是高阻型半导体材料,载流子浓度范围为1×1012~5×1014cm-3
所述的上吸收区2和下吸收区3的杂质类型一般为B、P和Ga,载流子浓度范围为5×1016~1×1018cm-3,上吸收区2和下吸收区3的边长范围为90~900μm。
所述的上阻挡区4和下阻挡区5的边长范围为30~50μm。
一种实现该探测器的制备方法,包括如下步骤:
①利用光刻工艺在高阻Ge基底上表面形成掩膜层,接着离子注入吸收杂质形成上吸收区;
②采用与步骤①相同的工艺在Ge基底下表面制备下吸收区;
③利用光刻工艺在Ge基底上表面形成掩膜层,接着离子注入重掺杂杂质形成上吸收区电极和上阻挡区电极;
④采用与步骤③相同的工艺在Ge基底下表面制备下吸收区电极和下阻挡区电极;
⑤将上吸收区电极和下吸收区电极连接起来形成吸收区串联端,上阻挡区电极和下阻挡区电极连接起来形成阻挡区串联端。
本发明的优点是:
1.探测器结构吸收了BIB探测器暗电流低的优点,而弥补了BIB耗尽区窄、吸收弱的不足,采用此结构的器件响应波长长,并且具有很高的探测率。
2.本发明结构简单,制备成本低,与当前的半导体工艺相兼容,并且容易推广应用到其它GaAs、Si基器件。
附图说明
图1本发明探测器结构图。
图2为本发明实施例的器件工艺流程示意图。
具体实施方式
下面结合附图和具体的实施例来详细阐述利用本发明一种双面环形Ge基长波红外和太赫兹探测器和制备方法制备Ge:B太赫兹和远红外探测器的工艺技术及工作方式:
选择低阻值高纯Ge基底1,杂质浓度1×1013cm-3,清洗超声后利用掩膜曝光工艺在基底上表面覆盖一层光刻胶12,露出上吸收区2;
采用离子注入方法注入B原子形成上吸收区2,杂质浓度和深度分别为约1×1017cm-3和300nm;
采用相同的工艺在基底下表面制备下吸收区3;
利用套刻工艺在GaAs基底1上表面覆盖露出电极区6和8的图形光刻胶13,并利用离子注入B原子形成重掺杂的上吸收区电极6和上阻挡区电极8,杂质浓度5×1017cm-3
采用相同的工艺在基底下表面制备下吸收区电极7和下阻挡区电极9;
利用硅铝丝将上吸收区电极6和下吸收区电极7连接起来形成吸收区串联端10,将上阻挡区电极8和下阻挡区电极9连接起来形成阻挡区串联端11。
工作时,电极串联端10和11施加约1V电压,当波长约100微米的红外光入射至上表面并穿透至下表面,双层器件的耗尽区产生的电子-空穴对迅速被分开至串联电极两端,导致流过Keithley 2601B电流表的电流值发生变化,即可算出响应率。

Claims (5)

1.一种双面环形Ge基长波红外和太赫兹探测器,包括Ge基底(1)、上吸收区(2)、上阻挡区(4)、上吸收区电极(6)、上阻挡区电极(8)、下吸收区(3)、下阻挡区(5)、下吸收区电极(7)、下阻挡区电极(9)、吸收区串联端(10)和阻挡区串联端(11),其特征在于:
所述的环形的上吸收区(2)和上阻挡区(4)代替了传统BIB探测器的背靠背结构,将耗尽区的长度增加了3倍;
探测器双面结构采用镜像方式,即上吸收区(2)、上阻挡区(4)、上吸收区电极(6)和上阻挡区电极(8)分别位于下吸收区(3)、下阻挡区(5)、下吸收区电极(7)和下阻挡区电极(9)的正上方;
所述的上吸收区电极(6)和下吸收区电极(7)为环形,上阻挡区电极(8)和下阻挡区电极(9)位于分别位于上阻挡区(4)和下阻挡区(5)的中心位置;
所述的上吸收区电极(6)和下吸收区电极(7)连接为吸收区串联端(10),上阻挡区电极(8)和下阻挡区电极(9)连接为阻挡区串联端(11);
所述的探测器的工作方式在于:吸收区串联端(10)和阻挡区串联端(11)分别施加固定大小的偏压,被探测光入射至上层器件表面,并穿透基底(1)后入射至下层器件,通过监测电流的变化来探测入射光。
2.根据权利要求1所述的双面环形Ge基长波红外和太赫兹探测器,其特征在于:
所述的Ge基底(1)是高阻型半导体材料,载流子浓度范围为1×1012~5×1014cm-3
3.根据权利要求1所述的双面环形Ge基长波红外和太赫兹探测器,其特征在于:
所述的上吸收区(2)和下吸收区(3)的杂质类型一般为B、P和Ga,载流子浓度范围为5×1016~1×1018cm-3,上吸收区(2)和下吸收区(3)的边长范围为90~900μm。
4.根据权利要求1所述的双面环形Ge基长波红外和太赫兹探测器,其特征在于:
所述的上阻挡区(4)和下阻挡区(5)的边长范围为30~50μm。
5.一种制备如权利要求1所述的双面环形Ge基长波红外和太赫兹探测器的方法,其特征在于包括如下步骤:
①利用光刻工艺在高阻Ge基底(1)上表面形成掩膜层(12),接着离子注入吸收杂质形成上吸收区(2);
②采用与步骤①相同的工艺在Ge基底(1)下表面制备下吸收区(3);
③利用光刻工艺在Ge基底(1)上表面形成掩膜层(13),接着离子注入重掺杂杂质形成上吸收电极区(6)和上阻挡区电极(8);
④采用与步骤③相同的工艺在Ge基底(1)下表面制备下吸收电极区(7)和下阻挡区电极(9);
⑤将上吸收区电极(6)和下吸收区电极(7)连接起来形成吸收区串联端(10),上阻挡区电极(8)和下阻挡区电极(9)连接起来形成吸收区串联端(11)。
CN202010623567.XA 2020-07-01 2020-07-01 一种双面环形Ge基长波红外和太赫兹探测器和制备方法 Active CN111739972B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010623567.XA CN111739972B (zh) 2020-07-01 2020-07-01 一种双面环形Ge基长波红外和太赫兹探测器和制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010623567.XA CN111739972B (zh) 2020-07-01 2020-07-01 一种双面环形Ge基长波红外和太赫兹探测器和制备方法

Publications (2)

Publication Number Publication Date
CN111739972A true CN111739972A (zh) 2020-10-02
CN111739972B CN111739972B (zh) 2023-11-10

Family

ID=72652343

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010623567.XA Active CN111739972B (zh) 2020-07-01 2020-07-01 一种双面环形Ge基长波红外和太赫兹探测器和制备方法

Country Status (1)

Country Link
CN (1) CN111739972B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113725243A (zh) * 2021-08-13 2021-11-30 中国科学院上海技术物理研究所 一种Ge长波红外太赫兹探测器阵列和制备方法
CN113725310A (zh) * 2021-08-13 2021-11-30 中国科学院上海技术物理研究所 一种多结型锗基长波红外探测器及制备方法
CN114877994A (zh) * 2022-04-18 2022-08-09 浙江悟空光电科技有限公司 红外太赫兹光谱仪

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10341028A (ja) * 1997-06-09 1998-12-22 Fujitsu Ltd 半導体赤外線検出装置
CN101738748A (zh) * 2008-11-12 2010-06-16 中国科学院半导体研究所 一种制备高速电吸收调制器的方法
CN102509728A (zh) * 2011-11-01 2012-06-20 北京大学 一种非制冷红外探测器的设计及制备方法
CN103325864A (zh) * 2013-06-21 2013-09-25 中国科学院上海技术物理研究所 基于重掺杂半导体红外波段近完全吸收的膜系结构
US20150108327A1 (en) * 2012-05-29 2015-04-23 Hewlett-Packard Development Company, L.P. Devices including independently controllable absorption region and multiplication region electric fields
CN106898674A (zh) * 2017-03-25 2017-06-27 张清 一种双波段探测器
CN107195701A (zh) * 2017-05-12 2017-09-22 中国电子科技集团公司第五十研究所 台面式砷化镓掺硅阻挡杂质带太赫兹探测器及其制作方法
CN107507882A (zh) * 2017-06-20 2017-12-22 中国电子科技集团公司第五十研究所 一种台面式硅掺砷阻挡杂质带探测器及其制备方法
CN107706263A (zh) * 2017-10-30 2018-02-16 浙江大学 一种新型的锗基光电导中红外阻挡杂质带双色探测器及其制备方法
CN108428764A (zh) * 2018-01-30 2018-08-21 中国科学院上海技术物理研究所 一种GaAs基LFET太赫兹红外光探测器和制备方法
CN109461787A (zh) * 2018-09-29 2019-03-12 北京工业大学 光栅垂直耦合型插指光电探测器
CN109698248A (zh) * 2018-12-27 2019-04-30 中国科学院长春光学精密机械与物理研究所 增强蓝光效率的硅探测器阵列器件的制作方法
CN109742173A (zh) * 2019-01-10 2019-05-10 中国科学院上海技术物理研究所 一种量子阱红外圆偏振探测器
CN110308504A (zh) * 2019-06-20 2019-10-08 上海微波技术研究所(中国电子科技集团公司第五十研究所) 冷光阑与探测器系统
CN110617882A (zh) * 2019-09-10 2019-12-27 中国科学院上海技术物理研究所 一种基于相变材料的感温型太赫兹探测器及制备方法
CN110854222A (zh) * 2019-11-22 2020-02-28 中国科学院微电子研究所 一种漂移探测器的双面制备方法及漂移探测器
WO2021022576A1 (zh) * 2019-08-05 2021-02-11 上海新微技术研发中心有限公司 基于光子晶体的波导型锗光电探测器及制备方法
CN113690338A (zh) * 2021-08-13 2021-11-23 中国科学院上海技术物理研究所 一种MoS2和GaAs异质结红外探测器及制备方法
CN114877994A (zh) * 2022-04-18 2022-08-09 浙江悟空光电科技有限公司 红外太赫兹光谱仪

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10341028A (ja) * 1997-06-09 1998-12-22 Fujitsu Ltd 半導体赤外線検出装置
CN101738748A (zh) * 2008-11-12 2010-06-16 中国科学院半导体研究所 一种制备高速电吸收调制器的方法
CN102509728A (zh) * 2011-11-01 2012-06-20 北京大学 一种非制冷红外探测器的设计及制备方法
US20150108327A1 (en) * 2012-05-29 2015-04-23 Hewlett-Packard Development Company, L.P. Devices including independently controllable absorption region and multiplication region electric fields
CN103325864A (zh) * 2013-06-21 2013-09-25 中国科学院上海技术物理研究所 基于重掺杂半导体红外波段近完全吸收的膜系结构
CN106898674A (zh) * 2017-03-25 2017-06-27 张清 一种双波段探测器
CN107195701A (zh) * 2017-05-12 2017-09-22 中国电子科技集团公司第五十研究所 台面式砷化镓掺硅阻挡杂质带太赫兹探测器及其制作方法
CN107507882A (zh) * 2017-06-20 2017-12-22 中国电子科技集团公司第五十研究所 一种台面式硅掺砷阻挡杂质带探测器及其制备方法
CN107706263A (zh) * 2017-10-30 2018-02-16 浙江大学 一种新型的锗基光电导中红外阻挡杂质带双色探测器及其制备方法
CN108428764A (zh) * 2018-01-30 2018-08-21 中国科学院上海技术物理研究所 一种GaAs基LFET太赫兹红外光探测器和制备方法
CN109461787A (zh) * 2018-09-29 2019-03-12 北京工业大学 光栅垂直耦合型插指光电探测器
CN109698248A (zh) * 2018-12-27 2019-04-30 中国科学院长春光学精密机械与物理研究所 增强蓝光效率的硅探测器阵列器件的制作方法
CN109742173A (zh) * 2019-01-10 2019-05-10 中国科学院上海技术物理研究所 一种量子阱红外圆偏振探测器
CN110308504A (zh) * 2019-06-20 2019-10-08 上海微波技术研究所(中国电子科技集团公司第五十研究所) 冷光阑与探测器系统
WO2021022576A1 (zh) * 2019-08-05 2021-02-11 上海新微技术研发中心有限公司 基于光子晶体的波导型锗光电探测器及制备方法
CN110617882A (zh) * 2019-09-10 2019-12-27 中国科学院上海技术物理研究所 一种基于相变材料的感温型太赫兹探测器及制备方法
CN110854222A (zh) * 2019-11-22 2020-02-28 中国科学院微电子研究所 一种漂移探测器的双面制备方法及漂移探测器
CN113690338A (zh) * 2021-08-13 2021-11-23 中国科学院上海技术物理研究所 一种MoS2和GaAs异质结红外探测器及制备方法
CN114877994A (zh) * 2022-04-18 2022-08-09 浙江悟空光电科技有限公司 红外太赫兹光谱仪

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
XIAODONG WANG ET AL.: "Design consideration of GaAs-based blocked-impurityband detector with the absorbing layer formed by ion implantation", 《LABORATORY OF ADVANCED MATERIAL》, no. 47, pages 1347 *
王超等: "离子注入型硅掺砷阻挡杂质带长波红外探测器的研究", 《红外与毫米波学报》, vol. 39, no. 3, pages 290 - 294 *
邵传芬等: "双面Schottky 势垒型GaAs 粒子 探测器特性*", 《半导体学报》, vol. 21, no. 8, pages 792 - 797 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113725243A (zh) * 2021-08-13 2021-11-30 中国科学院上海技术物理研究所 一种Ge长波红外太赫兹探测器阵列和制备方法
CN113725310A (zh) * 2021-08-13 2021-11-30 中国科学院上海技术物理研究所 一种多结型锗基长波红外探测器及制备方法
CN113725243B (zh) * 2021-08-13 2023-11-07 中国科学院上海技术物理研究所 一种Ge长波红外太赫兹探测器阵列和制备方法
CN113725310B (zh) * 2021-08-13 2024-03-26 中国科学院上海技术物理研究所 一种多结型锗基长波红外探测器及制备方法
CN114877994A (zh) * 2022-04-18 2022-08-09 浙江悟空光电科技有限公司 红外太赫兹光谱仪

Also Published As

Publication number Publication date
CN111739972B (zh) 2023-11-10

Similar Documents

Publication Publication Date Title
CN111739972B (zh) 一种双面环形Ge基长波红外和太赫兹探测器和制备方法
JP6093401B2 (ja) 太陽電池内のトンネル接合の高濃度ドープ層
Qiu et al. Dark current transport and avalanche mechanism in HgCdTe electron-avalanche photodiodes
JP3124731B2 (ja) p+/n長波長赤外線およびp+/n中波長赤外線の二色同時検出器
KR101052030B1 (ko) 전자기 방사 컨버터
CN102169918B (zh) 一种低偏置电压下具有增益的硅光电探测器及其制备方法
US20080128849A1 (en) Low-noise semiconductor photodetectors
CN102187469B (zh) 电磁辐射转换器和电池
US4106951A (en) Photovoltaic semiconductor device using an organic material as an active layer
US11011716B2 (en) Photodetectors and photovoltaic devices
EP3111478A1 (en) Simultaneous dual-band detector
CN108428764B (zh) 一种GaAs基LFET太赫兹红外光探测器和制备方法
CN111952384B (zh) 光电探测器及其制备方法
Wang et al. Wide-bandgap semiconductor microtubular homojunction photodiode for high-performance UV detection
Piotrowski et al. Extension of longwavelength IR photovoltaic detector operation to near room-temperatures
Huang et al. Broadband-spectral-responsivity of black silicon photodetector with high gain and sub-bandgap sensitivity by titanium hyperdoping
Tang et al. Boosting performances of ZnO microwire homojunction ultraviolet self-powered photodetector by coupled interfacial engineering and plasmonic effects
KR20210044018A (ko) 열전 게이트 태양전지
CN112117345B (zh) 一种衍射环结构ii类超晶格红外探测器及其制备方法
Hwang et al. Base-width modulation effects on the optoelectronic characteristics of n-ITO/p-NiO/n-ZnO heterojunction bipolar phototransistors
CN113725243B (zh) 一种Ge长波红外太赫兹探测器阵列和制备方法
Kumar et al. Self-powered photodetector
Rogalski et al. Theoretical modeling of long wavelength n+‐on‐p HgCdTe photodiodes
Wenus et al. Analysis of VLWIR HgCdTe photodiode performance
Guo et al. Wafer-scale Deep UV Si Photodiodes Based on Ultra-shallow Junction

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant