CN113725243B - 一种Ge长波红外太赫兹探测器阵列和制备方法 - Google Patents

一种Ge长波红外太赫兹探测器阵列和制备方法 Download PDF

Info

Publication number
CN113725243B
CN113725243B CN202110930315.6A CN202110930315A CN113725243B CN 113725243 B CN113725243 B CN 113725243B CN 202110930315 A CN202110930315 A CN 202110930315A CN 113725243 B CN113725243 B CN 113725243B
Authority
CN
China
Prior art keywords
layer
electrode
absorption
detector array
absorption layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110930315.6A
Other languages
English (en)
Other versions
CN113725243A (zh
Inventor
邓惠勇
汪越
刘赤县
窦伟
单玉凤
殷子薇
戴宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Technical Physics of CAS
Original Assignee
Shanghai Institute of Technical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Technical Physics of CAS filed Critical Shanghai Institute of Technical Physics of CAS
Priority to CN202110930315.6A priority Critical patent/CN113725243B/zh
Publication of CN113725243A publication Critical patent/CN113725243A/zh
Application granted granted Critical
Publication of CN113725243B publication Critical patent/CN113725243B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer
    • H01L27/14669Infrared imagers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/20Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using resistors, thermistors or semiconductors sensitive to radiation, e.g. photoconductive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • H01L27/14605Structural or functional details relating to the position of the pixel elements, e.g. smaller pixel elements in the center of the imager compared to pixel elements at the periphery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/20Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using resistors, thermistors or semiconductors sensitive to radiation, e.g. photoconductive devices
    • G01J2005/202Arrays
    • G01J2005/204Arrays prepared by semiconductor processing, e.g. VLSI
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

本发明公开了一种Ge长波红外太赫兹探测器阵列和制备方法,该探测器阵列包括吸收区阵列和共用电极二个部分,吸收区阵列像元由吸收层、石墨烯/金属电极层组成,共用电极由背接触电极和正面刻蚀重掺杂电极层组成,其中背接触电极表面覆盖钝化层,制备方法包括四个步骤,依次是通过光刻和气相沉积技术在Ge晶片正面形成吸收层和石墨烯层;通过光刻、刻蚀和离子注入技术形成正面刻蚀重掺杂电极层;通过光刻和热蒸发技术形成正面金属电极层;通过减薄、离子注入和气相沉积技术形成背接触电极和钝化层。本发明的优点是:离子注入技术形成吸收层解决了台阶型探测器像元高纯Ge外延层制备困难的难题,并且与当前的半导体工艺技术相兼容。

Description

一种Ge长波红外太赫兹探测器阵列和制备方法
技术领域
本发明涉及一种基于BIB(阻挡杂质带)杂质带吸收光电导原理的新型结构的红外太赫兹探测器阵列和制备方法,特别适合于波长处于40-300微米范围的长波红外和太赫兹光的光电成像。
背景技术
红外探测技术在气象预报、环境监控、导弹制导、夜视成像等领域有重要的应用需求,这方面以HgCdTe、InGaAs等主流的红外探测器为主,主要响应1-20微米波段。这类器件是基于半导体pn结构光伏效应原理工作,因而,探测器的响应率高并且器件具有较高的工作温度(液氮),发展迅速。但受材料类型的制约,探测器的响应波长较短。
近年来,随着国家对深空红外探测技术的需求,阻挡杂质带(BIB)探测器日益得到重视,主要的器件类型及响应波段有:硅掺砷(Si:As)覆盖10~25μm,硅掺锑(Si:Sb)覆盖20~40μm,锗掺镓(Ge:Ga)覆盖40~70μm,应变锗掺镓(Ge:Ga)覆盖70~200μm,特别是GaAs掺碲(GaAs:Te)的响应波长范围长达30~300μm,是探测深空冷对象的最优探测器。由于探测波长较长,BIB探测器的工作原理利用杂质光电导效应,不同的是增加一层相同材料类型的高电阻阻挡层,有效降低了器件暗电流。当前,制备BIB探测器阵列的方法普遍采用气相外延技术生长高纯Ge薄膜作为阻挡层,其优势在于台面结构器件易于制备共用电极。离子注入技术制备BIB单元器件具有工艺简单,无需生长高纯外延Ge薄膜的优势在单元探测器中有广泛应用。
发明内容
本发明的目的是提供一种Ge长波红外太赫兹探测器阵列,并提供一种采用离子注入技术实现该结构的制备方法,所述的新型探测器的结构不同于传统的BIB探测器阵列,其特征在于:
所述的吸收区阵列像元电极由石墨烯层和金属电极层组成;
所述的共用电极由阻挡层电极、正面刻蚀重掺杂电极层和正面背电极金属层组成;
所述的背电极钝化层位于阻挡层金属电极层表面;
所述的探测器的工作方式在于:将正面背电极金属层和吸收层金属电极层和读出电路相连接,背面入射光透过背电极钝化层进入吸收层,吸收层中杂质吸收入射光子后电离形成电子空穴对产生光生电流,光电流信号经读出电路积分输出后光电成像。
所述的Ge晶片是高阻型半导体材料,载流子浓度范围为1×1012~5×1014cm-3
所述的吸收层、正面刻蚀重掺杂电极层和阻挡层电极的杂质类型为B,载流子浓度范围为1×1016~1×1018cm-3,深度范围为1~7μm。
所述的吸收层、正面刻蚀重掺杂电极层和阻挡层电极的杂质类型为P,载流子浓度范围为1×1016~1×1018cm-3,深度范围为1~5μm。
所述的吸收层、正面刻蚀重掺杂电极层和阻挡层电极的杂质类型为Ga,载流子浓度范围为1×1016~1×1018cm-3,深度范围为1~3μm。
一种实现该探测器阵列的制备方法,包括如下步骤:
①利用光刻工艺在高阻Ge晶片上表面形成掩膜层,接着离子注入吸收杂质形成吸收层;
②采用气相沉积技术在吸收层表面制备石墨烯层;
③采用光刻和等离子体刻蚀工艺在上部分形成孔洞,接着离子注入重掺杂杂质形成正面刻蚀重掺杂电极层;
④采用与步骤①相同的工艺形成正面背电极金属层和吸收层金属电极层;
⑤采用倒装焊技术将正面和读出电路互连,接着机械、化学减薄抛光Ge晶片背面后,离子注入重掺杂杂质形成阻挡层电极;
⑥采用气相沉积技术在阻挡层电极生长背电极钝化层。
本发明的优点是:
1.探测器阵列结构巧妙利用了离子注入工艺的特点,解决了台式结构像元需要采用气相法外延高纯Ge薄膜的难题,大幅提高了BIB探测器阵列可靠性,并且降低了制备成本。
2.本发明结构简单,制备成本低,与当前的半导体工艺相兼容,并且容易推广应用到其它GaAs、Si基BIB探测器阵列器件。
附图说明
图1本发明探测器阵列结构图。
图2为本发明实施例的器件工艺流程示意图。
具体实施方式
【实施例1】
制备Ge:B红外太赫兹探测器阵列的工艺技术及工作方式:
选择低阻值高纯Ge晶片1,杂质浓度1×1013cm-3,清洗超声后利用掩膜曝光工艺在基底上表面覆盖一层光刻胶9,露出吸收区10;
采用离子注入方法注入B原子形成吸收层2,杂质浓度和深度分别为约5×1016cm-3和800nm,接着采用气相沉积法生长一层15nm的石墨烯层3;
利用掩膜曝光工艺在基底上表面覆盖一层光刻胶11,露出孔洞区12;
采用等离子体刻蚀工艺在上部分形成孔洞13,接着离子注入重掺杂杂质形成正面刻蚀重掺杂电极层4,杂质浓度和深度分别为约5×1018cm-3和3μm;
套刻掩膜曝光工艺在晶片表面露出电极孔14,接着电子束蒸发形成正面背电极金属层5和吸收层金属电极层6;
采用倒装焊技术将正面和读出电路互连,接着机械、化学减薄抛光Ge晶片1背面后,离子注入重掺杂杂质形成阻挡层电极7,杂质浓度和深度分别为约5×1018cm-3和1μm;
采用气相沉积技术在阻挡层电极7表面生长背电极钝化层8。
工作时,电极端5和6施加约1V电压,当波长约100微米的红外光入射至背电极7并穿透至吸收层2产生光电流,读出电路采用行选择列读出的方式依次将每个阵列像元的光电流信号读出,输送至FPGA模块光电成像。
【实施例2】
制备Ge:P红外太赫兹探测器阵列的工艺技术及工作方式:
选择低阻值高纯Ge晶片1,杂质浓度1×1013cm-3,清洗超声后利用掩膜曝光工艺在基底上表面覆盖一层光刻胶9,露出吸收区10;
采用离子注入方法注入P原子形成吸收层2,杂质浓度和深度分别为约1×1017cm-3和500nm,接着采用气相沉积法生长一层15nm的石墨烯层3;
利用掩膜曝光工艺在基底上表面覆盖一层光刻胶11,露出孔洞区12;
采用等离子体刻蚀工艺在上部分形成孔洞13,接着离子注入重掺杂杂质形成正面刻蚀重掺杂电极层4,杂质浓度和深度分别为约5×1018cm-3和1.5μm;
套刻掩膜曝光工艺在晶片表面露出电极孔14,接着电子束蒸发形成正面背电极金属层5和吸收层金属电极层6;
采用倒装焊技术将正面和读出电路互连,接着机械、化学减薄抛光Ge晶片1背面后,离子注入重掺杂杂质形成阻挡层电极7,杂质浓度和深度分别为约5×1018cm-3和800nm;
采用气相沉积技术在阻挡层电极7表面生长背电极钝化层8。
工作时,电极端5和6施加约1V电压,当波长约100微米的红外光入射至背电极7并穿透至吸收层2产生光电流,读出电路采用行选择列读出的方式依次将每个阵列像元的光电流信号读出,输送至FPGA模块光电成像。
【实施例3】
制备Ge:Ga红外太赫兹探测器阵列的工艺技术及工作方式:
选择低阻值高纯Ge晶片1,杂质浓度1×1013cm-3,清洗超声后利用掩膜曝光工艺在基底上表面覆盖一层光刻胶9,露出吸收区10;
采用离子注入方法注入Ga原子形成吸收层2,杂质浓度和深度分别为约3×1017cm-3和200nm,接着采用气相沉积法生长一层15nm的石墨烯层3;
利用掩膜曝光工艺在基底上表面覆盖一层光刻胶11,露出孔洞区12;
采用等离子体刻蚀工艺在上部分形成孔洞13,接着离子注入重掺杂杂质形成正面刻蚀重掺杂电极层4,杂质浓度和深度分别为约5×1018cm-3和800n m;
套刻掩膜曝光工艺在晶片表面露出电极孔14,接着电子束蒸发形成正面背电极金属层5和吸收层金属电极层6;
采用倒装焊技术将正面和读出电路互连,接着机械、化学减薄抛光Ge晶片1背面后,离子注入重掺杂杂质形成阻挡层电极7,杂质浓度和深度分别为约5×1018cm-3和200nm;
采用气相沉积技术在阻挡层电极7表面生长背电极钝化层8。
工作时,电极端5和6施加约1V电压,当波长约100微米的红外光入射至背电极7并穿透至吸收层2产生光电流,读出电路采用行选择列读出的方式依次将每个阵列像元的光电流信号读出,输送至FPGA模块光电成像。

Claims (6)

1.一种Ge长波红外太赫兹探测器阵列,由吸收区阵列和共用电极二个部分组成,它们位于晶片正面邻近区域,包括Ge晶片(1)、吸收层(2)、石墨烯层(3)、正面刻蚀重掺杂电极层(4)、正面背电极金属层(5)、吸收层金属电极层(6)、阻挡层电极(7)和背电极钝化层(8),其特征在于:
所述的吸收区阵列的像元电极由石墨烯层(3)和金属电极层(6)组成;
所述的共用电极由阻挡层电极(7)、正面刻蚀重掺杂电极层(4)和正面背电极金属层(5)组成;
所述的背电极钝化层(8)位于阻挡层电极(7)表面;
所述的探测器的工作方式在于:将正面背电极金属层(5)和吸收层金属电极层(6)和读出电路相连接,背面入射光透过背电极钝化层(8)进入吸收层(2),吸收层(2)中杂质吸收入射光子后电离形成电子空穴对产生光生电流,光电流信号经读出电路积分输出后光电成像。
2.根据权利要求1所述的Ge长波红外太赫兹探测器阵列,其特征在于:
所述的Ge晶片(1)采用高阻型半导体材料,载流子浓度范围为1×1012~5×1014cm-3
3.根据权利要求1所述的Ge长波红外太赫兹探测器阵列,其特征在于:
所述的吸收层(2)、正面刻蚀重掺杂电极层(4)和阻挡层电极(7)的杂质类型为B,载流子浓度范围为1×1016~1×1018cm-3,深度范围为1~7μm。
4.根据权利要求1所述的Ge长波红外太赫兹探测器阵列,其特征在于:
所述的吸收层(2)、正面刻蚀重掺杂电极层(4)和阻挡层电极(7)的杂质类型为P,载流子浓度范围为1×1016~1×1018cm-3,深度范围为1~5μm。
5.根据权利要求1所述的Ge长波红外太赫兹探测器阵列,其特征在于:
所述的吸收层(2)、正面刻蚀重掺杂电极层(4)和阻挡层电极(7)的杂质类型为Ga,载流子浓度范围为1×1016~1×1018cm-3,深度范围为1~3μm。
6.一种制备如权利要求1所述的Ge长波红外太赫兹探测器阵列的方法,其特征在于包括如下步骤:
①利用光刻工艺在高阻Ge晶片(1)上表面形成掩膜层(9),接着离子注入吸收杂质形成吸收层(2);
②采用气相沉积技术在吸收层(2)表面制备石墨烯层(3);
③采用光刻和等离子体刻蚀工艺在上部分形成孔洞(13),接着离子注入重掺杂杂质形成正面刻蚀重掺杂电极层(4);
④采用与步骤①相同的工艺形成正面背电极金属层(5)和吸收层金属电极层(6);
⑤采用倒装焊技术将正面和读出电路互连,接着机械、化学减薄抛光Ge晶片(1)背面后,离子注入重掺杂杂质形成阻挡层电极(7);
⑥采用气相沉积技术在阻挡层电极(7)生长背电极钝化层(8)。
CN202110930315.6A 2021-08-13 2021-08-13 一种Ge长波红外太赫兹探测器阵列和制备方法 Active CN113725243B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110930315.6A CN113725243B (zh) 2021-08-13 2021-08-13 一种Ge长波红外太赫兹探测器阵列和制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110930315.6A CN113725243B (zh) 2021-08-13 2021-08-13 一种Ge长波红外太赫兹探测器阵列和制备方法

Publications (2)

Publication Number Publication Date
CN113725243A CN113725243A (zh) 2021-11-30
CN113725243B true CN113725243B (zh) 2023-11-07

Family

ID=78675830

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110930315.6A Active CN113725243B (zh) 2021-08-13 2021-08-13 一种Ge长波红外太赫兹探测器阵列和制备方法

Country Status (1)

Country Link
CN (1) CN113725243B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111739972A (zh) * 2020-07-01 2020-10-02 中国科学院上海技术物理研究所 一种双面环形Ge基长波红外和太赫兹探测器和制备方法
CN112289872A (zh) * 2020-10-29 2021-01-29 上海微波技术研究所(中国电子科技集团公司第五十研究所) 倒梯形槽面结构的阻挡杂质带探测器及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009023807A1 (de) * 2009-06-03 2010-12-09 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Halbleiterstruktur, insbesondere BIB-Detektor mit einem DEPFET als Ausleseelement, sowie entsprechendes Betriebsverfahren

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111739972A (zh) * 2020-07-01 2020-10-02 中国科学院上海技术物理研究所 一种双面环形Ge基长波红外和太赫兹探测器和制备方法
CN112289872A (zh) * 2020-10-29 2021-01-29 上海微波技术研究所(中国电子科技集团公司第五十研究所) 倒梯形槽面结构的阻挡杂质带探测器及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Ion-implanted Si:P blocked-impurity-band photodetectors for far-infrared and terahertz radiation detection;Kaisheng Liao等;《 INTERNATIONAL SYMPOSIUM ON PHOTOELECTRONIC DETECTION AND IMAGING 2013: TERAHERTZ TECHNOLOGIES AND APPLICATIONS》;890913-1至890913-9 *
阻挡杂质带甚长波红外探测器;潘昌翊、邓惠勇等;《中国科学:物理学 力学 天文学》;第51卷(第2期);027303-1至027303-15 *

Also Published As

Publication number Publication date
CN113725243A (zh) 2021-11-30

Similar Documents

Publication Publication Date Title
US5567975A (en) Group II-VI radiation detector for simultaneous visible and IR detection
US9024359B2 (en) Sub-pixel nBn detector
JP5794974B2 (ja) 太陽電池内のトンネル接合の高濃度ドープ層
EP2756523B1 (en) Frontside-illuminated barrier infrared photodetector device and methods of fabricating the same
CN105405916A (zh) 硅基宽光谱探测器及制备方法
US5279974A (en) Planar PV HgCdTe DLHJ fabricated by selective cap layer growth
US5751049A (en) Two-color infrared detector
US3371213A (en) Epitaxially immersed lens and photodetectors and methods of making same
KR102467958B1 (ko) 단파 적외선 스펙트럼 체계에 대한 게르마늄 기반 초점 평면 배열
EP1782475A1 (en) Two colour photon detector
CN108428764B (zh) 一种GaAs基LFET太赫兹红外光探测器和制备方法
CN111739972B (zh) 一种双面环形Ge基长波红外和太赫兹探测器和制备方法
CN108630781B (zh) 3~5μm红外波段雪崩光电二极管探测器及其制作方法
CN113725243B (zh) 一种Ge长波红外太赫兹探测器阵列和制备方法
CN112117345B (zh) 一种衍射环结构ii类超晶格红外探测器及其制备方法
US7041983B2 (en) Planar geometry buried junction infrared detector and focal plane array
CN115513315A (zh) 一种高饱和阈值的碲镉汞探测器芯片及制备方法
CN209766420U (zh) 多像元集成铟镓砷雪崩二极管四象限光电探测芯片
JPH04263475A (ja) 半導体受光素子及びその製造方法
US20240072183A1 (en) Method for fabricating a photodiode structure and photodiode structure
CN116314215B (zh) 多波段探测器及其制备方法
CN117790614A (zh) 一种双波段Ge/Si APD光电探测器
CN111628013B (zh) 一种硅基环形多波段探测器及其制作方法
JP7314772B2 (ja) 受光素子とその製造方法
JP2024047058A (ja) 光検出素子、及び光検出素子の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant