CN114716252B - 一种易烧结高纯氮化硅粉体的制备方法 - Google Patents

一种易烧结高纯氮化硅粉体的制备方法 Download PDF

Info

Publication number
CN114716252B
CN114716252B CN202210457297.9A CN202210457297A CN114716252B CN 114716252 B CN114716252 B CN 114716252B CN 202210457297 A CN202210457297 A CN 202210457297A CN 114716252 B CN114716252 B CN 114716252B
Authority
CN
China
Prior art keywords
silicon nitride
powder
silicon
purity
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210457297.9A
Other languages
English (en)
Other versions
CN114716252A (zh
Inventor
张景贤
段于森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Ceramics of CAS
Original Assignee
Shanghai Institute of Ceramics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Ceramics of CAS filed Critical Shanghai Institute of Ceramics of CAS
Priority to CN202210457297.9A priority Critical patent/CN114716252B/zh
Publication of CN114716252A publication Critical patent/CN114716252A/zh
Application granted granted Critical
Publication of CN114716252B publication Critical patent/CN114716252B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/587Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/591Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by reaction sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Abstract

本发明涉及一种易烧结高纯氮化硅粉体的制备方法,包括:(1)将硅粉、有机碳源和发泡剂加入到有机溶剂中并混合,得到混合浆料;(2)将所得混合浆料干燥过筛并松装平铺于氮化硅坩埚内,先置于排胶炉中进行低温真空热处理,再置于氮气反应炉中进行氮化处理,最终经破碎和研磨,得到所述易烧结高纯氮化硅粉体。

Description

一种易烧结高纯氮化硅粉体的制备方法
技术领域
本发明涉及一种氮化硅粉体的制备方法,具体涉及一种硅粉直接氮化反应生成氮化硅粉体的方法,属于无机材料化学合成和陶瓷材料制备领域。
背景技术
氮化硅陶瓷是一种传统的结构陶瓷材料。具有高强、高韧、高温性能优异的优势,一直以来,在工业和民用领域有大量应用。近年来,氮化硅陶瓷的高导热性能和良好的微波透过性能也引起国内外的关注,结合其良好的力学性能和高温性能,是理想的大功率电力电子用陶瓷基片材料。
目前,高导热氮化硅陶瓷基板需要高质量的氮化硅粉体,而高质量的氮化硅粉体不仅价格昂贵,而且完全依赖进口。其中常用的氮化硅粉体的制备方法主要有硅粉氮化法、自蔓延法和硅亚胺热分解法等。自蔓延法生产的工艺反应速度快,成本低,但单炉合成产量低,以β相氮化硅为主,一般α相含量较低;硅亚胺热分解方法的优点为合成产品纯度高,质量稳定性好,缺点为原材料昂贵,设备投资大,能耗大,环保和安全方面投资大;硅粉氮化法合成产品纯度高,单炉产量大,缺点为合成过程能耗高(反应时间长),成本较高。因而,现有的氮化硅粉体合成方法均不能做到高效率,低成本,批量合成高α相,易烧结的氮化硅陶瓷粉体。
发明内容
针对上述氮化硅粉体制备方法存在的问题,本发明基于传统的硅粉氮化技术路线的基础上,通过优化氮化工艺和添加助剂等方式制备相组成可控且易烧结的高纯氮化硅粉体。
基于上述目的和技术路线,本发明提供了高纯氮化硅粉体的制备方法,包括:
(1)将硅粉、有机碳源和发泡剂加入到有机溶剂中并混合,得到混合浆料;
(2)将所得混合浆料干燥过筛并松装平铺于氮化硅坩埚内,先置于排胶炉中进行低温真空热处理,再置于氮气反应炉中进行氮化处理,最终经破碎和研磨,得到所述易烧结高纯氮化硅粉体。
本发明中,在高纯氮化硅粉体的制备过程中,加入特定组分添加剂:一类是发泡剂,在高温阶段以分解的方式在堆积粉体内部形成气体通道,促进氮化;一类是有机碳源,裂解后能够在硅粉颗粒周围形成纳米碳,以碳热还原的方式,促进材料表面二氧化硅的分解挥发,降低氧含量。
较佳的,所述硅粉的粒径在0.5~20μm,优选为0.5~5μm。该范围能够保证生成的氮化硅粉体中游离硅含量处于较低的水平。由于随着硅粉粒径的降低,其比表面积增大,形成二氧化硅膜的含量随之增大,因此可针对较大粒径的高纯硅粉在有机溶剂中充分球磨细化,抑制氧含量的提高。当硅粉的粒径为0.5~5μm时,所述混合方式为球磨混料,所述球磨混合的参数包括:转速为40~80转/分钟,时间为1-~4小时;当硅粉的粒径>5μm且≤20μm时,所述混合方式为球磨混合,所述球磨混合的参数包括:转速为200~400转/分钟,时间为8~24小时。
较佳的,所述硅粉的纯度≥99.9%。
较佳的,所述有机溶剂为乙醇、丁酮、乙酸乙酯和二甲苯中的至少一种;所述溶剂和硅粉的质量比(1~5):1。本发明中选择有机溶剂,避免了现有方法中水和Si反应引入杂质氧而降低纯度的问题。
较佳的,所述发泡剂包括氯化铵、氟化铵、偶氮化合物、亚硝基化合物和磺酰肼类化合物中的至少一种;优选,所述偶氮化合物包括偶氮二甲酰胺、偶氮二异丁腈和偶氮二异庚腈中的至少一种,所述亚硝基化合物包括N,N’-二亚硝基五次甲基四胺,所述磺酰肼类化合物包括对甲苯磺酰肼、苯磺酰肼和4,4’-氧代双苯磺酰肼中的至少一种。
较佳的,所述发泡剂的添加量为硅粉质量的0.5~20wt%,优选10~20wt%。
较佳的,所述有机碳源包括聚乙烯醇缩丁醛、酚醛树脂、淀粉、蔗糖和果糖中的至少一种。
较佳的,所述有机碳源的添加量为硅粉质量的0.5~5wt%。
较佳的,所述低温真空热处理的气氛为真空环境,温度为450~900℃(优选600~900℃),时间为12~48小时,使得有机碳源完全裂解;优选地,所述低温真空热处理的升温速率为1~30℃/分钟。
较佳的,所述氮化处理的的参数包括:气氛为氮气或者氮氢混合气的气氛,温度为1000~1400℃,反应时间为8~72小时,气体压力范围为0.005~5MPa;优选地,所述氮化处理的升温速率为1~30℃/分钟。
另一方面,本发明还提供了一种根据上述制备方法制备的易烧结高纯氮化硅粉体,其特征在于,所述易烧结高纯氮化硅粉体的纯度≥99.5%。
再一方面,本发明提供了一种致密氮化硅陶瓷,选用上述易烧结高纯氮化硅粉体作为原料制备得到。
有益效果:
本发明提出的氮化硅粉体的合成方法纯度高,并且相组成可控,具有良好的烧结活性。
附图说明
图1为实施例1合成粉体的XRD图;
图2为实施例3合成粉体的XRD图。
具体实施方式
以下通过下述实施方式进一步说明本发明,应理解,下述实施方式仅用于说明本发明,而非限制本发明。
本发明中,首次提出氮化硅粉体合成技术是以高纯硅粉为原料,以有机溶剂作为分散介质,通过添加发泡剂和有机碳源的方式促进氮化和降低杂质含量,通过直接氮化反应得到高纯氮化硅粉体。
本发明选用的高纯硅粉、发泡剂和有机碳源均匀混合后,置于氮化硅陶瓷坩埚中,在高纯氮气或者氮氢混合气体中充分反应,反应温度不高于1400℃,最终得到结晶度高,α相含量可控的高纯(ICP测试制备氮化硅粉体纯度>99.5%)氮化硅粉体。以下将通过实施例说明本发明提供的高纯氮化硅粉体的合成方法。
混料。将硅粉、发泡剂和有机碳源,在有机溶剂中分散。具体来说,将硅粉和上述添加剂分散于有机溶剂中,球磨混料,干燥过筛后得到混合均匀的混合粉体,其中,硅粉的粒径在0.5~20μm之间,优选为0.5~5μm,当粒径高于该范围时应进行细化处理,便于氮化过程中硅粉充分反应,并降低反应温度,减少制备成本。
本发明中加入大量发泡剂的作用包括:(1)产生气孔有助于氮化反应充分;(2)防止干燥过筛并松装平铺于氮化硅坩埚中后凝结成块,以便后续破碎。若是发泡剂少量,会导致硅粉堆积密度高,氮化反应不充分,以至于内部游离硅含量过高,同时位于表面和内部生成的氮化硅相组成也会不一致。若是发泡剂过量,会提高原料成本,同时高温阶段生成的大量气体,会导致松装的硅粉溢出坩埚。
真空脱粘。将混合粉体首先进行脱粘。脱粘温度通常在400~900℃,脱粘时间可为12~48h,保证有机碳源完全裂解。
脱粘结束后进行氮化,氮化温度在1000~1400℃的温度范围内氮化,升温速率1~10℃/分钟,保温时间是8~72小时,根据粉体粒径进行调控温度点和保温时间。
本发明提出采用硅粉氮化制备氮化硅粉体,通过添加发泡剂和有机碳源的方式有效的提高了氮化硅粉体的产率和纯度,同时产物易于破碎,便于后期加工处理。
本发明采用比色法测试样品的游离硅含量;采用电感耦合等离子体(ICP)测试合成氮化硅粉体的杂质含量。其中氮化硅粉体的纯度≥99%,优选≥99.5%。氮化硅粉体中游离硅含量≤0.5%,优选≤0.2%,更优选≤0.1%。氮化硅粉体中α-Si3N4含量为87~92%。
本发明采用上述易烧结高纯氮化硅粉体作为原料,选择氧化镁、氧化钙、氧化锆等碱土金属氧化物和氧化钇、氧化铒、氧化钐等稀土氧化物,压制成型后,仅通过无压烧结,就能制备高致密氮化硅陶瓷。氮化硅陶瓷的致密度>98%,密度为3.15~3.40g/cm3。烧结的温度为1700~1920℃,时间为1~8小时。
下面进一步例举实施例以详细说明本发明。同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。
实施例1
将200g硅粉(1μm)和20g发泡剂(偶氮二甲酰胺,10wt%)和5g酚醛树脂添加在300g乙醇溶剂中,球磨混料4h,转速65转/分钟,得到混合浆料。经干燥过筛得到混合料,再松装平铺于氮化硅坩埚中,然后放入真空脱粘炉中600℃处理2小时,升温速率1℃/分钟。处理后将样品在氮气/氢气混合气体(N2:H2=90:10)中氮化,氮化温度1380℃,保温12h,升温速率5℃/min。冷却后对产品进行破碎研磨得到高纯氮化硅陶瓷粉体。纯度见表1,另外根据图1所示的XRD结果,可以看出无残留硅衍射峰,α氮化硅含量为89.9%,比色法游离硅测试其含量为0.1%,ICP测试合成氮化硅粉体纯度为99.86%。
表1为本发明中实施例1合成氮化硅粉体的杂质元素含量,其中游离硅含量为比色法测试结果:
Figure BDA0003619245070000041
Figure BDA0003619245070000051
以实施例1获得的氮化硅粉体为原料(26.45g),氧化钇(0.92g)和氧化镁(0.41g)作为烧结助剂体系,干压成型后,于1900℃保温2h,所得氮化硅陶瓷密度为3.23g·cm-3,相对密度为99.67%。
实施例2
将200g硅粉(1.5μm)和20g发泡剂(偶氮二甲酰胺,10wt%)和5g酚醛树脂添加在300g乙醇溶剂中,球磨混料4h,转速为65转/分钟,得到混合浆料。经干燥过筛得到混合料,再松装平铺于氮化硅坩埚中,然后放入真空脱粘炉中600℃处理2小时,升温速率1℃/分钟。处理后将样品在氮气/氢气混合气体(N2:H2=90:10)中氮化,氮化温度1380℃,保温18h,升温速率5℃/min。冷却后对产品进行破碎研磨得到高纯氮化硅陶瓷粉体。另外根据图2所示的XRD结果,可以看出无残留硅衍射峰,α氮化硅含量为90%,比色法游离硅测试其含量为0.12%,ICP测试合成氮化硅粉体纯度为99.8%。
以实施例2获得的氮化硅粉体为原料(26.45g),氧化钇(0.92g)和氧化镁(0.41g)作为烧结助剂体系,干压成型后,于1900℃保温2h,所得氮化硅陶瓷密度为3.21g·cm-3,相对密度为98.96%。
实施例3
将200g硅粉(5μm)和20g发泡剂(偶氮二异庚腈,10wt%)和5g淀粉添加在300g乙醇溶剂中,在380转/分钟下行星式球磨混合8h后,再经干燥过筛得到的混合料。然后松装平铺于氮化硅坩埚中,然后放入真空脱粘炉中600℃处理2小时,升温速率1℃/分钟。处理后将样品在氮气/氢气混合气体(N2:H2=90:10)中氮化,氮化温度1400℃,保温12h,升温速率5℃/min。冷却后对产品进行破碎研磨得到高纯氮化硅陶瓷粉体。XRD结果显示无残留硅衍射峰,α氮化硅含量为90.1%,比色法游离硅测试其含量为0.15%,ICP测试合成氮化硅粉体纯度为99.88%。
以实施例3获得的氮化硅粉体为原料(26.45g),氧化钇(0.92g)和氧化镁(0.41g)作为烧结助剂体系,干压成型后,于1900℃保温2h,所得氮化硅陶瓷密度为3.193g·cm-3,相对密度为98.45%。
实施例4
将200g硅粉(10μm)和20g发泡剂(偶氮二异庚腈,10wt%)和5g淀粉添加在300g乙醇溶剂中,在380转/分钟下行星式球磨混合24h后,再经干燥过筛得到的混合料。然后松装平铺于氮化硅坩埚中,然后放入真空脱粘炉中600℃处理2小时,升温速率1℃/分钟。处理后将样品在氮气/氢气混合气体(N2:H2=90:10)中氮化,氮化温度1400℃,保温12h,升温速率5℃/min。冷却后对产品进行破碎研磨得到高纯氮化硅陶瓷粉体。XRD结果显示无残留硅衍射峰,α氮化硅含量为89%,比色法游离硅测试其含量为0.17%,ICP测试合成氮化硅粉体纯度为99.7%。
实施例5
本实施例5中高纯氮化硅陶瓷粉体的制备过程参照实施例1,区别仅在于:偶氮二甲酰胺加入量为硅粉的5wt%。所得高纯氮化硅陶瓷粉体中α氮化硅含量为87%,比色法游离硅测试其含量为0.45%,ICP测试合成氮化硅粉体纯度为99.1%。
实施例6
本实施例6中高纯氮化硅陶瓷粉体的制备过程参照实施例1,区别仅在于:偶氮二甲酰胺加入量为硅粉的15wt%。所得高纯氮化硅陶瓷粉体中α氮化硅含量为90.2%,比色法游离硅测试其含量为0.09%,ICP测试合成氮化硅粉体纯度为99.91%。
实施例7
本实施例7中高纯氮化硅陶瓷粉体的制备过程参照实施例1,区别仅在于:偶氮二甲酰胺加入量为硅粉的20wt%。所得高纯氮化硅陶瓷粉体中α氮化硅含量为90%,比色法游离硅测试其含量为0.09%,ICP测试合成氮化硅粉体纯度为99.95%。
对比例1
将200g硅粉(10μm)和20g发泡剂(偶氮二异庚腈)和5g淀粉添加在300g乙醇溶剂中,球磨混料4h,转速为65转/分钟,得到混合浆料。经干燥过筛得到混合料,再松装平铺于氮化硅坩埚中,然后放入真空脱粘炉中600℃处理2小时,升温速率1℃/分钟。处理后将样品在氮气/氢气混合气体(N2:H2=90:10)中氮化,氮化温度1400℃,保温12h,升温速率5℃/min。XRD结果显示仍存在残留硅衍射峰,比色法游离硅测试其含量为5%,ICP测试合成氮化硅粉体纯度为93%。可见当选用较粗粒径硅粉作为原料时,粒径细化是合成高纯氮化硅粉体的必要步骤。
对比例2
将200g硅粉(1μm)和5g酚醛树脂添加在300g乙醇溶剂中,球磨混料4h,转速为65转/分钟,得到混合浆料。经干燥过筛得到混合料,再松装平铺于氮化硅坩埚中,然后放入真空脱粘炉中600℃处理2小时,升温速率1℃/分钟。处理后将样品在氮气/氢气混合气体(N2:H2=90:10)中氮化,氮化温度1380℃,保温12h,升温速率5℃/min。冷却后对产品进行破碎研磨得到氮化硅陶瓷粉体。生成物破碎困难,且内部存在夹心状黑色区域,根据XRD结果,该区域具有一定强度的硅衍射峰,比色法游离硅测试其含量为1.5%,ICP测试合成氮化硅粉体纯度为97.2%。因此,添加发泡剂不仅能够促进硅粉充分氮化,同时便于后期的破碎研磨等工艺。
对比例3
本实施例7中高纯氮化硅陶瓷粉体的制备过程参照实施例1,区别仅在于:酚醛树脂为0g。所得高纯氮化硅陶瓷粉体中α氮化硅含量为91%,比色法游离硅测试其含量为0.1%,ICP测试合成氮化硅粉体纯度为98%。

Claims (10)

1.一种易烧结高纯氮化硅粉体的制备方法,其特征在于,由以下步骤组成:
(1)将硅粉、有机碳源和发泡剂加入到有机溶剂中并混合,得到混合浆料;所述发泡剂包括氯化铵、氟化铵、偶氮化合物、亚硝基化合物和磺酰肼类化合物中的至少一种,所述发泡剂的添加量为硅粉质量的0.5~20wt%;
(2)将所得混合浆料干燥过筛并松装平铺于氮化硅坩埚内,先置于排胶炉中进行低温真空热处理,再置于氮气反应炉中进行氮化处理,最终经破碎和研磨,得到所述易烧结高纯氮化硅粉体;所述低温真空热处理的气氛为真空环境,温度为450~900℃,时间为12~48小时;所述氮化处理的参数包括:气氛为氮气或者氮氢混合气的气氛,温度为1000~1400℃,反应时间为8~72小时,气体压力范围为0.005~5MPa;
所述易烧结高纯氮化硅粉体的纯度≥99.5%。
2.根据权利要求1所述的制备方法,其特征在于,所述硅粉的粒径为0.5~20μm;所述硅粉的纯度≥99.9%;
当硅粉的粒径为0.5~5μm时,所述混合方式球磨混料,所述球磨混合的参数包括:转速为40~80转/分钟,时间为1~4小时;
当硅粉的粒径>5μm且≤20μm时,所述混合方式为行星磨混料,所述球磨混合的参数包括:转速为200~400转/分钟,时间为8~24小时。
3.根据权利要求2所述的制备方法,其特征在于,所述硅粉的粒径为0.5~5μm。
4.根据权利要求1所述的制备方法,其特征在于,所述有机溶剂选择乙醇、丁酮、乙酸乙酯和二甲苯中的至少一种;所述溶剂和硅粉的质量比(1~5):1。
5.根据权利要求1所述的制备方法,其特征在于,所述偶氮化合物包括偶氮二甲酰胺、偶氮二异丁腈和偶氮二异庚腈中的至少一种,所述亚硝基化合物包括N,N’-二亚硝基五次甲基四胺,所述磺酰肼类化合物包括对甲苯磺酰肼、苯磺酰肼和4,4’-氧代双苯磺酰肼中的至少一种。
6.根据权利要求1所述的制备方法,其特征在于,所述有机碳源包括聚乙烯醇缩丁醛、酚醛树脂、淀粉、蔗糖和果糖中的至少一种;所述有机碳源的添加量为硅粉质量的0.5~5wt%。
7.根据权利要求1所述的制备方法,其特征在于,所述低温真空热处理的升温速率为1~30℃/分钟。
8.根据权利要求1-7中任一项所述的制备方法,其特征在于,所述氮化处理的升温速率为1~30℃/分钟。
9.一种根据权利要求1至8中任一项所述的制备方法制备的易烧结高纯氮化硅粉体,其特征在于,所述易烧结高纯氮化硅粉体的纯度≥99.5%。
10.一种致密氮化硅陶瓷,其特征在于,选用权利要求9所述的易烧结高纯氮化硅粉体作为原料制备得到。
CN202210457297.9A 2022-04-27 2022-04-27 一种易烧结高纯氮化硅粉体的制备方法 Active CN114716252B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210457297.9A CN114716252B (zh) 2022-04-27 2022-04-27 一种易烧结高纯氮化硅粉体的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210457297.9A CN114716252B (zh) 2022-04-27 2022-04-27 一种易烧结高纯氮化硅粉体的制备方法

Publications (2)

Publication Number Publication Date
CN114716252A CN114716252A (zh) 2022-07-08
CN114716252B true CN114716252B (zh) 2023-05-09

Family

ID=82246041

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210457297.9A Active CN114716252B (zh) 2022-04-27 2022-04-27 一种易烧结高纯氮化硅粉体的制备方法

Country Status (1)

Country Link
CN (1) CN114716252B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3084998A (en) * 1960-12-20 1963-04-09 Union Carbide Corp Method of making foamed silicon nitride
US5252248A (en) * 1990-07-24 1993-10-12 Eaton Corporation Process for preparing a base nitridable silicon-containing material
JPH07257910A (ja) * 1994-03-18 1995-10-09 Shin Etsu Chem Co Ltd 窒化ケイ素の製造方法
JP2012180235A (ja) * 2011-02-28 2012-09-20 Kubota Corp 窒化ケイ素系セラミックスの製造方法
CN103288062A (zh) * 2012-02-22 2013-09-11 中国科学院理化技术研究所 一种常压氮化反应合成氮化硅粉体的方法
CN103332662A (zh) * 2013-07-11 2013-10-02 上海大学 一种改进的直接氮化法制备α相和β相氮化硅粉体的方法
WO2019070767A1 (en) * 2017-10-02 2019-04-11 Cellmobility, Inc. PROCESS FOR PRODUCING ALUMINUM NITRIDE FOAM
CN111484334A (zh) * 2020-04-24 2020-08-04 武汉科技大学 一种高α相氮化硅粉体及其制备方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1498400A3 (en) * 2003-07-17 2006-06-07 Asahi Glass Co., Ltd. Method for producing a silicon nitride filter
CN101353160A (zh) * 2008-09-09 2009-01-28 辽宁工业大学 一种氮化硅纳米粉末合成方法
CN102485645B (zh) * 2010-12-02 2013-06-05 中国科学院理化技术研究所 一种以分解时能产生氮气的发泡剂为添加剂快速燃烧合成氮化硅粉体的方法
CN106241754A (zh) * 2016-07-31 2016-12-21 河北高富氮化硅材料有限公司 一种无添加剂低压制备高纯氮化硅的方法
CN107673766A (zh) * 2016-08-02 2018-02-09 河北高富氮化硅材料有限公司 一种结构陶瓷用高纯氮化硅粉体的制备方法
CN106810267B (zh) * 2017-02-21 2020-01-14 河北利福光电技术有限公司 一种高纯氮化硅粉末的制备方法
CN109694253B (zh) * 2017-10-24 2020-08-18 中国科学院上海硅酸盐研究所 一种通过碳掺杂提高常压烧结氮化硅陶瓷热导率的方法
CN111253162B (zh) * 2019-02-22 2022-04-05 浙江多面体新材料有限公司 一种制备高强高韧高热导率氮化硅陶瓷的方法
CN110357052A (zh) * 2019-07-16 2019-10-22 青岛瓷兴新材料有限公司 一种通过金属还原制备氮化硅粉末的方法
CN111875387A (zh) * 2020-06-24 2020-11-03 广东工业大学 一种用碳包覆制备低氧含量、高热导的氮化硅陶瓷的方法及其应用
CN112225566B (zh) * 2020-10-19 2023-01-31 衡阳凯新特种材料科技有限公司 氮化硅粉体及其制备方法与应用、陶瓷材料
CN112830797B (zh) * 2021-01-20 2021-11-02 中国科学院上海硅酸盐研究所 一种高热导、净尺寸氮化硅陶瓷基片的制备方法
CN113548903B (zh) * 2021-08-27 2022-12-23 广东工业大学 一种碳化硅增强氮化硅陶瓷及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3084998A (en) * 1960-12-20 1963-04-09 Union Carbide Corp Method of making foamed silicon nitride
US5252248A (en) * 1990-07-24 1993-10-12 Eaton Corporation Process for preparing a base nitridable silicon-containing material
JPH07257910A (ja) * 1994-03-18 1995-10-09 Shin Etsu Chem Co Ltd 窒化ケイ素の製造方法
JP2012180235A (ja) * 2011-02-28 2012-09-20 Kubota Corp 窒化ケイ素系セラミックスの製造方法
CN103288062A (zh) * 2012-02-22 2013-09-11 中国科学院理化技术研究所 一种常压氮化反应合成氮化硅粉体的方法
CN103332662A (zh) * 2013-07-11 2013-10-02 上海大学 一种改进的直接氮化法制备α相和β相氮化硅粉体的方法
WO2019070767A1 (en) * 2017-10-02 2019-04-11 Cellmobility, Inc. PROCESS FOR PRODUCING ALUMINUM NITRIDE FOAM
CN111479791A (zh) * 2017-10-02 2020-07-31 赛莫必乐公司 制备氮化铝泡沫的方法
CN111484334A (zh) * 2020-04-24 2020-08-04 武汉科技大学 一种高α相氮化硅粉体及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
以AC发泡剂为添加剂燃烧合成α-Si3N4粉体;陈义祥等;《无机材料学报》;20121231;第169-173页 *
徐洁等.成孔剂和硅粉粒度对反应烧结氮化硅性能的影响.《稀有金属材料与工程》.2007,第269-272页. *
李亚伟等.硅粉直接氮化反应合成氮化硅研究.《硅酸盐通报》.2003,第30-34页. *
杜鹏辉等.采用Si粉发泡氮化制备Si3N4纤维材料的抗氧化性研究.《耐火材料》.2021,第7-12页. *

Also Published As

Publication number Publication date
CN114716252A (zh) 2022-07-08

Similar Documents

Publication Publication Date Title
CN112159236B (zh) 高导热氮化硅陶瓷基板及其制备方法
CN112408984B (zh) 一种耐高温近红外吸收高熵陶瓷及其制备方法
CN108610056B (zh) 一种氮化硅陶瓷及其制备方法
CN100453508C (zh) 化学激励燃烧合成氮化硅/碳化硅复合粉体的方法
CN112225566B (zh) 氮化硅粉体及其制备方法与应用、陶瓷材料
CN1473140A (zh) 多孔氮化硅陶瓷及其生产方法
CN103553647B (zh) 用硅切割废砂浆制备氮化硅结合碳化硅耐火材料的方法
CN114315370B (zh) 一种(TiZrHfNbTa)CN高熵超高温碳氮化物陶瓷粉体的合成方法
JPH0251863B2 (zh)
CN114716252B (zh) 一种易烧结高纯氮化硅粉体的制备方法
US10384941B2 (en) Method for producing spherical silicon nitride powder
TWI646045B (zh) 一種製備球形氮化矽粉體的方法
CN113292053B (zh) 一种基于聚合物分散剂的碳热还原法制备高分散性氮化铝粉体工艺
CN108358647A (zh) 一种氮化铝粉体的制备方法
KR102377938B1 (ko) 다공성 카본도가니를 활용한 질화알루미늄의 제조방법
CN100457684C (zh) 一种a1n陶瓷粉体的合成制备方法
JPS6212663A (ja) B4c質複合体およびその製造方法
JPS638069B2 (zh)
Liu et al. Preparation of β-SiC by combustion synthesis in a large-scale reactor
CN117043101A (zh) 基板制造用氮化硅粉末制备方法及由此制备的氮化硅粉末
JPS62167208A (ja) 窒化アルミニウム粉末の製造方法
JPH1129361A (ja) 窒化ケイ素焼結体及びその製造方法
JPS60186473A (ja) 窒化珪素焼結体の製造方法
KR930010043B1 (ko) 투과성 산질화 알루미늄 소결체의 제조방법
CN113788466A (zh) 一种θ/α复相纳米Al2O3碳热还原氮化制备纯相γ-AlON粉体的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant