CN113690338A - 一种MoS2和GaAs异质结红外探测器及制备方法 - Google Patents

一种MoS2和GaAs异质结红外探测器及制备方法 Download PDF

Info

Publication number
CN113690338A
CN113690338A CN202110930615.4A CN202110930615A CN113690338A CN 113690338 A CN113690338 A CN 113690338A CN 202110930615 A CN202110930615 A CN 202110930615A CN 113690338 A CN113690338 A CN 113690338A
Authority
CN
China
Prior art keywords
infrared light
light absorption
infrared
gaas
transport layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110930615.4A
Other languages
English (en)
Inventor
潘昌翊
邓惠勇
汪越
殷子薇
窦伟
刘赤县
张祎
姚晓梅
戴宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Technical Physics of CAS
Original Assignee
Shanghai Institute of Technical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Technical Physics of CAS filed Critical Shanghai Institute of Technical Physics of CAS
Priority to CN202110930615.4A priority Critical patent/CN113690338A/zh
Publication of CN113690338A publication Critical patent/CN113690338A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0328Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
    • H01L31/0336Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032 in different semiconductor regions, e.g. Cu2X/CdX hetero- junctions, X being an element of Group VI of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种MoS2和GaAs异质结红外探测器及制备方法,该探测器包含GaAs基底、红外光吸收区、电荷传输层、电荷阻挡区和引线电极,制备方法包括四个步骤,即通过光刻、离子注入、二维材料转移和薄膜淀积等技术在高阻GaAs基底上依次形成红外光吸收区、电荷阻挡区、电荷传输层和引线电极。本发明的优点是:使用不同的材料充当红外光吸收区和电荷传输层,利用MoS2和GaAs之间形成的异质结电场将红外光吸收区内产生的光生载流子(电子或空穴)注入到电荷传输层内,通过电荷传输层电导率的变化来检测红外光信号,减小了红外光吸收区内热激发载流子对器件暗电流的影响,可以提高非本征半导体红外探测器的工作温度,并且相应的器件制备方法简单可行。

Description

一种MoS2和GaAs异质结红外探测器及制备方法
技术领域
本发明涉及一种长波红外探测器及其制备方法,该MoS2和GaAs异质结红外探测器特别适用于50~300μm波长范围内的红外探测领域。
背景技术
红外探测是利用红外波段(760nm~1mm)进行目标信息获取的技术,可以探测到其他波段无法获取的信息,在军事、科学、工农业生产和医疗卫生等诸多领域都有着广泛的应用。常见的红外探测器有热探测器、本征半导体红外探测器、非本征半导体红外探测器和量子阱探测器等。非本征半导体红外探测器是利用非本征半导体材料中的杂质原子吸收光子,探测波长由杂质的电离激活能决定。根据常见杂质在硅、锗和砷化镓材料中的电离激活能,可知硅基、锗基和砷化镓基非本征红外探测器的探测波长分别覆盖4~50μm、40~200μm和50~300μm。与其他类型的红外探测器相比,非本征半导体红外探测器具有探测率高、响应速度快和抗辐射性能好等优点,已经成为中、远红外天文探测领域的主流探测器,被广泛应用于各种大型天文探测平台上,如宽视场红外测量探测卫星(WISE)、斯皮策(Spitzer)太空望远镜和詹姆斯·韦伯太空望远镜(JWST)等。
对于常规的非本征半导体红外探测器,为了抑制杂质热激发产生的暗电流,通常需要使探测器工作在液氦温度下。对液氦制冷剂的需求,一方面限制了探测器在外太空探测平台上的有效服役时间,另一方面高额的液氦成本也限制了探测器在普通商用领域的应用。因此,设计新型红外探测器结构,提高探测器的工作温度,具有十分显著的科研和商用价值。
发明内容
本发明的目的是提供一种MoS2和GaAs异质结型非本征半导体红外探测器,并提供一种实现该结构的制备方法,解决了传统非本征半导体红外探测器工作温度低的技术难题。所述的新型探测器的结构和工作方式不同于传统的非本征半导体红外探测器,其特征在于:
所述的长波红外探测器采用平面结构,即引线电极、电荷阻挡区、红外光吸收区和电荷传输层都位于GaAs基底的表面;
所述的电荷传输层位于红外光吸收区的上面,引线电极位于电荷传输层的两端;
所述的GaAs基底是高阻型,杂质浓度范围为1×1012~1×1014cm-3
所述的红外光吸收区是掺杂GaAs材料,掺杂元素为Mg、S或Te,杂质浓度范围为5×1015~1×1017cm-3
所述的红外光吸收区和电荷传输层之间形成异质结,在异质结电场的驱使下,红外光吸收区内产生的光生载流子会注入电荷传输层内。
一种实现该探测器的制备方法,包括如下步骤:
①利用紫外光刻工艺在GaAs基底的表面制作红外光吸收区图形;
②利用离子注入工艺对吸收区进行掺杂处理,获得红外光吸收区;
③利用二维材料转移技术将MoS2转移到红外光吸收区的表面,形成电荷传输层;
④利用电子束光刻技术在MoS2两端制作电极区图形,然后蒸镀金属薄膜,形成引线电极。
本发明的优点是:
1.本发明使用体材料作为红外光吸收区,对红外光的吸收效率高;
2.本发明继承了传统非本征半导体红外探测器的优点,可探测波长长,同时又避免了传统非本征半导体红外探测器的缺点,可工作在较高温度下;
3.本发明结构简单,制备成本低,与当前的半导体工艺相兼容,并且容易推广应用到其它材料体系。
附图说明
图1为本发明探测器结构图。
图2为本发明实施例的器件工艺流程示意图。
具体实施方式
下面根据本发明内容和附图说明给出本发明的三个较好的实施例,结合实例进一步说明本发明技术细节、结构特征和功能特点,但这些实例并不限制本发明范围,合乎发明内容和附图说明中描述的实例均应包含在本发明范围内。所述探测器的制备方法具体由以下步骤实现:
实施例1:
选择本征不掺杂的GaAs基底1,掺杂浓度低于1×1013cm-3,借助紫外光刻技术在基底表面制作吸收区图形,使用的光刻胶的厚度约3μm,可以作为后续离子注入过程的掩蔽剂;
通过多次离子注入过程,向红外光吸收区4注入Te杂质,注入深度约0.5μm,掺杂浓度约1×1016cm-3
通过二维材料转移技术,将MoS2材料转移到红外光吸收区4的表面,形成电荷传输层5;
利用电子束光刻技术在电荷传输层5的两端制作电极区图形;
利用电子束蒸发技术沉积20nm厚的Ni和80nm厚的Au,形成引线电极。
实施例2:
选择本征不掺杂的GaAs基底1,掺杂浓度低于1×1013cm-3,借助紫外光刻技术在基底表面制作吸收区图形,使用的光刻胶6的厚度约3μm,可以作为后续离子注入过程的掩蔽剂;
通过多次离子注入过程,向红外光吸收区4注入Mg杂质,注入深度约0.5μm,掺杂浓度约5×1016cm-3
通过二维材料转移技术,将MoS2材料转移到红外光吸收区4的表面,形成电荷传输层5;
利用电子束光刻技术在电荷传输层5的两端制作电极区图形;
利用电子束蒸发技术沉积20nm厚的Ti和80nm厚的Au,形成引线电极。
实施例3:
选择本征不掺杂的GaAs基底1,掺杂浓度低于1×1013cm-3,借助紫外光刻技术在基底表面制作吸收区图形,使用的光刻胶6的厚度约3μm,可以作为后续离子注入过程的掩蔽剂;
通过多次离子注入过程,向红外光吸收区4注入S杂质,注入深度约0.5μm,掺杂浓度约3×1016cm-3
通过二维材料转移技术,将MoS2材料转移到红外光吸收区4的表面,形成电荷传输层5;
利用电子束光刻技术在电荷传输层5的两端制作电极区图形;
利用电子束蒸发技术沉积20nm厚的镍和80nm厚的金,形成引线电极。

Claims (4)

1.一种MoS2和GaAs异质结红外探测器,包括GaAs基底(1)、引线电极(2)、电荷阻挡区(3)、红外光吸收区(4)和电荷传输层(5),其特征在于:
所述的红外探测器采用平面结构,即引线电极(2)、电荷阻挡区(3)、红外光吸收区(4)和电荷传输层(5)都位于GaAs基底(1)的表面;
所述的电荷传输层(5)位于红外光吸收区(4)的上方,引线电极(2)位于电荷传输层(5)的两端;
所述的红外光吸收区(4)和电荷传输层(5)之间形成异质结,在异质结电场的驱动下,红外光吸收区(4)内产生的光生载流子会注入电荷传输层(5)内。
2.根据权利要求1所述的一种MoS2和GaAs异质结红外探测器,其特征在于:所述的GaAs基底(1)是高阻型,杂质浓度范围为1×1012~1×1014cm-3
3.根据权利要求1所述的一种MoS2和GaAs异质结红外探测器,其特征在于:所述的红外光吸收区(4)是掺杂GaAs材料,掺杂元素为Mg、S或Te,杂质浓度范围为5×1015~1×1017cm-3
4.一种制备如权利要求1所述的MoS2和GaAs异质结红外探测器的方法,其特征在于包括如下步骤:
①利用紫外光刻工艺在GaAs基底(1)的表面制作红外光吸收区图形;
②利用离子注入工艺对吸收区进行掺杂处理,获得红外光吸收区(4);
③利用二维材料转移技术将MoS2转移到红外光吸收区(4)的表面,形成电荷传输层(5);
④利用电子束光刻技术在MoS2两端制作电极区图形,然后蒸镀金属薄膜,形成引线电极(2)。
CN202110930615.4A 2021-08-13 2021-08-13 一种MoS2和GaAs异质结红外探测器及制备方法 Pending CN113690338A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110930615.4A CN113690338A (zh) 2021-08-13 2021-08-13 一种MoS2和GaAs异质结红外探测器及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110930615.4A CN113690338A (zh) 2021-08-13 2021-08-13 一种MoS2和GaAs异质结红外探测器及制备方法

Publications (1)

Publication Number Publication Date
CN113690338A true CN113690338A (zh) 2021-11-23

Family

ID=78579814

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110930615.4A Pending CN113690338A (zh) 2021-08-13 2021-08-13 一种MoS2和GaAs异质结红外探测器及制备方法

Country Status (1)

Country Link
CN (1) CN113690338A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111739972A (zh) * 2020-07-01 2020-10-02 中国科学院上海技术物理研究所 一种双面环形Ge基长波红外和太赫兹探测器和制备方法
CN115295676A (zh) * 2022-08-18 2022-11-04 之江实验室 一种高光响应Te/MoS2异质结光探测器及制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017147423A (ja) * 2016-02-19 2017-08-24 国立大学法人東北大学 ショットキー型デバイス
CN107706265A (zh) * 2017-09-26 2018-02-16 合肥工业大学 一种外尔半金属异质结红外探测器及其制备方法
CN108428764A (zh) * 2018-01-30 2018-08-21 中国科学院上海技术物理研究所 一种GaAs基LFET太赫兹红外光探测器和制备方法
CN111640817A (zh) * 2020-05-09 2020-09-08 北京科技大学 一种悬空横向双异质结光探测器及其制作方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017147423A (ja) * 2016-02-19 2017-08-24 国立大学法人東北大学 ショットキー型デバイス
CN107706265A (zh) * 2017-09-26 2018-02-16 合肥工业大学 一种外尔半金属异质结红外探测器及其制备方法
CN108428764A (zh) * 2018-01-30 2018-08-21 中国科学院上海技术物理研究所 一种GaAs基LFET太赫兹红外光探测器和制备方法
CN111640817A (zh) * 2020-05-09 2020-09-08 北京科技大学 一种悬空横向双异质结光探测器及其制作方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111739972A (zh) * 2020-07-01 2020-10-02 中国科学院上海技术物理研究所 一种双面环形Ge基长波红外和太赫兹探测器和制备方法
CN111739972B (zh) * 2020-07-01 2023-11-10 中国科学院上海技术物理研究所 一种双面环形Ge基长波红外和太赫兹探测器和制备方法
CN115295676A (zh) * 2022-08-18 2022-11-04 之江实验室 一种高光响应Te/MoS2异质结光探测器及制备方法

Similar Documents

Publication Publication Date Title
Zhang et al. Sensitive deep ultraviolet photodetector and image sensor composed of inorganic lead-free Cs3Cu2I5 perovskite with wide bandgap
US7535010B2 (en) Sensor and image pickup device
CN113690338A (zh) 一种MoS2和GaAs异质结红外探测器及制备方法
US8604441B2 (en) Layered semiconductor neutron detectors
JP2954034B2 (ja) 単一キャリア型固体放射線検出装置
CN110265504B (zh) 一种紫外光电探测器及其制备方法
JPS59227168A (ja) 半導体放射線検出器
CN106601859B (zh) 量子点宽谱单光子探测器及其探测方法
CN101976729B (zh) 平面构型有机红外或紫外光伏半导体探测器
EP0438889B1 (en) Method of forming an amorphous silicon sensor
Rogalski et al. Ultraviolet photodetectors: From photocathodes to low-dimensional solids
Dawood et al. Some of Electrical and Detection properties of nano silver oxide
WO2015148544A1 (en) Compact solid-state neutron detector
JPS63128677A (ja) 半導体受光装置の製造方法
Siegmund et al. GaN photocathodes for UV detection and imaging
CN110429156B (zh) 一种基于分形纳米线表面结构的Si-APD光电探测器及制备方法
CN108428764A (zh) 一种GaAs基LFET太赫兹红外光探测器和制备方法
Tindall et al. Silicon detectors for low energy particle detection
US7041983B2 (en) Planar geometry buried junction infrared detector and focal plane array
CN113193069B (zh) 一种hBN/BAlN异质结紫外探测器及其制备方法
KR101183111B1 (ko) 단극성 수직형 투명 다이오드
CN113437165A (zh) 一种光电探测器及其制备方法
CN113725310B (zh) 一种多结型锗基长波红外探测器及制备方法
CN116154030B (zh) 极紫外至紫外波段的碳化硅雪崩光电探测器及其制备方法
CN115425146B (zh) 一种背照式微结构阵列宽光谱成像探测器及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20211123