CN211670197U - 一种二氧化钒和二维半导体的结型光探测器 - Google Patents

一种二氧化钒和二维半导体的结型光探测器 Download PDF

Info

Publication number
CN211670197U
CN211670197U CN202020222999.5U CN202020222999U CN211670197U CN 211670197 U CN211670197 U CN 211670197U CN 202020222999 U CN202020222999 U CN 202020222999U CN 211670197 U CN211670197 U CN 211670197U
Authority
CN
China
Prior art keywords
vanadium dioxide
dimensional semiconductor
nanometers
thickness
vanadium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202020222999.5U
Other languages
English (en)
Inventor
王建禄
蒋伟
孟祥建
沈宏
林铁
褚君浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Technical Physics of CAS
Original Assignee
Shanghai Institute of Technical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Technical Physics of CAS filed Critical Shanghai Institute of Technical Physics of CAS
Application granted granted Critical
Publication of CN211670197U publication Critical patent/CN211670197U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/108Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the Schottky type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0328Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
    • H01L31/0336Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032 in different semiconductor regions, e.g. Cu2X/CdX hetero- junctions, X being an element of Group VI of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

本专利公开了一种二氧化钒和二维半导体的结型光探测器。该探测器首先通过磁控溅射在氧化铝衬底上生长了一层均匀的二氧化钒薄膜,然后利用光刻掩膜和氩等离子体刻蚀技术将二氧化钒薄膜刻蚀成阵列,随后通过干法转移将二维半导体转移到二氧化钒材料上,形成垂直结构的异质结,随后运用电子束光刻的方法结合剥离工艺在二氧化钒和二维半导体上制备金属电极,形成垂直结构的异质结型光探测器件。器件结构自下而上为衬底、二氧化钒、二维半导体和金属源漏电极。通过调控偏压,该器件可实现P‑N结和Bolometer转换,从而实现可见光至远红外波段光谱的探测,功耗低,灵敏度高,而且可在高温环境中工作。

Description

一种二氧化钒和二维半导体的结型光探测器
技术领域
本专利涉及一种二氧化钒和二维半导体的结型光探测器件,属于纳米材料技术领域。
背景技术
近年来,以二硫化钼(MoS2)为代表的过渡金属硫族化合物的出现,为光电探测领域的发展提供了契机。这类过渡金属硫族化合物[Nature Nanotechnology 7,699(2012)]具有1eV-2eV的禁带宽度,载流子有效迁移率可以高达几百cm2V-1s-1,而且可以利用化学气相沉积的方法实现大面积制备,这些优异特性使得这类材料可以用于可见光的有效探测。事实上,基于二维半导体的光电探测器早已开始研究,并取得了较好的发展,比如基于二硫化钼的光电探测器[Nature Nanotechnology 8,497(2013)]可以实现高灵敏的探测,探测率高达880AW-1
然而,过渡金属硫族化合物在光电探测领域也并不是一帆风顺,比如它的禁带宽度限制了它在红外光电探测器方面的应用,因为这类半导体本身的带隙落在紫外至可见波段,虽然通过能带工程能使其延伸到近红外波段[Advanced Materials 27,6575(2015)],但却很难再进一步延伸。尽管现在也有其他的二维半导体,比如Bi2SeO2[NatureCommunications 9,3311(2018)]和BP[Nature Nanotechnology 10,707(2015)],这些材料的禁带宽度可调,通过厚度的控制可使其带隙处于0.2-0.3eV,可对应到中波红外区域,但这些材料的制备难度和空气稳定性却抑制了他们的发展。此外,二维材料的厚度也限制了他对光的吸收,导致光电转换效率较低,而厚的二维材料暗电流大,很难被完全抑制。基于以上分析,针对二维半导体在光探测器方面的应用,迫切需要通过器件结构的优化和工艺的改进,增加光的吸收同时降低暗电流,并且延长探测波长。
发明内容
为了解决以上问题,本专利提出一种二氧化钒和二维半导体的结型光探测器件。该方法采用二氧化钒和较厚的、空气稳定的、带隙较窄的二维半导体结合,通过构建垂直型异质结型器件,增加光吸收的同时降低暗电流。该器件在零偏压下是P-N结型器件,可以探测到2微米波长的光;在正偏下可利用二氧化钒的bolometer特性,使探测波长延伸到长波红外,实现了超宽光谱的探测;而在极端高温环境中,该器件会转变为肖特基型器件,从而实现光探测,拓宽了光电探测器的应用领域。
本专利是一种二氧化钒和二维半导体的结型光探测器件及制备方法,其特征在于,器件自下而上依次为:
衬底1、二氧化钒2、二维半导体3、金属源极4、金属漏极5,
其中衬底1为厚度为500微米的氧化铝,表面粗糙度为0.5纳米;
其中二氧化钒2为厚度22纳米的二氧化钒薄膜,表面粗糙度为1纳米;
其中二维半导体3为过渡金属硫族化合物,厚度为20-40纳米;
其中金属源极4、金属漏极5为铂和金电极,铂厚度为15纳米,金厚度为 65纳米。
本专利是一种二氧化钒和二维半导体的结型光探测器件及制备方法,其特征在于,制备方法包括以下步骤:
1)通过磁控溅射的方法在氧化铝衬底上制备一层钒金属薄膜,并通过热氧化法将其转变成二氧化钒薄膜;
2)采用紫外光刻技术在二氧化钒薄膜上制作阵列掩膜,利用氩等离子体刻蚀技术刻蚀掉曝光区域,除去掩模后形成二氧化钒方块阵列;
3)用机械剥离的方法在硅片上剥离过渡金属硫族化合物二维半导体,如二硫化钼和二碲化钼,厚度为20-40纳米。用聚二甲基硅氧烷(PDMS)将二维半导体转移到刻蚀好的二氧化钒表面,形成错位堆叠的垂直异质结结构。
4)采用紫外光刻技术或者电子束曝光技术,结合热蒸发和剥离工艺,分别在二维半导体和二氧化钒上制备金属电极,铂15纳米,金65纳米,形成二氧化钒和二维半导体的异质结型器件。
本专利的优点在于:专利采用了二氧化钒和二维半导体形成垂直异质结结构器件,结合了三种不同的光探测模式,实现了超宽光谱的探测。在零偏压下,该器件表现为P-N结型器件,器件可以吸收2微米波长以下的光,产生电子空穴对并被P-N结内建电场分离,实现可见光和近红外的高灵敏光电探测。器件在正偏时,内建电场被屏蔽,二氧化钒可以吸收短波至长波红外光的热量,利用bolometer效应,减小自身电阻,改变电流大小,从而实现超宽光谱的有效探测。当器件环境温度由常温升至70度以上,二氧化钒由半导体变为金属,器件也因此变为肖特基结型探测器,从而实现在高温工作环境下的有效光探测。
附图说明
图1为制备的二氧化钒和二维半导体的结型探测器的结构示意图。图中: 1为衬底、2为二氧化钒、3为二维半导体、4为金属源极、5为金属漏极。
图2为器件探测可见光至短波红外光的探测原理示意图。
图3为器件探测中长波红外光的探测原理示意图。
图4为高温工作模式下的探测原理示意图。
具体实施方式
下面结合具体实施例对专利的技术方案进行详细说明。
实施例1
1)通过磁控溅射的方法在氧化铝衬底上溅射一层均匀的钒金属薄膜,通过热氧化法将其转变成二氧化钒薄膜,薄膜厚度为22纳米,表面粗糙度为1 纳米;
2)采用紫外光刻技术在步骤1的二氧化钒薄膜上制作阵列掩膜,利用氩等离子体刻蚀技术刻蚀掉曝光区域,除去掩模后形成二氧化钒的方块阵列;
3)用机械剥离的方法在硅片上剥离二维半导体二碲化钼,厚度为20纳米。用聚二甲基硅氧烷(PDMS)将剥离好的二维半导体转移到步骤2中的二氧化钒表面,再除去PDMS,形成二维半导体材料和二氧化钒错位堆叠的垂直异质结结构。
4)采用紫外光刻技术或者电子束曝光技术,结合热蒸发和剥离工艺,分别在步骤3的二维半导体和二氧化钒上制备金属电极,铂15纳米,金65纳米,形成完整的二氧化钒和二维半导体的异质结型器件。
实施例2
1)通过磁控溅射的方法在氧化铝衬底上溅射一层均匀的钒金属薄膜,通过热氧化法将其转变成二氧化钒薄膜,薄膜厚度为22纳米,表面粗糙度为1 纳米;
2)采用紫外光刻技术在步骤1的二氧化钒薄膜上制作阵列掩膜,利用氩等离子体刻蚀技术刻蚀掉曝光区域,除去掩模后形成二氧化钒的方块阵列;
3)用机械剥离的方法在硅片上剥离二维半导体二碲化钼,厚度为30纳米。用聚二甲基硅氧烷(PDMS)将剥离好的二维半导体转移到步骤2中的二氧化钒表面,再除去PDMS,形成二维半导体材料和二氧化钒错位堆叠的垂直异质结结构。
4)采用紫外光刻技术或者电子束曝光技术,结合热蒸发和剥离工艺,分别在步骤3的二维半导体和二氧化钒上制备金属电极,铂15纳米,金65纳米,形成完整的二氧化钒和二维半导体的异质结型器件。
实施例3
1)通过磁控溅射的方法在氧化铝衬底上溅射一层均匀的钒金属薄膜,通过热氧化法将其转变成二氧化钒薄膜,薄膜厚度为22纳米,表面粗糙度为1 纳米;
2)采用紫外光刻技术在步骤1的二氧化钒薄膜上制作阵列掩膜,利用氩等离子体刻蚀技术刻蚀掉曝光区域,除去掩模后形成二氧化钒的方块阵列;
3)用机械剥离的方法在硅片上剥离二维半导体二碲化钼,厚度为40纳米。用聚二甲基硅氧烷(PDMS)将剥离好的二维半导体转移到步骤2中的二氧化钒表面,再除去PDMS,形成二维半导体材料和二氧化钒错位堆叠的垂直异质结结构。
4)采用紫外光刻技术或者电子束曝光技术,结合热蒸发和剥离工艺,分别在步骤3的二维半导体和二氧化钒上制备金属电极,铂15纳米,金65纳米,形成完整的二氧化钒和二维半导体的异质结型器件。

Claims (1)

1.一种二氧化钒和二维半导体的结型光探测器,其特征在于,
所述的结型光探测器自下而上依次为:衬底(1)、二氧化钒(2)、二维半导体(3)、金属源极(4)、金属漏极(5),其中:
所述的衬底(1)为氧化铝衬底,厚度为500微米,表面粗糙度为0.5纳米;
所述的二氧化钒(2)为二氧化钒薄膜,厚度为22纳米,表面粗糙度为1纳米;
所述的二维半导体(3)为过渡金属硫族化合物,厚度为20-40纳米;
所述的金属源极(4)、金属漏极(5)为铂和金电极,铂厚度为15纳米,金厚度为65纳米。
CN202020222999.5U 2019-11-18 2020-02-28 一种二氧化钒和二维半导体的结型光探测器 Active CN211670197U (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2019111252070 2019-11-18
CN201911125207 2019-11-18

Publications (1)

Publication Number Publication Date
CN211670197U true CN211670197U (zh) 2020-10-13

Family

ID=70493197

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202020222999.5U Active CN211670197U (zh) 2019-11-18 2020-02-28 一种二氧化钒和二维半导体的结型光探测器
CN202010126431.8A Pending CN111129186A (zh) 2019-11-18 2020-02-28 一种二氧化钒和二维半导体的结型光探测器及制备方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN202010126431.8A Pending CN111129186A (zh) 2019-11-18 2020-02-28 一种二氧化钒和二维半导体的结型光探测器及制备方法

Country Status (1)

Country Link
CN (2) CN211670197U (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112420852B (zh) * 2020-11-28 2022-07-01 郑州大学 一种二维材料光探测器及其制备方法
CN112259642B (zh) * 2020-12-23 2021-03-09 武汉敏芯半导体股份有限公司 一种异质结光探测器的制备方法及光探测器
CN114551626B (zh) * 2022-02-22 2024-01-26 吉林大学 一种深紫外光电探测器及其制备方法和应用
CN114551632A (zh) * 2022-02-25 2022-05-27 北京科技大学 一种二维碲和过渡金属硫化物的pn结型自驱动光电探测器及其制备方法

Also Published As

Publication number Publication date
CN111129186A (zh) 2020-05-08

Similar Documents

Publication Publication Date Title
CN211670197U (zh) 一种二氧化钒和二维半导体的结型光探测器
An et al. Self-powered ZnS nanotubes/Ag nanowires MSM UV photodetector with high on/off ratio and fast response speed
Silva et al. High-performance self-powered photodetectors achieved through the pyro-phototronic effect in Si/SnOx/ZnO heterojunctions
Wang et al. Progress in ultraviolet photodetectors based on II–VI group compound semiconductors
CN107221575B (zh) 基于二维材料垂直肖特基结近红外探测器及制备方法
Yang et al. Developing seedless growth of ZnO micro/nanowire arrays towards ZnO/FeS2/CuI PIN photodiode application
CN109461789B (zh) 基于二维二硒化钯纳米薄膜与锗的自驱动异质结型红外光电探测器及其制备方法
CN111244203B (zh) 基于Ga2O3/CuI异质PN结的日光盲紫外探测器
CN106449854B (zh) 全耗尽铁电侧栅单根纳米线近红外光电探测器及制备方法
CN105720197A (zh) 一种自驱动宽光谱响应硅基杂化异质结光电传感器及其制备方法
Ramakrishnan et al. Review on metal sulfide-based nanostructures for photodetectors: From ultraviolet to infrared regions
CN111048621A (zh) 一种基于石墨烯/二硒化铂/硅复合异质结的光电探测器及其制备方法
Ma et al. A new approach for broadband photosensing based on Ag2Se/Si heterojunction tuned by Pyro-phototronic effect
Wu et al. Van der Waals integration inch-scale 2D MoSe2 layers on Si for highly-sensitive broadband photodetection and imaging
Shan et al. Improved responsivity of highly reproducible performance ZnO thin film flexible UV photodetectors by piezo-phototronic effect
Wang et al. High-sensitivity silicon: PbS quantum dot heterojunction near-infrared photodetector
Wang et al. Wide-bandgap semiconductor microtubular homojunction photodiode for high-performance UV detection
Huang et al. Broadband-spectral-responsivity of black silicon photodetector with high gain and sub-bandgap sensitivity by titanium hyperdoping
Yu et al. Plasmonically-boosted high-performance UV self-biased photodetector based on SiC-based low-dimensional heterojunction via Pt nanostructures deposition
Song et al. Self-powered photodetectors based on a ZnTe–TeO 2 composite/Si heterojunction with ultra-broadband and high responsivity
CN114420784B (zh) 一种基于二硒化铂和硅的异质结结构及光电探测器、及其制备方法
CN113328004B (zh) 一种利用硒化亚锡纳米晶进行表面修饰的硒化铟光电探测器及其制备方法
CN114551632A (zh) 一种二维碲和过渡金属硫化物的pn结型自驱动光电探测器及其制备方法
CN113097321A (zh) 一种MoS2/SnSe2/H-TiO2异质结光电探测器的制备方法
Teker et al. Improving detectivity of self-powered GaN ultraviolet photodetector by nickel nanoparticles

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant