CN114753002B - 一种提高MOCVD生长GaAs本征掺杂均匀性的方法 - Google Patents

一种提高MOCVD生长GaAs本征掺杂均匀性的方法 Download PDF

Info

Publication number
CN114753002B
CN114753002B CN202210460401.XA CN202210460401A CN114753002B CN 114753002 B CN114753002 B CN 114753002B CN 202210460401 A CN202210460401 A CN 202210460401A CN 114753002 B CN114753002 B CN 114753002B
Authority
CN
China
Prior art keywords
base plate
air inlet
circular base
doping
outer ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210460401.XA
Other languages
English (en)
Other versions
CN114753002A (zh
Inventor
龚平
吴旗召
夏天文
杨宇博
刘邦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xi'an Tangjing Quantum Technology Co ltd
Original Assignee
Xi'an Tangjing Quantum Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xi'an Tangjing Quantum Technology Co ltd filed Critical Xi'an Tangjing Quantum Technology Co ltd
Priority to CN202210460401.XA priority Critical patent/CN114753002B/zh
Publication of CN114753002A publication Critical patent/CN114753002A/zh
Application granted granted Critical
Publication of CN114753002B publication Critical patent/CN114753002B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/16Controlling or regulating
    • C30B25/165Controlling or regulating the flow of the reactive gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4584Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally the substrate being rotated
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/08Reaction chambers; Selection of materials therefor
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/12Substrate holders or susceptors
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/14Feed and outlet means for the gases; Modifying the flow of the reactive gases
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/42Gallium arsenide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本发明公开了一种提高MOCVD生长GaAs本征掺杂均匀性的方法,属于半导体材料生长领域,该方法包括:在低Ⅴ/Ⅲ比情况下,用MOCVD生长的本征掺杂GaAs时,会对GaAs形成C掺杂,当外圈C掺杂浓度低于内圈时,通过增大流经MOCVD反应腔内喷淋头的第三进气孔043载气流量,使得外圈的V族源浓度相对内圈降低,从而使得外圈的掺杂浓度相对内圈升高,提高内外圈掺杂均匀性。当外圈C掺杂浓度高于内圈时,通过减小流经MOCVD反应腔内喷淋头的第三进气孔043的载气流量,使得外圈的V族源浓度相对内圈升高,从而使得外圈的掺杂浓度相对内圈降低,提高内外圈掺杂均匀性,通过本发明提供方法,可以解决MOCVD生长GaAs本征掺杂的内外圈掺杂不均匀问题,提升片内该膜层的掺杂均匀性。

