CN111739972A - 一种双面环形Ge基长波红外和太赫兹探测器和制备方法 - Google Patents
一种双面环形Ge基长波红外和太赫兹探测器和制备方法 Download PDFInfo
- Publication number
- CN111739972A CN111739972A CN202010623567.XA CN202010623567A CN111739972A CN 111739972 A CN111739972 A CN 111739972A CN 202010623567 A CN202010623567 A CN 202010623567A CN 111739972 A CN111739972 A CN 111739972A
- Authority
- CN
- China
- Prior art keywords
- electrode
- region
- absorption
- area
- blocking
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002360 preparation method Methods 0.000 title abstract description 9
- 238000010521 absorption reaction Methods 0.000 claims abstract description 63
- 230000000903 blocking effect Effects 0.000 claims abstract description 45
- 239000000758 substrate Substances 0.000 claims abstract description 19
- 238000000034 method Methods 0.000 claims abstract description 17
- 230000008569 process Effects 0.000 claims abstract description 16
- 238000001259 photo etching Methods 0.000 claims abstract description 5
- 239000004065 semiconductor Substances 0.000 claims abstract description 5
- 239000012535 impurity Substances 0.000 claims description 13
- 239000000463 material Substances 0.000 claims description 5
- 229910052733 gallium Inorganic materials 0.000 claims description 4
- 150000002500 ions Chemical class 0.000 claims description 4
- 238000012544 monitoring process Methods 0.000 claims description 3
- 229910052796 boron Inorganic materials 0.000 claims description 2
- 230000008859 change Effects 0.000 claims description 2
- 230000000149 penetrating effect Effects 0.000 claims description 2
- 229910052698 phosphorus Inorganic materials 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 claims 1
- 238000001514 detection method Methods 0.000 abstract description 6
- 238000005516 engineering process Methods 0.000 abstract description 5
- 230000008901 benefit Effects 0.000 abstract description 3
- 238000002347 injection Methods 0.000 abstract 1
- 239000007924 injection Substances 0.000 abstract 1
- 238000002207 thermal evaporation Methods 0.000 abstract 1
- 230000004888 barrier function Effects 0.000 description 6
- 230000004044 response Effects 0.000 description 6
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 1
- 229910000661 Mercury cadmium telluride Inorganic materials 0.000 description 1
- CSDREXVUYHZDNP-UHFFFAOYSA-N alumanylidynesilicon Chemical compound [Al].[Si] CSDREXVUYHZDNP-UHFFFAOYSA-N 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000004297 night vision Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/08—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
- H01L31/10—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
- H01L31/101—Devices sensitive to infrared, visible or ultraviolet radiation
- H01L31/1013—Devices sensitive to infrared, visible or ultraviolet radiation devices sensitive to two or more wavelengths, e.g. multi-spectrum radiation detection devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/0352—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
- H01L31/035272—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Light Receiving Elements (AREA)
Abstract
本发明公开了一种双面环形Ge基长波红外和太赫兹探测器和制备方法,该探测器包括上下二层,每一层由环状的吸收区、中心阻挡区、环状吸收区电极和中心阻挡区电极组成,层与层之间的吸收区和阻挡区电极分别通过欧姆接触串联,制备方法包括五个步骤,即通过光刻、离子注入、热蒸发技术在高阻Ge基底依次形成上吸收区,下吸收区,上电极区,下电极区,以及上下电极串联端。本发明的优点是:双面环形的器件结构有效增强了入射光子吸收和光生电子‑空穴对的产生效率,提高了量子效率,从而提高了传统BIB型光子探测器的探测率,并且与当前的半导体工艺技术相兼容。
Description
技术领域
本发明涉及一种基于BIB(阻挡杂质带)杂质带吸收光电导原理的新型结构的红外/探测器和制备方法,特别适合于波长处于40-300微米范围的长波红外和太赫兹光的探测。
背景技术
红外探测技术在气象预报、环境监控、导弹制导、夜视成像等领域有重要的应用需求,这方面以HgCdTe、InGaAs等主流的红外探测器为主,主要响应1-20微米波段。这类器件是基于半导体pn结构光伏效应原理工作,因而,探测器的响应率高并且器件具有较高的工作温度(液氮),发展迅速。但受材料类型的制约,探测器的响应波长较短。
近年来,随着国家对深空红外探测技术的需求,阻挡杂质带(BIB)探测器日益得到重视,主要的器件类型及响应波段有:硅掺砷(Si:As)覆盖10~25μm,硅掺锑(Si:Sb)覆盖20~40μm,锗掺镓(Ge:Ga)覆盖40~70μm,应变锗掺镓(Ge:Ga)覆盖70~200μm,特别是GaAs掺碲(GaAs:Te)的响应波长范围长达30~300μm,是探测深空冷对象的最优探测器。由于探测波长较长,BIB探测器的工作原理利用杂质光电导效应,不同的是增加一层相同材料类型的高电阻阻挡层,有效降低了器件暗电流。然而,随着探测波长延长,大部分入射光子不能被基底材料吸收导致器件的量子效率急剧降低,一般Ge基BIB探测器的量子效率<40%,同时,BIB结构的探测器产生的有效光生载流子主要发生在吸收区和阻挡区之间的耗尽区,较短的耗尽区也不利于光子的有效吸收利用,限制了探测器的量子效率。
发明内容
本发明的目的是提供一种双面环形Ge基长波红外和太赫兹探测器,并提供一种实现该结构的制备方法,所述的新型探测器的结构和工作方式不同于传统的BIB探测器,其特征在于:
所述的探测器的环形吸收区和阻挡区代替了传统BIB探测器的背靠背结构,将耗尽区的长度增加了3倍;
所述的双面结构采用镜像方式,即上吸收区、上阻挡区、上吸收区电极和上阻挡区电极分别位于下吸收区、下阻挡区、下吸收区电极和下阻挡区电极的正上方;
所述的上吸收区电极和下吸收区电极为环形,上阻挡区电极和下阻挡区电极位于分别位于上阻挡区和下阻挡区的中心位置;
所述的上吸收区电极和下吸收区电极由吸收区串联导通,上阻挡区电极和下阻挡区电极由阻挡区串联导通;
所述的探测器的工作方式在于:吸收区串联端和阻挡区串联端分别施加固定大小的偏压,被探测光入射至上层器件表面,并穿透基底后入射至下层器件,通过监测电流的变化来探测入射光。
所述的Ge基底1是高阻型半导体材料,载流子浓度范围为1×1012~5×1014cm-3。
所述的上吸收区2和下吸收区3的杂质类型一般为B、P和Ga,载流子浓度范围为5×1016~1×1018cm-3,上吸收区2和下吸收区3的边长范围为90~900μm。
所述的上阻挡区4和下阻挡区5的边长范围为30~50μm。
一种实现该探测器的制备方法,包括如下步骤:
①利用光刻工艺在高阻Ge基底上表面形成掩膜层,接着离子注入吸收杂质形成上吸收区;
②采用与步骤①相同的工艺在Ge基底下表面制备下吸收区;
③利用光刻工艺在Ge基底上表面形成掩膜层,接着离子注入重掺杂杂质形成上吸收区电极和上阻挡区电极;
④采用与步骤③相同的工艺在Ge基底下表面制备下吸收区电极和下阻挡区电极;
⑤将上吸收区电极和下吸收区电极连接起来形成吸收区串联端,上阻挡区电极和下阻挡区电极连接起来形成阻挡区串联端。
本发明的优点是:
1.探测器结构吸收了BIB探测器暗电流低的优点,而弥补了BIB耗尽区窄、吸收弱的不足,采用此结构的器件响应波长长,并且具有很高的探测率。
2.本发明结构简单,制备成本低,与当前的半导体工艺相兼容,并且容易推广应用到其它GaAs、Si基器件。
附图说明
图1本发明探测器结构图。
图2为本发明实施例的器件工艺流程示意图。
具体实施方式
下面结合附图和具体的实施例来详细阐述利用本发明一种双面环形Ge基长波红外和太赫兹探测器和制备方法制备Ge:B太赫兹和远红外探测器的工艺技术及工作方式:
选择低阻值高纯Ge基底1,杂质浓度1×1013cm-3,清洗超声后利用掩膜曝光工艺在基底上表面覆盖一层光刻胶12,露出上吸收区2;
采用离子注入方法注入B原子形成上吸收区2,杂质浓度和深度分别为约1×1017cm-3和300nm;
采用相同的工艺在基底下表面制备下吸收区3;
利用套刻工艺在GaAs基底1上表面覆盖露出电极区6和8的图形光刻胶13,并利用离子注入B原子形成重掺杂的上吸收区电极6和上阻挡区电极8,杂质浓度5×1017cm-3;
采用相同的工艺在基底下表面制备下吸收区电极7和下阻挡区电极9;
利用硅铝丝将上吸收区电极6和下吸收区电极7连接起来形成吸收区串联端10,将上阻挡区电极8和下阻挡区电极9连接起来形成阻挡区串联端11。
工作时,电极串联端10和11施加约1V电压,当波长约100微米的红外光入射至上表面并穿透至下表面,双层器件的耗尽区产生的电子-空穴对迅速被分开至串联电极两端,导致流过Keithley 2601B电流表的电流值发生变化,即可算出响应率。
Claims (5)
1.一种双面环形Ge基长波红外和太赫兹探测器,包括Ge基底(1)、上吸收区(2)、上阻挡区(4)、上吸收区电极(6)、上阻挡区电极(8)、下吸收区(3)、下阻挡区(5)、下吸收区电极(7)、下阻挡区电极(9)、吸收区串联端(10)和阻挡区串联端(11),其特征在于:
所述的环形的上吸收区(2)和上阻挡区(4)代替了传统BIB探测器的背靠背结构,将耗尽区的长度增加了3倍;
探测器双面结构采用镜像方式,即上吸收区(2)、上阻挡区(4)、上吸收区电极(6)和上阻挡区电极(8)分别位于下吸收区(3)、下阻挡区(5)、下吸收区电极(7)和下阻挡区电极(9)的正上方;
所述的上吸收区电极(6)和下吸收区电极(7)为环形,上阻挡区电极(8)和下阻挡区电极(9)位于分别位于上阻挡区(4)和下阻挡区(5)的中心位置;
所述的上吸收区电极(6)和下吸收区电极(7)连接为吸收区串联端(10),上阻挡区电极(8)和下阻挡区电极(9)连接为阻挡区串联端(11);
所述的探测器的工作方式在于:吸收区串联端(10)和阻挡区串联端(11)分别施加固定大小的偏压,被探测光入射至上层器件表面,并穿透基底(1)后入射至下层器件,通过监测电流的变化来探测入射光。
2.根据权利要求1所述的双面环形Ge基长波红外和太赫兹探测器,其特征在于:
所述的Ge基底(1)是高阻型半导体材料,载流子浓度范围为1×1012~5×1014cm-3。
3.根据权利要求1所述的双面环形Ge基长波红外和太赫兹探测器,其特征在于:
所述的上吸收区(2)和下吸收区(3)的杂质类型一般为B、P和Ga,载流子浓度范围为5×1016~1×1018cm-3,上吸收区(2)和下吸收区(3)的边长范围为90~900μm。
4.根据权利要求1所述的双面环形Ge基长波红外和太赫兹探测器,其特征在于:
所述的上阻挡区(4)和下阻挡区(5)的边长范围为30~50μm。
5.一种制备如权利要求1所述的双面环形Ge基长波红外和太赫兹探测器的方法,其特征在于包括如下步骤:
①利用光刻工艺在高阻Ge基底(1)上表面形成掩膜层(12),接着离子注入吸收杂质形成上吸收区(2);
②采用与步骤①相同的工艺在Ge基底(1)下表面制备下吸收区(3);
③利用光刻工艺在Ge基底(1)上表面形成掩膜层(13),接着离子注入重掺杂杂质形成上吸收电极区(6)和上阻挡区电极(8);
④采用与步骤③相同的工艺在Ge基底(1)下表面制备下吸收电极区(7)和下阻挡区电极(9);
⑤将上吸收区电极(6)和下吸收区电极(7)连接起来形成吸收区串联端(10),上阻挡区电极(8)和下阻挡区电极(9)连接起来形成吸收区串联端(11)。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010623567.XA CN111739972B (zh) | 2020-07-01 | 2020-07-01 | 一种双面环形Ge基长波红外和太赫兹探测器和制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010623567.XA CN111739972B (zh) | 2020-07-01 | 2020-07-01 | 一种双面环形Ge基长波红外和太赫兹探测器和制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111739972A true CN111739972A (zh) | 2020-10-02 |
CN111739972B CN111739972B (zh) | 2023-11-10 |
Family
ID=72652343
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010623567.XA Active CN111739972B (zh) | 2020-07-01 | 2020-07-01 | 一种双面环形Ge基长波红外和太赫兹探测器和制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111739972B (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113725243A (zh) * | 2021-08-13 | 2021-11-30 | 中国科学院上海技术物理研究所 | 一种Ge长波红外太赫兹探测器阵列和制备方法 |
CN113725310A (zh) * | 2021-08-13 | 2021-11-30 | 中国科学院上海技术物理研究所 | 一种多结型锗基长波红外探测器及制备方法 |
CN114877994A (zh) * | 2022-04-18 | 2022-08-09 | 浙江悟空光电科技有限公司 | 红外太赫兹光谱仪 |
Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10341028A (ja) * | 1997-06-09 | 1998-12-22 | Fujitsu Ltd | 半導体赤外線検出装置 |
CN101738748A (zh) * | 2008-11-12 | 2010-06-16 | 中国科学院半导体研究所 | 一种制备高速电吸收调制器的方法 |
CN102509728A (zh) * | 2011-11-01 | 2012-06-20 | 北京大学 | 一种非制冷红外探测器的设计及制备方法 |
CN103325864A (zh) * | 2013-06-21 | 2013-09-25 | 中国科学院上海技术物理研究所 | 基于重掺杂半导体红外波段近完全吸收的膜系结构 |
US20150108327A1 (en) * | 2012-05-29 | 2015-04-23 | Hewlett-Packard Development Company, L.P. | Devices including independently controllable absorption region and multiplication region electric fields |
CN106898674A (zh) * | 2017-03-25 | 2017-06-27 | 张清 | 一种双波段探测器 |
CN107195701A (zh) * | 2017-05-12 | 2017-09-22 | 中国电子科技集团公司第五十研究所 | 台面式砷化镓掺硅阻挡杂质带太赫兹探测器及其制作方法 |
CN107507882A (zh) * | 2017-06-20 | 2017-12-22 | 中国电子科技集团公司第五十研究所 | 一种台面式硅掺砷阻挡杂质带探测器及其制备方法 |
CN107706263A (zh) * | 2017-10-30 | 2018-02-16 | 浙江大学 | 一种新型的锗基光电导中红外阻挡杂质带双色探测器及其制备方法 |
CN108428764A (zh) * | 2018-01-30 | 2018-08-21 | 中国科学院上海技术物理研究所 | 一种GaAs基LFET太赫兹红外光探测器和制备方法 |
CN109461787A (zh) * | 2018-09-29 | 2019-03-12 | 北京工业大学 | 光栅垂直耦合型插指光电探测器 |
CN109698248A (zh) * | 2018-12-27 | 2019-04-30 | 中国科学院长春光学精密机械与物理研究所 | 增强蓝光效率的硅探测器阵列器件的制作方法 |
CN109742173A (zh) * | 2019-01-10 | 2019-05-10 | 中国科学院上海技术物理研究所 | 一种量子阱红外圆偏振探测器 |
CN110308504A (zh) * | 2019-06-20 | 2019-10-08 | 上海微波技术研究所(中国电子科技集团公司第五十研究所) | 冷光阑与探测器系统 |
CN110617882A (zh) * | 2019-09-10 | 2019-12-27 | 中国科学院上海技术物理研究所 | 一种基于相变材料的感温型太赫兹探测器及制备方法 |
CN110854222A (zh) * | 2019-11-22 | 2020-02-28 | 中国科学院微电子研究所 | 一种漂移探测器的双面制备方法及漂移探测器 |
WO2021022576A1 (zh) * | 2019-08-05 | 2021-02-11 | 上海新微技术研发中心有限公司 | 基于光子晶体的波导型锗光电探测器及制备方法 |
CN113690338A (zh) * | 2021-08-13 | 2021-11-23 | 中国科学院上海技术物理研究所 | 一种MoS2和GaAs异质结红外探测器及制备方法 |
CN114877994A (zh) * | 2022-04-18 | 2022-08-09 | 浙江悟空光电科技有限公司 | 红外太赫兹光谱仪 |
-
2020
- 2020-07-01 CN CN202010623567.XA patent/CN111739972B/zh active Active
Patent Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10341028A (ja) * | 1997-06-09 | 1998-12-22 | Fujitsu Ltd | 半導体赤外線検出装置 |
CN101738748A (zh) * | 2008-11-12 | 2010-06-16 | 中国科学院半导体研究所 | 一种制备高速电吸收调制器的方法 |
CN102509728A (zh) * | 2011-11-01 | 2012-06-20 | 北京大学 | 一种非制冷红外探测器的设计及制备方法 |
US20150108327A1 (en) * | 2012-05-29 | 2015-04-23 | Hewlett-Packard Development Company, L.P. | Devices including independently controllable absorption region and multiplication region electric fields |
CN103325864A (zh) * | 2013-06-21 | 2013-09-25 | 中国科学院上海技术物理研究所 | 基于重掺杂半导体红外波段近完全吸收的膜系结构 |
CN106898674A (zh) * | 2017-03-25 | 2017-06-27 | 张清 | 一种双波段探测器 |
CN107195701A (zh) * | 2017-05-12 | 2017-09-22 | 中国电子科技集团公司第五十研究所 | 台面式砷化镓掺硅阻挡杂质带太赫兹探测器及其制作方法 |
CN107507882A (zh) * | 2017-06-20 | 2017-12-22 | 中国电子科技集团公司第五十研究所 | 一种台面式硅掺砷阻挡杂质带探测器及其制备方法 |
CN107706263A (zh) * | 2017-10-30 | 2018-02-16 | 浙江大学 | 一种新型的锗基光电导中红外阻挡杂质带双色探测器及其制备方法 |
CN108428764A (zh) * | 2018-01-30 | 2018-08-21 | 中国科学院上海技术物理研究所 | 一种GaAs基LFET太赫兹红外光探测器和制备方法 |
CN109461787A (zh) * | 2018-09-29 | 2019-03-12 | 北京工业大学 | 光栅垂直耦合型插指光电探测器 |
CN109698248A (zh) * | 2018-12-27 | 2019-04-30 | 中国科学院长春光学精密机械与物理研究所 | 增强蓝光效率的硅探测器阵列器件的制作方法 |
CN109742173A (zh) * | 2019-01-10 | 2019-05-10 | 中国科学院上海技术物理研究所 | 一种量子阱红外圆偏振探测器 |
CN110308504A (zh) * | 2019-06-20 | 2019-10-08 | 上海微波技术研究所(中国电子科技集团公司第五十研究所) | 冷光阑与探测器系统 |
WO2021022576A1 (zh) * | 2019-08-05 | 2021-02-11 | 上海新微技术研发中心有限公司 | 基于光子晶体的波导型锗光电探测器及制备方法 |
CN110617882A (zh) * | 2019-09-10 | 2019-12-27 | 中国科学院上海技术物理研究所 | 一种基于相变材料的感温型太赫兹探测器及制备方法 |
CN110854222A (zh) * | 2019-11-22 | 2020-02-28 | 中国科学院微电子研究所 | 一种漂移探测器的双面制备方法及漂移探测器 |
CN113690338A (zh) * | 2021-08-13 | 2021-11-23 | 中国科学院上海技术物理研究所 | 一种MoS2和GaAs异质结红外探测器及制备方法 |
CN114877994A (zh) * | 2022-04-18 | 2022-08-09 | 浙江悟空光电科技有限公司 | 红外太赫兹光谱仪 |
Non-Patent Citations (3)
Title |
---|
XIAODONG WANG ET AL.: "Design consideration of GaAs-based blocked-impurityband detector with the absorbing layer formed by ion implantation", 《LABORATORY OF ADVANCED MATERIAL》, no. 47, pages 1347 * |
王超等: "离子注入型硅掺砷阻挡杂质带长波红外探测器的研究", 《红外与毫米波学报》, vol. 39, no. 3, pages 290 - 294 * |
邵传芬等: "双面Schottky 势垒型GaAs 粒子 探测器特性*", 《半导体学报》, vol. 21, no. 8, pages 792 - 797 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113725243A (zh) * | 2021-08-13 | 2021-11-30 | 中国科学院上海技术物理研究所 | 一种Ge长波红外太赫兹探测器阵列和制备方法 |
CN113725310A (zh) * | 2021-08-13 | 2021-11-30 | 中国科学院上海技术物理研究所 | 一种多结型锗基长波红外探测器及制备方法 |
CN113725243B (zh) * | 2021-08-13 | 2023-11-07 | 中国科学院上海技术物理研究所 | 一种Ge长波红外太赫兹探测器阵列和制备方法 |
CN113725310B (zh) * | 2021-08-13 | 2024-03-26 | 中国科学院上海技术物理研究所 | 一种多结型锗基长波红外探测器及制备方法 |
CN114877994A (zh) * | 2022-04-18 | 2022-08-09 | 浙江悟空光电科技有限公司 | 红外太赫兹光谱仪 |
Also Published As
Publication number | Publication date |
---|---|
CN111739972B (zh) | 2023-11-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111739972B (zh) | 一种双面环形Ge基长波红外和太赫兹探测器和制备方法 | |
JP6093401B2 (ja) | 太陽電池内のトンネル接合の高濃度ドープ層 | |
Qiu et al. | Dark current transport and avalanche mechanism in HgCdTe electron-avalanche photodiodes | |
JP3124731B2 (ja) | p+/n長波長赤外線およびp+/n中波長赤外線の二色同時検出器 | |
KR101052030B1 (ko) | 전자기 방사 컨버터 | |
CN102169918B (zh) | 一种低偏置电压下具有增益的硅光电探测器及其制备方法 | |
US20080128849A1 (en) | Low-noise semiconductor photodetectors | |
CN102187469B (zh) | 电磁辐射转换器和电池 | |
US4106951A (en) | Photovoltaic semiconductor device using an organic material as an active layer | |
US11011716B2 (en) | Photodetectors and photovoltaic devices | |
EP3111478A1 (en) | Simultaneous dual-band detector | |
CN108428764B (zh) | 一种GaAs基LFET太赫兹红外光探测器和制备方法 | |
CN111952384B (zh) | 光电探测器及其制备方法 | |
Wang et al. | Wide-bandgap semiconductor microtubular homojunction photodiode for high-performance UV detection | |
Piotrowski et al. | Extension of longwavelength IR photovoltaic detector operation to near room-temperatures | |
Huang et al. | Broadband-spectral-responsivity of black silicon photodetector with high gain and sub-bandgap sensitivity by titanium hyperdoping | |
Tang et al. | Boosting performances of ZnO microwire homojunction ultraviolet self-powered photodetector by coupled interfacial engineering and plasmonic effects | |
KR20210044018A (ko) | 열전 게이트 태양전지 | |
CN112117345B (zh) | 一种衍射环结构ii类超晶格红外探测器及其制备方法 | |
Hwang et al. | Base-width modulation effects on the optoelectronic characteristics of n-ITO/p-NiO/n-ZnO heterojunction bipolar phototransistors | |
CN113725243B (zh) | 一种Ge长波红外太赫兹探测器阵列和制备方法 | |
Kumar et al. | Self-powered photodetector | |
Rogalski et al. | Theoretical modeling of long wavelength n+‐on‐p HgCdTe photodiodes | |
Wenus et al. | Analysis of VLWIR HgCdTe photodiode performance | |
Guo et al. | Wafer-scale Deep UV Si Photodiodes Based on Ultra-shallow Junction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |