CN111628013B - 一种硅基环形多波段探测器及其制作方法 - Google Patents

一种硅基环形多波段探测器及其制作方法 Download PDF

Info

Publication number
CN111628013B
CN111628013B CN202010035419.6A CN202010035419A CN111628013B CN 111628013 B CN111628013 B CN 111628013B CN 202010035419 A CN202010035419 A CN 202010035419A CN 111628013 B CN111628013 B CN 111628013B
Authority
CN
China
Prior art keywords
nitride layer
silicon
layer
annular
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010035419.6A
Other languages
English (en)
Other versions
CN111628013A (zh
Inventor
万景
刘冉
叶怀宇
张国旗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest University of Science and Technology
Original Assignee
Shenzhen Third Generation Semiconductor Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Third Generation Semiconductor Research Institute filed Critical Shenzhen Third Generation Semiconductor Research Institute
Priority to CN202010035419.6A priority Critical patent/CN111628013B/zh
Publication of CN111628013A publication Critical patent/CN111628013A/zh
Application granted granted Critical
Publication of CN111628013B publication Critical patent/CN111628013B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022416Electrodes for devices characterised by at least one potential jump barrier or surface barrier comprising ring electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0328Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
    • H01L31/0336Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032 in different semiconductor regions, e.g. Cu2X/CdX hetero- junctions, X being an element of Group VI of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明提出一种硅基环形多波段探测器及其制作方法,所述硅基环形多波段探测器自下而上依次为下电极8,P‑硅衬底1,禁带宽度为Eg1的N+硅层2,N+氮化物层3,i‑氮化物层4,禁带宽度为Eg2的P+氮化物层5,上电极6,其中Eg2>Eg1;其中所述上电极6位于所述P+氮化物层5端部,中电极7位于所述N+硅层2上靠近端部位置且覆盖部分所述N+氮化物层3端部;所述中电极7和上电极6为环状结构。利用p‑i‑n结二极管实现对日盲紫外波段的探测,利用p‑硅衬底和N+硅衬底形成pn结,实现可见光波段的探测,从而实现了单个器件能够探测两个波段的效果,可大幅缩小探测器的体积,降低制造成本。

Description

一种硅基环形多波段探测器及其制作方法
技术领域
本发明属于传感器领域,尤其涉及一种硅基多波段探测器及其制作方法。
背景技术
日盲型光电探测器是对红外,可见光和近紫外光不敏感,但对波长低于约300nm的短波长紫外光有响应的光电探测器。由于太阳在短波长下的紫外辐射被大气层所强烈吸收,到达地球表面的太阳辐射中的短波长紫外线含量非常少。因此,日盲紫外光电探测器可用于所有需要检测紫外光而又不受强烈的可见光干扰的应用中。例如,可以使用日盲探测器来监测地球上的紫外线辐射水平,由于臭氧层的消耗,紫外线辐射会增加。可广泛用于医疗健康领域中。短波紫外光检测器也可用于火焰检测和太阳能紫外辐射计。而基于日盲光电探测器阵列的日盲成像设备,可用于监视电力线,通过紫外线可以识别出放电电弧。除民用外,军事上的应用也非常广泛。例如在强烈的太阳光干扰下,侦测导弹的火箭发动机产生的高温尾焰。
实现日盲紫外探测的方法多样。普通的硅光电探测器配备紫外滤光片,可以阻挡可见光而单使得紫外线透过,从而达到日盲紫外探测的效果。然而,这种采用滤光片的方法具有多种缺点,例如可见光消光比不高,滤光片受紫外线照射寿命缩短,以及滤光片本身的成本高昂。而另一方面,也可以采用真空电子管,结合紫外敏感的光电阴极来实现。然后这种器件体积庞大且功耗高。当前日盲紫外探测的一大主要研究方向是使用宽禁带的半导体材料,例如铝镓氮(AlGaN)来实现。在该半导体材料中,具有较低光子能量的光无法被吸收,因此不会产生光电流。而只有波长较短的紫外光具有足够的能量激发出光生载流子,产生光电响应。基于宽禁带材料的日盲紫外光电探测器具有可见光消光比高,暗电流低,寿命长,体积小和功耗低等各项优点。
在日盲紫外探测器中,不但需要对短波长的日盲紫外波段进行探测和成像,往往也需要同时对可见光波段进行成像从而达到增强抗干扰能力和指导人眼进行作业的功能。而这种双波段的探测和成像系统,需要组合两种分别工作在不同波段的光电探测器来实现。铝镓氮只对紫外敏感,而对可见光几乎不具有任何光电响应。因此一般结合平面放置的铝镓氮和硅基的探测器来实现多波段探测。而为了避免紫外光对于硅基探测器的干扰,还需要在硅基探测器之前加入滤光片去除紫外光。这样的系统需要两套独立的光电探测和成像设备,其体积大,成本高且可靠性差。在深紫外波段,透明电极会吸收深紫外线,造成光的损耗。
发明内容
为解决上述问题,本发明的目的在于提出一种硅基环形多波段探测器,探测器自下而上依次为下电极8,P-硅衬底1,禁带宽度为Eg1的N+硅层2,N+氮化物层3,i-氮化物层4,禁带宽度为Eg2的P+氮化物层5,上电极6,其中Eg2>Eg1;其中所述上电极6位于所述P+ 氮化物层5端部,中电极7位于所述N+硅层2上靠近端部位置且覆盖部分所述N+氮化物层3 端部;所述中电极7和上电极6为环状结构。
优选的,所述上电极6宽度为10nm至10μm,厚度为10nm至1μm;所述中电极7宽度为10nm至10μm,厚度为10nm至1μm。
优选的,暴露出的所述N+氮化物层3为环状结构。
优选的,所述环状结构为圆环或方环。
优选的,所述III-V族氮化物为AlGaN或GaN。
优选的,暴露出的所述N+氮化物层3宽度为10nm至10μm,厚度为10nm至1μm。
优选的,所述P-硅衬底1弱P掺杂,掺杂浓度为1015cm-3 至1019cm-3
优选的,所述N+硅层2重N掺杂,掺杂浓度为1018cm-3至1021cm-3,掺杂元素为磷,砷或锑。
优选的,所述N+氮化物层3重N掺杂,掺杂浓度为1018cm-3至1021cm-3,所述P+氮化物层4重P掺杂,掺杂浓度为1018cm-3至1021cm-3
基于同样的发明构思,本发明还提供一种硅基环形多波段探测器的制作方法,包括:
在P-硅衬底1上形成禁带宽度为Eg1的N+硅层2;
在所述i-氮化物层4上生长禁带宽度为Eg2的P+氮化物层5,其中Eg2>Eg1;
刻蚀所述P+氮化物层5端部和所述i-氮化物层4端部,使得所述P+氮化物层5和所述 i-氮化物层4侧面共面,形成第一台面结构;
刻蚀所述N+氮化物层3端部使得所述N+氮化物层3上表面面积大于所述i-氮化物层4 下表面面积,形成第二台面结构;
在所述P+氮化物层5端部形成所述环形上电极6的接触通孔,沉积环形上电极6;
在所述N+硅层2靠近端部位置且覆盖部分所述N+氮化物层3端部形成所述中电极7的接触通孔,沉积环形中电极7;
在所述P-硅衬底1底部沉积下电极8。
优选的,形成所述禁带宽度为Eg1的N+硅层2方式为离子注入或扩散注入。
优选的,沉积所述环形上电极6和沉积所述环形中电极7方法为电子束蒸发、热蒸发或或物理气相沉积。
本发明采用垂直的集成结构,将III-V族氮化物的光电探测器集成于硅基探测器之上。当入射光从上方进入探测器时,入射光中的短波长紫外成分被上层的III-V族氮化物层所吸收,产生的光电流从最上面的P型III-V族氮化物的上电极流出。因此,通过测量该电极的光电流可以对入射光中的日盲紫外成分进行探测。而剩下的可见光直接穿透III-V族氮化物层,被下方的硅衬底吸收,形成的光电流从最下方的下电极中流出。通过测量该电极的光电流可以对入射光中的可见光成分进行探测。
有益效果:
(1)本发明的环形上电极和环形中电极,中间没有任何材料吸收紫外光,所有紫外光都会入射,相较于透明电极的吸光,避免了光损耗,P+氮化物层禁带宽度大于N+硅层禁带宽度,避免了可见光被P+氮化物层吸收。
(2)本发明使用硅衬底,与其他如蓝宝石等衬底相比,硅衬底不但更加廉价,而且是可见光和近红外波段的光电敏感材料。本发明使用两个串联的垂直光电二极管,两个光电二极管的中间电极N+硅层和N+氮化物层相连,并引出电极从而分离两个波段的光电信号,分别对日盲紫外和可见光波段的双波段分别探测和成像。
(3)本发明提出的器件集成度高,体积小且无需额外的滤光片,大幅缩小日盲紫外探测系统的体积并降低其成本。
附图说明
图1(a)为本发明实施例1的环形硅基铝镓氮多波段探测器结构俯视图;
图1(b)为实施例1的圆环形硅基铝镓氮多波段探测器结构侧视图;
图2为本发明实施例1的的圆环形硅基铝镓氮多波段探测器结构制备工艺流程图;
图3(a)为本发明实施例2的方环形硅基铝镓氮多波段探测器结构俯视图;
图3(b)为本发明实施例3的硅基氮化镓多波段探测器结构侧视图。
p-硅衬底1,N+硅层2,N+铝镓氮层3,i-铝镓氮层4,P+铝镓氮层5,上电极6,中电极7,下电极8
具体实施方式
下面结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护范围。
实施例1本实施例提供一种铝镓氮圆环形多波段探测器结构及其制备工艺
探测器结构自下而上依次为下电极8,P-硅衬底1,禁带宽度为Eg1的N+硅层2,N+氮化物层3,i-氮化物层4,禁带宽度为Eg2的P+氮化物层5,上电极6,其中Eg2>Eg1;其中所述上电极6位于所述P+氮化物层5端部,中电极7位于所述N+硅层2上靠近端部位置且覆盖部分所述N+氮化物层3端部;中电极7和上电极6为环状结构。上电极6宽度为100nm,厚度为50nm;所述中电极7宽度为100nm,厚度为50nm。暴露出的N+氮化物层3为圆形或方形的环状结构,氮化物为III-V族氮化物AlGaN或GaN。
暴露出的所述N+氮化物层3宽度为10nm,厚度为40nm。所述P-硅衬底1弱P掺杂,掺杂浓度为1016,N+硅层2重N掺杂,掺杂浓度为1019cm-3,掺杂元素为磷,N+氮化物层3重N掺杂,掺杂浓度为1019cm-3,所述P+氮化物层4重P掺杂,掺杂浓度为1019cm-3
制备工艺如下:
如图2(a)所示,为起始的弱p型掺杂p-硅衬底1,掺杂浓度为1016cm-3
如图2(b)所示,利用离子注入(向下注入),形成一层重N型掺杂的N+硅层2,厚度约为50nm,掺杂杂质为磷,掺杂浓度为1019cm-3
如图2(c)所示,使用金属有机化学气相淀积(MOCVD)方法自下而上依次形成N型掺杂的 N+铝镓氮层3,本征无掺杂的i-铝镓氮层4和P+铝镓氮层5,其中N+铝镓氮层3的厚度为40nm,掺杂浓度为1019cm-3,掺杂杂质为硅;i-铝镓氮层4的厚度为400nm,最上层的P+铝镓氮层5 厚度为30nm,掺杂浓度为1019cm-3,掺杂杂质为镁。
如图2(d)所示,以光刻胶为掩膜,在P+铝镓氮层5上光刻形成圆形上台面形状,然后采用电感耦合等离子体(ICP)和Cl2干法刻蚀掉i-铝镓氮层4端部和P+铝镓氮层5端部,刻蚀之后,去除光刻胶。
如图2(e)所示,以光刻胶为掩膜,在N+铝镓氮层3光刻形成圆形中台面形状,然后采用电感耦合等离子体(ICP)和BCl3气体干法刻蚀掉N+铝镓氮层3端部,刻蚀之后,去除光刻胶。
如图2(f)所示,光刻形成上电极6的接触通孔和中电极7的接触通孔,之后使用电子束蒸发方法淀积金属镍接触形成上电极6和中电极7;之后进行剥离工艺,去除光刻胶形成最终的接触图形;然后对p-硅衬底1的背面进行同样的金属淀积,在p-硅衬底1底部形成下电极8,最后进行快速热退火,退火温度为400度。
实施例2本实施例提供一种铝镓氮方环形多波段探测器制备工艺
如图3(a)所示为方形硅基铝镓氮多波段探测器结构,选取起始的弱p型掺杂p-硅衬底 1,掺杂浓度为1017cm-3
利用离子扩散(向下注入),形成一层重N型掺杂的N+硅层2,厚度约为200nm,掺杂杂质为砷,掺杂浓度为1020cm-3
使用分子束外延(MBE)方法自下而上依次形成N型掺杂的N+铝镓氮层3,本征无掺杂的i-铝镓氮层4和P+铝镓氮层5,其中N+铝镓氮层3的厚度为200nm,掺杂浓度为1020cm-3,掺杂杂质为硅;i-铝镓氮层4的厚度为600nm,最上层的P+铝镓氮层5厚度为60nm,掺杂浓度为 1020cm-3,掺杂杂质为镁。
以光刻胶为掩膜,在P+铝镓氮层5层光刻形成方形上台面形状,然后采用电感耦合等离子体(ICP)和BCl3气体干法刻蚀掉i-铝镓氮层4端部和P+铝镓氮层5端部,刻蚀之后,去除光刻胶。
以光刻胶为掩膜,在N+铝镓氮层3光刻形成圆形中台面形状,然后采用电感耦合等离子体(ICP)和Cl2气体刻蚀掉N+铝镓氮层3端部,刻蚀之后,去除光刻胶。
光刻形成上电极6和中电极7的接触通孔,之后热蒸发淀积金属钛接触形成上电极6和中电极7;之后进行剥离工艺,去除光刻胶形成最终的接触图形;之后在p-硅衬底1的背面进行同样的金属淀积,在p-硅衬底1底部形成下电极8,最后进行快速热退火,退火温度为600度。
本实施例的优点是方形结构更加紧凑,更加节省面积。
实施例3本实施例提供一种氮化镓圆环形多波段探测器制备工艺
如图3(b)所示为选取起始的弱p型掺杂p-硅衬底1,掺杂浓度为1018cm-3
利用离子扩散(向下注入)形成一层重N型掺杂的N+硅层2,厚度约为400nm,掺杂杂质为锑,掺杂浓度为1021cm-3
使用分子束外延(MBE)方法自下而上依次形成N型掺杂的N+氮化镓层3,本征无掺杂的 i-氮化镓层4和P+氮化镓层5,其中N+氮化镓层3的厚度为200nm,掺杂浓度为1020cm-3,掺杂杂质为硅;i-氮化镓层4的厚度为600nm,最上层的P+氮化镓层5厚度为60nm,掺杂浓度为 1020cm-3,掺杂杂质为镁。
以光刻胶为掩膜,在P+氮化镓层5层光刻形成方形上台面形状,然后采用电感耦合等离子体(ICP)和Cl2气体干法刻蚀掉i-氮化镓层4端部和P+氮化镓层5端部,刻蚀之后,去除光刻胶。
以光刻胶为掩膜,在N+氮化镓层3光刻形成圆形中台面形状,然后采用电感耦合等离子体(ICP)和Cl2气体刻蚀掉N+铝镓氮层3端部,刻蚀之后,去除光刻胶。
光刻形成上电极6和中电极7的接触通孔,之后热蒸发淀积金属金接触形成上电极6和中电极7;之后进行剥离工艺,去除光刻胶形成最终的接触图形;之后在p-硅衬底1的背面进行同样的金属淀积,在p-硅衬底1底部形成下电极8,最后进行快速热退火,退火温度为800度。
氮化镓的外延工艺及P型掺杂工艺更加成熟,难度和成本更低。
所应理解的是,以上所述仅为本发明的具体实施例,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种硅基环形多波段探测器,其特征在于:所述硅基环形多波段探测器自下而上依次为下电极(8),P-硅衬底(1),禁带宽度为Eg1的N+硅层(2),N+氮化物层(3),i-氮化物层(4),禁带宽度为Eg2的P+氮化物层(5),上电极(6),其中Eg2>Eg1;其中所述上电极(6)位于所述P+氮化物层(5)端部,中电极(7)位于所述N+硅层(2)上靠近端部位置且覆盖部分所述N+氮化物层(3)端部;所述中电极(7)和上电极(6)为环状结构;
暴露出的所述N+氮化物层(3)为环状结构;
所述上电极(6)宽度为10nm至 10μm,厚度为 10nm 至 1μm;所述中电极(7)宽度为10nm至 10μm,厚度为 10nm 至 1μm;
暴露出的所述N+氮化物层(3)宽度为10nm 至 10μm,厚度为 10nm 至 1μm。
2.如权利要求1所述的硅基环形多波段探测器,其特征在于:所述环状结构为圆环或方环。
3.如权利要求1所述的硅基环形多波段探测器,其特征在于:所述氮化物为III-V族氮化物,所述III-V族氮化物为AlGaN或GaN。
4.如权利要求1所述的硅基环形多波段探测器,其特征在于:所述P-硅衬底(1)弱P掺杂,掺杂浓度为1015cm-3至1019cm-3
5.如权利要求1所述的硅基环形多波段探测器,其特征在于:所述N+硅层(2)重N掺杂,掺杂浓度为1018cm-3至1021cm-3,掺杂元素为磷,砷或锑。
6.如权利要求1所述的硅基环形多波段探测器,其特征在于:所述N+氮化物层(3)重N掺杂,掺杂浓度为1018cm-3 至 1021cm-3,所述P+氮化物层(5)重P掺杂,掺杂浓度为1018cm-3 至1021cm-3
7.一种硅基环形多波段探测器的制作方法,其特征在于:包括
在P-硅衬底(1)上形成禁带宽度为Eg1的N+硅层(2);
在所述N+硅层(2)上生长N+氮化物层(3);
在所述N+氮化物层(3)上生长i-氮化物层(4);
在所述i-氮化物层(4)上生长禁带宽度为Eg2的P+氮化物层(5),其中Eg2>Eg1;
刻蚀所述P+氮化物层(5)端部和所述i-氮化物层(4)端部,使得所述P+氮化物层(5)和所述i-氮化物层(4)侧面共面,形成第一台面结构;
刻蚀所述N+氮化物层(3)端部使得所述N+氮化物层(3)上表面面积大于所述i-氮化物层(4)下表面面积,形成第二台面结构;
在所述P+氮化物层(5)端部形成环形上电极(6)的接触通孔,沉积环形上电极(6);
在所述N+硅层(2)上靠近端部位置且覆盖部分所述N+氮化物层(3)端部形成中电极(7)的接触通孔,沉积环形中电极(7);
在所述P-硅衬底(1)底部沉积下电极(8);
暴露出的所述N+氮化物层(3)为环状结构;
所述上电极(6)宽度为10nm至 10μm,厚度为 10nm 至 1μm;所述中电极(7)宽度为10nm至 10μm,厚度为 10nm 至 1μm;
暴露出的所述N+氮化物层(3)宽度为10nm 至 10μm,厚度为 10nm 至 1μm。
8.如权利要求7所述的硅基环形多波段探测器的制作方法,其特征在于:形成所述禁带宽度为Eg1的N+硅层(2)方式为离子注入或扩散注入。
9.如权利要求7所述的硅基环形多波段探测器的制作方法,其特征在于:沉积所述环形上电极(6)和沉积所述环形中电极(7)方法为电子束蒸发、热蒸发或物理气相沉积。
CN202010035419.6A 2020-01-14 2020-01-14 一种硅基环形多波段探测器及其制作方法 Active CN111628013B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010035419.6A CN111628013B (zh) 2020-01-14 2020-01-14 一种硅基环形多波段探测器及其制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010035419.6A CN111628013B (zh) 2020-01-14 2020-01-14 一种硅基环形多波段探测器及其制作方法

Publications (2)

Publication Number Publication Date
CN111628013A CN111628013A (zh) 2020-09-04
CN111628013B true CN111628013B (zh) 2022-04-05

Family

ID=72270903

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010035419.6A Active CN111628013B (zh) 2020-01-14 2020-01-14 一种硅基环形多波段探测器及其制作方法

Country Status (1)

Country Link
CN (1) CN111628013B (zh)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1598502A (zh) * 2003-09-18 2005-03-23 中国科学院上海技术物理研究所 氮化镓基可见/紫外双色光电探测器
US7381966B2 (en) * 2006-04-13 2008-06-03 Integrated Micro Sensors, Inc. Single-chip monolithic dual-band visible- or solar-blind photodetector
CN101419996B (zh) * 2008-12-04 2010-09-22 中国电子科技集团公司第十三研究所 红外—紫外多色探测器及其制备方法
CN104576811B (zh) * 2015-01-27 2016-08-31 苏州苏纳光电有限公司 近中红外波双色探测器及其制备方法
CN109935655B (zh) * 2019-04-03 2024-02-06 南京紫科光电科技有限公司 一种AlGaN/SiC双色紫外探测器
CN209675320U (zh) * 2019-04-03 2019-11-22 南京紫科光电科技有限公司 一种AlGaN/SiC双色紫外探测器

Also Published As

Publication number Publication date
CN111628013A (zh) 2020-09-04

Similar Documents

Publication Publication Date Title
US7566875B2 (en) Single-chip monolithic dual-band visible- or solar-blind photodetector
JP5576943B2 (ja) ナノワイヤ構造の光検出器を備えるアクティブピクセルセンサー
US6483130B1 (en) Back-illuminated heterojunction photodiode
CN107403848B (zh) 一种背照式级联倍增雪崩光电二极管
CN108400197B (zh) 具有球冠结构的4H-SiC紫外光电探测器及制备方法
CN110047955B (zh) 一种AlGaN紫外雪崩光电二极管探测器及其制备方法
US20170207360A1 (en) Multiband double junction photodiode and related manufacturing process
US8350290B2 (en) Light-receiving device and manufacturing method for a light-receiving device
CN110676272A (zh) 一种半导体紫外光电探测器
US20210210646A1 (en) Broadband uv-to-swir photodetectors, sensors and systems
CN113471326A (zh) 一种ⅲ族氮化物异质结光电探测器
CN111628013B (zh) 一种硅基环形多波段探测器及其制作方法
CN108615782B (zh) 一种紫外探测器及其制造方法
Lian et al. High Deep-Ultraviolet Quantum Efficiency GaN P—I—N Photodetectors with Thin P-GaN Contact Layer
Pham et al. Filter-free AlGaN photodiode with high quantum efficiency for partial discharge detection
CN112117345B (zh) 一种衍射环结构ii类超晶格红外探测器及其制备方法
CN114709279A (zh) 一种倒装结构的紫外探测器芯片
CN110544727A (zh) 一种集成滤光膜层的紫外探测器及其制备方法
Yang et al. High responsivity 4H-SiC based metal-semiconductor-metal ultraviolet photodetectors
JP2003142721A (ja) 受光素子
CN109148623B (zh) 一种具有低噪声的AlGaN基雪崩光电二极管及制备方法
Jun et al. Metal-semiconductor-metal ultraviolet photodetector based on GaN
Lv et al. Highly Sensitive Narrowband AlGaN Solar Blind Ultraviolet Photodetectors using Polarization Induced Heterojunction Barrier
Wang et al. Analysis and comparison of UV photodetectors based on wide bandgap semiconductors
JPH11195810A (ja) 半導体受光素子

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20230404

Address after: No. 1088, Xueyuan Avenue, Taoyuan Street, Nanshan District, Shenzhen City, Guangdong Province

Patentee after: SOUTH University OF SCIENCE AND TECHNOLOGY OF CHINA

Address before: Taizhou building, No. 1088, Xueyuan Avenue, Xili University Town, Nanshan District, Shenzhen City, Guangdong Province

Patentee before: SHENZHEN THIRD GENERATION SEMICONDUCTOR Research Institute

TR01 Transfer of patent right