Description

一种提高MOCVD生长GaAs本征掺杂均匀性的方法
技术领域
本发明属于半导体材料生长领域,具体涉及一种提高MOCVD生长GaAs本征掺杂均匀性的方法。
背景技术
GaAs材料的P型掺杂剂通常有Zn和Be,但是这两者在GaAs中的扩散系数较大,当生长陡峭界面时,Zn和Be容易扩散入相邻层的材料而很难满足要求,C因为在GaAs中较低的扩散系数和较高的固溶度而广泛应用。
在MOCVD生长掺杂C的GaAs材料时,通常有外部掺杂和本征掺杂两种方式,外部掺杂剂通常为CCl4和CBr4,CCl4和CBr4在掺杂时,因GaCl3和GaBr3为气态,会在材料内形成Ga空位,较多的Ga空位GaAs材料对某些器件应用带来负面影响,本征掺杂通常在较低的V/III比条件下,因为V/III比较低,有机源的烃基中的C会在材料中替代As,形成C掺杂,这种掺杂方式形成的材料内Ga空位较少,在某些器件中得到应用。
发明内容
本发明解决的问题在于提供一种提高MOCVD生长GaAs本征掺杂均匀性的方法。
本发明是通过以下技术方案来实现:
一种提高MOCVD生长GaAs本征掺杂均匀性的方法,其特征在于:提供一反应腔,反应腔内部存在平行且中心重合的第一圆形基板和第二圆形基板,第一圆形基板的中心区域有一组圆柱状喷淋头,喷淋头由靠近所述的第一圆形基板的第一进气孔、靠近第二圆形基板的第三进气孔和第一进气孔与第三进气孔之间的第二进气孔组成,在第二圆形基板表面与喷淋头在第二圆形基板表面的垂直投影区域无交叠的区域,装置有与第二圆形基板位置相对固定的第三圆形基板,将基片放在第三圆形基板上,并通过对第三圆形基板加热使得基片升温至生长温度,第二圆形基板和第三圆形基板分别绕各自中心自转,经由第一进气孔通入载气,经由第二进气孔通入载气及含有TMGa的气体,经由第三进气孔通入载气及AsH3,AsH3与TMGa在基片表面水平流过,并在基片表面生成含有C杂质的GaAs薄膜,未反应的气体及反应副产物经由排气孔排出,在经由第三进气孔的AsH3摩尔流量与所述的经由第二进气孔进入的TMGa摩尔流量的比值大于等于0.5且小于等于2的条件下,当外圈C掺杂浓度低于内圈时,增大流经MOCVD反应腔内喷淋头的第三进气孔载气流量,使得外圈的AsH3浓度相对内圈降低,从而使得外圈的C掺杂浓度相对内圈升高,调整内外圈掺杂均匀性。当外圈C掺杂浓度高于内圈时,通过减小流经MOCVD反应腔内喷淋头的第三进气孔的载气流量,使得外圈的AsH3浓度相对内圈升高,从而使得外圈的C掺杂浓度相对内圈降低,调整内外圈掺杂均匀性。
优选的,所述的载气为氢气或者氮气;
优选的,所述的生长温度介于400℃-600℃。
与现有技术相比,本发明具有以下有益的技术效果:本方的方法简单有效,而尚未见到公开的优化MOCVD生长GaAs本征掺杂均匀性的相关方法。
附图说明
图1为本发明涉及的装置示意图。
图2为本发明方法优化前制备的整片6寸自掺杂GaAs外延薄膜中心区域的XRD测试失配结果。
图3为本发明方法优化前制备的整片6寸自掺杂GaAs外延薄膜中心到边沿1/2半径区域的XRD测试失配结果。
图4为本发明方法优化前制备的整片6寸自掺杂GaAs外延薄膜距离圆片边沿5mm区域的XRD测试失配结果。
图5为本发明方法优化后制备的整片6寸自掺杂GaAs外延薄膜中心区域的XRD测试失配结果。
图6为本发明方法优化后制备的整片6寸自掺杂GaAs外延薄膜中心到边沿1/2半径区域的XRD测试失配结果。
图7为本发明方法优化后制备的整片6寸自掺杂GaAs外延薄膜距离圆片边沿5mm区域的XRD测试失配结果。
元件标号说明:
02 第一圆形基板
03 第二圆形基板
041 第一进气孔
042 第二进气孔
043 第三进气孔
05 排气孔
07 第三圆形基板
具体实施方式
下面结合具体的实施例对本发明做进一步的详细说明,所述是对本发明的解释而不是限定。
用MOCVD生长本征掺杂GaAs时,在低的Ⅴ/Ⅲ比条件下,基片表面不同区域C掺杂浓度的大小取决于该区域As元素与烃基中的C元素的竞争,可以利用改变AsH3载气流量的办法,改变生产过程中沿着圆片径向的As元素分布,从而调整不同区域C与As的竞争,达到调节片内掺杂均匀性,即通过调整第三进气孔043位置的载气流量,实现基片表面掺杂均匀性的调节。
使用如图1所示的MOCVD反应腔生长6寸自掺杂GaAs层,该MOCVD包含了一反应腔,反应腔内部存在平行且中心重合的第一圆形基板02和第二圆形基板03,第一圆形基板02的中心区域有一组圆柱状喷淋头,喷淋头由靠近所述的第一圆形基板02的第一进气孔041、靠近第二圆形基板03的第三进气孔043和第一进气孔041与第三进气孔043之间的第二进气孔042组成,在第二圆形基板03表面与喷淋头在第二圆形基板03表面的垂直投影区域无交叠的区域,装置有与第二圆形基板03位置相对固定的第三圆形基板07。
将基片放在第三圆形基板07上,将基片加热至560℃,第一步,喷淋头的第一进气孔041通入流量为12L/min的载气,第三进气孔043通入流量为12L/min载气氢气和10sccm砷烷,第二进气孔042通入150sccm携带有TMGa的氢气及载气,生长1200s。
生长结束后,沿着径向测量不同位置的XRD,中心标记为C,中心到边沿1/2处标记为M,距边沿5mm处标记为E,得到径向上不同位置的失配(strained mismatch),进而得到不同位置的C掺杂浓度,图2、图3和图4的S峰分别是基片上C、M和E位置上重掺C的峰,可见,片内均匀性较差,C与E相差24ppm,接近10%差异,从中心到边沿掺杂浓度越来越小。
为了优化单片的C掺杂均匀性,第二次生长时,保持其余条件均不变,将流经第三进气孔043的载气流量调整为16L/min,流经第一进气孔041的流量调整为8L/min,生长完成后的C、M和E位置的XRD测量结果如图5、图6和图7所示,C与E之间仅差7ppm,差异小于3%,内圈与外圈的掺杂分布更加均匀。
以上显示和描述了本发明的基本原理和主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (3)

1.一种提高MOCVD生长GaAs本征掺杂均匀性的方法,其特征在于:提供一反应腔,反应腔内部存在平行且中心重合的第一圆形基板(02)和第二圆形基板(03),第一圆形基板(02)的中心区域有一组圆柱状喷淋头,喷淋头由靠近所述的第一圆形基板(02)的第一进气孔(041)、靠近第二圆形基板(03)的第三进气孔(043)和第一进气孔(041)与第三进气孔(043)之间的第二进气孔(042)组成,在第二圆形基板(03)表面与喷淋头在第二圆形基板(03)表面的垂直投影区域无交叠的区域,装置有与第二圆形基板(03)位置相对固定的第三圆形基板(07),将基片放在第三圆形基板(07)上,并通过对第三圆形基板(07)加热使得基片升温至生长温度,第二圆形基板(03)和第三圆形基板(07)分别绕各自中心自转,经由第一进气孔(041)通入载气,经由第二进气孔(042)通入载气及含有TMGa的气体,经由第三进气孔(043)通入载气及AsH3,AsH3与TMGa在基片表面水平流过,并在基片表面生成含有C杂质的GaAs薄膜,未反应的气体及反应副产物经由排气孔(05)排出,在经由第三进气孔(043)的AsH3摩尔流量与所述的经由第二进气孔(042)进入的TMGa摩尔流量的比值大于等于0.5且小于等于2的条件下,当外圈C掺杂浓度低于内圈时,增大流经MOCVD反应腔内喷淋头的第三进气孔(043)载气流量,使得外圈的AsH3浓度相对内圈降低,从而使得外圈的C掺杂浓度相对内圈升高,调整内外圈掺杂均匀性,当外圈C掺杂浓度高于内圈时,通过减小流经MOCVD反应腔内喷淋头的第三进气孔(043)的载气流量,使得外圈的AsH3浓度相对内圈升高,从而使得外圈的C掺杂浓度相对内圈降低,调整内外圈掺杂均匀性。
2.根据权利要求1所述的一种提高MOCVD生长GaAs本征掺杂均匀性的方法,其特征在于:所述的载气为氢气或者氮气。
3.根据权利要求1所述的一种提高MOCVD生长GaAs本征掺杂均匀性的方法,其特征在于:所述的生长温度为400℃-600℃。
CN202210460401.XA 2022-04-28 2022-04-28 一种提高MOCVD生长GaAs本征掺杂均匀性的方法 Active CN114753002B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210460401.XA CN114753002B (zh) 2022-04-28 2022-04-28 一种提高MOCVD生长GaAs本征掺杂均匀性的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210460401.XA CN114753002B (zh) 2022-04-28 2022-04-28 一种提高MOCVD生长GaAs本征掺杂均匀性的方法

Publications (2)

Publication Number Publication Date
CN114753002A CN114753002A (zh) 2022-07-15
CN114753002B true CN114753002B (zh) 2024-01-19

Family

ID=82332497

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210460401.XA Active CN114753002B (zh) 2022-04-28 2022-04-28 一种提高MOCVD生长GaAs本征掺杂均匀性的方法

Country Status (1)

Country Link
CN (1) CN114753002B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02143518A (ja) * 1988-11-25 1990-06-01 Toshiba Corp ▲iii▼−▲v▼族化合物半導体の気相成長方法
US5298763A (en) * 1992-11-02 1994-03-29 Motorola, Inc. Intrinsically doped semiconductor structure and method for making
JPH06124908A (ja) * 1992-10-12 1994-05-06 Furukawa Electric Co Ltd:The 有機金属気相成長法
CN110484896A (zh) * 2019-06-06 2019-11-22 西安唐晶量子科技有限公司 一种提高mocvd生长vcsel外延膜厚均匀性的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02143518A (ja) * 1988-11-25 1990-06-01 Toshiba Corp ▲iii▼−▲v▼族化合物半導体の気相成長方法
JPH06124908A (ja) * 1992-10-12 1994-05-06 Furukawa Electric Co Ltd:The 有機金属気相成長法
US5298763A (en) * 1992-11-02 1994-03-29 Motorola, Inc. Intrinsically doped semiconductor structure and method for making
CN110484896A (zh) * 2019-06-06 2019-11-22 西安唐晶量子科技有限公司 一种提高mocvd生长vcsel外延膜厚均匀性的方法

Also Published As

Publication number Publication date
CN114753002A (zh) 2022-07-15

Similar Documents

Publication Publication Date Title
US8829489B2 (en) Nitride semiconductor template and light-emitting diode
US5487358A (en) Apparatus for growing silicon epitaxial layer
JP5274245B2 (ja) 化合物半導体構造とその製造方法
JPH0415200B2 (zh)
CN108258091B (zh) 一种发光二极管波长控制方法
CN101647091B (zh) 基于氮化镓的外延晶片和制造基于氮化镓的半导体发光器件的方法
US8102026B2 (en) Group-III nitride semiconductor freestanding substrate and manufacturing method of the same
CN114753002B (zh) 一种提高MOCVD生长GaAs本征掺杂均匀性的方法
US7576352B2 (en) Method for producing compound semiconductor wafer and compound semiconductor device
TW202144631A (zh) 化合物半導體磊晶晶圓及其製造方法
EP0734079B1 (en) Method for vapor-phase growth
JP2004207545A (ja) 半導体気相成長装置
JP3242571B2 (ja) 気相成長方法
JP2704223B2 (ja) 半導体素子
CN113652742B (zh) 用于提高外延片波长一致性的石墨基板
JPS63129609A (ja) 3−5族化合物半導体単結晶薄膜の不純物添加法
JPH03110829A (ja) 化合物半導体薄膜の製造方法
JP3763685B2 (ja) エピタキシャルウェーハ及びその評価方法
CN114686977A (zh) 提高衬底温度均匀性的外延托盘
JP2005085850A (ja) 気相エピタキシャル成長装置
JPH11126754A (ja) 有機金属気相成長方法
JP2793239B2 (ja) 化合物半導体薄膜の製造方法
KR101474373B1 (ko) 반도체 기판 및 그 제조 방법
CN118028973A (zh) 一种瞬态电压抑制器用重掺杂衬底硅外延片的制备方法
JP2021082641A (ja) エピタキシャルウェーハの製造方法及びエピタキシャルウェーハ

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant