CN114716240A - 高力学性能低损耗MnZn功率铁氧体材料制备方法 - Google Patents

高力学性能低损耗MnZn功率铁氧体材料制备方法 Download PDF

Info

Publication number
CN114716240A
CN114716240A CN202210326156.3A CN202210326156A CN114716240A CN 114716240 A CN114716240 A CN 114716240A CN 202210326156 A CN202210326156 A CN 202210326156A CN 114716240 A CN114716240 A CN 114716240A
Authority
CN
China
Prior art keywords
sintering
mnzn
ferrite
bto
power ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210326156.3A
Other languages
English (en)
Other versions
CN114716240B (zh
Inventor
余忠
谢辉杰
王宏
邬传健
窦海之
孙科
杨仕机
兰中文
蒋晓娜
余勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sunshine Electronic Technology Co ltd
University of Electronic Science and Technology of China
Original Assignee
Sunshine Electronic Technology Co ltd
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sunshine Electronic Technology Co ltd, University of Electronic Science and Technology of China filed Critical Sunshine Electronic Technology Co ltd
Priority to CN202210326156.3A priority Critical patent/CN114716240B/zh
Publication of CN114716240A publication Critical patent/CN114716240A/zh
Application granted granted Critical
Publication of CN114716240B publication Critical patent/CN114716240B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • C04B35/2633Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead containing barium, strontium or calcium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2641Compositions containing one or more ferrites of the group comprising rare earth metals and one or more ferrites of the group comprising alkali metals, alkaline earth metals or lead
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/265Compositions containing one or more ferrites of the group comprising manganese or zinc and one or more ferrites of the group comprising nickel, copper or cobalt
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

高力学性能低损耗MnZn功率铁氧体材料制备方法,涉及铁氧体材料制备技术领域。本发明包括以下步骤:(1)BTO基PTC介电陶瓷粉体制备;(2)MnZn铁氧体预烧料制备;(3)掺杂处理:以MnZn功率铁氧体预烧料为重量参照基准,按预烧料重量百分比加入以下添加剂:0.01~0.03wt%V2O5、0.05~0.15wt%TiO2、0.01~0.03wt%Bi2O3、0.1~0.3wt%Co2O3、0.01~0.03wt%NiO和0.02~0.08wt%BTO基PTC介电陶瓷粉体,二次球磨;(4)样品成型;(5)烧结。采用本发明技术制备得到的铁氧体材料在高频、高温下具有低损耗的性能。

Description

高力学性能低损耗MnZn功率铁氧体材料制备方法
技术领域
本发明涉及铁氧体材料制备技术领域。
背景技术
伴随5G、大数据、云计算、“互联网+”、新能源汽车等新一代信息技术、高端装备战略重点产业蓬勃发展,电源行业迎来了新的增长契机。在开关电源中,磁性材料元件的重量与体积很大,几乎占据整个开关电源电路重量与体积的30%。缩小磁性材料元件的体积与重量,相当于缩小开关电源的体积与重量,从而实现开关电源的高频化、小型化与轻量化。由变压器的工作原理可知,输出电压V=KfBmAeN,其中K是波形因子,f是开关电源的工作频率,Bm是磁感应强度,Ae是磁芯的有效面积,N是线圈匝数。由该公式可知,在相同的输出电压下,提高工作频率,可以减小开关电源的体积。然而,对于铁氧体磁芯而言,提高工作频率往往会导致磁芯损耗增加。高的磁芯损耗会降低开关电源的效率,严重的情况会导致电子元器件发热甚至烧毁。因此,如何降低MnZn功率铁氧体高温高频下的损耗成为了亟待解决的问题。此外,为防止在绕制线圈或者电源移动/震动过程中,磁芯受外力作用破损开裂,导致电源系统失效,还要求铁氧体磁芯具有高的力学性能。
中国科学技术大学公开了一种常温居里点陶瓷PTC的方法(宋嘉梁.常温 PTC热控材料及其热控方法研究[D].2016.),其配方为下式 0.7molBaCO3+0.3molSrCO3+1.01molTiO2+0.001~0.004molY2O3+0.005molAl2O3+0.02 4molSiO2。其制备工艺是:将BaCO3、SrCO3、TiO2和Y2O3按设定的摩尔百分比称量,一磨后在1150℃预烧,获得BaTiO3主晶相;二磨配料按设定的摩尔比将Al2O3、 SiO2加入预烧料中,造粒成型后在1350℃空气烧结,获得居里温度高于30℃的 BTO基陶瓷PTC材料。
华中科技大学公开了一种低温烧结PTC陶瓷的方法(孔明日,姜胜林,涂文芳.BaO-B2O3-SiO2玻璃助剂中SiO2对低温烧结PTCR陶瓷性能的影响[J].材料导报,2009,23(12):68-70+74.),其配方如下式所示:(Ba0.75Sr0.25)Ti1.02O3+0.6%(摩尔分数)Y2O3其制备工艺是:主配方将BaCO3、SrCO3、TiO2和Y2O3按设定的摩尔百分比称量,一磨后在1150℃预烧;二磨配料将3%玻璃助剂BaB2O4加入预烧料中,二磨料烘干造粒成型,在970~1250℃空气烧结,获得居里温度点约为97℃的BTO基陶瓷PTC材料。
现有关于钛酸钡系PTC陶瓷的专利,如中国专利公开号CN 112694325 A公开的《一种PTC热敏电阻陶瓷材料及其制备方法、应用》,以及专利公开号CN 113651612A公开的《钛酸钡系PTC热敏陶瓷材料及其在锂电池中的应用》,其材料配方均由钛酸钡基陶瓷粉料和添加剂构成,主要应用于PTC热敏电阻元件,利用其电阻率随温度上升而急剧增大的PTC效应起到阻断电子线路发生的热失控,起限流、热保护的作用,提高电子设备的安全可靠性。
有中国专利公告号为CN102696107A,《一种高温低损耗MnZn功率铁氧体及其制备方法》具体涉及一种高温低损耗MnZn功率铁氧体,由主成分和辅助成分组成,其中,主成分及含量以氧化物计算为:Fe2O3为53~53.5mol%、ZnO为8~ 9mol%、MnO余量;按主成分原料总重量计的辅助成分以氧化物计算为:CaCO3、 ZrO2、Nb2O5和Co2O3。其提供上述的一种高温低损耗MnZn功率铁氧体的制备方法。其材料应用的温度范围较高,可以工作在90℃~120℃之间,可广泛应用于开关电源变压器、LCD照明等电子元器件领域,适合长期在100℃或更高温度下工作。但其测试与工作条件仅仅是100kHz 200mT,无法满足开关电源高频化、高效化的需求。
中国专利公开号为CN108530050A,公开的《宽温低损耗高阻抗MnZn软磁铁氧体材料及制备方法》,其主成分包括Fe2O352.0~55.0mol%、ZnO9.5~12.5mol%,其余为MnO,辅料为0.03~0.05wt%CaO;添加剂包括0.001~0.05wt%纳米BaTiO3、 0.001~0.05wt%Bi2O3、0.001~0.035wt%CaO、0.001~0.02wt%Nb2O5、 0.003~0.2wt%HfO2、0.08~0.3wt%Co2O3。该专利利用的普通BTO具有较高的电阻率,且通过纳米级普通BTO提高其与颗粒料的接触,以此来提高铁氧体材料的电阻率,降低涡流损耗,并未考虑到高温涡流损耗的控制,同时制备的材料仍只测试100kHz 200mT的性能,依旧无法满足开关电源高频化、高效化的要求。
中国专利公开号为CN112979301A,公开的《高频高温低损耗MnZn功率铁氧体材料及其制备方法》,其主成分包括Fe2O353.5~56.5mol%、MnO32.5~35.5mol%、 ZnO9.0~12.0mol%;添加剂包括0.06~0.12wt%CaCO3、0.01~0.04wt%V2O5、 0.10~0.40wt%TiO2、0.02~0.08wt%SnO2、0.20~0.55wt%Co2O3、0.01~0.06wt%BaTiO3、 0.1~0.3wt%CaCu3Ti4O12。其主要利用了BTO和CCTO的高电阻特性进行联合掺杂制备3MHz下具有低损耗的MnZn功率铁氧体,但没有利用BTO的PTC效应对 MnZn功率铁氧体高温高频特性进行改善研究。
中国专利公开号为CN101921105A,公开的《一种高弯曲强度铁氧体的制备方法》,其主成分包括Fe2O355.5~58.5mol%、ZnO4.5~9.5mol%,其余为MnO;添加剂包括0.5~1.5mol%LiO、600-2000ppm的CoO。所制备的铁氧体抗弯强度高且具有高的饱和磁通密度。但制备的铁氧体未测试其在高温高频下的损耗。
综上所述,目前对于BTO基PTC介电陶瓷研究主要对其本身性质(居里温度等)及作为热敏电阻时的应用,很少有将其电阻率随温度上升而迅速上升的特点与MnZn铁氧体NTC效应相联系,从而改善MnZn铁氧体损耗温度特性的应用。对目前的MnZn功率铁氧体材料,在高频高温下难以保持低损耗,仍难以满足开关电源高频化、小型化、轻量化发展的需求。专利中BTO作为添加剂加入MnZn 功率铁氧体中,仅利用了普通BTO的高电阻率特性,没有利用BTO基PTC介电陶瓷对MnZn功率铁氧体高温高频特性进行改善研究。且很少有针对具有BTO基 PTC介电陶瓷掺杂会阻碍晶粒生长,晶粒尺寸减小且不均匀的问题研究进一步降低MnZn功率铁氧体高频高温下损耗的方法。目前对于适用于高频高温下的 MnZn功率铁氧体材料少有关于提高其力学性能的方法。因此本发明提供一种改善MnZn功率铁氧体高温高频损耗及力学性能的方法。
发明内容
本发明所要解决的技术问题是,针对MnZn功率铁氧体在高频高温下难以保持低损耗的问题,提供一种改善MnZn功率铁氧体高温高频损耗及力学性能的制备方法。
本发明解决所述技术问题采用的技术方案是,高力学性能低损耗MnZn功率铁氧体材料制备方法,包括以下步骤:
(1)BTO基PTC介电陶瓷粉体制备:
按照主成分xmol%BaCO3:ymol%SrCO3:zmol%TiO2的比例称取原料,其中x=30~40,y=10~20,z=45~55;一次球磨,预烧后加入0.2~0.4mol%Al2O3、 1~2mol%SiO2、0.2~0.4mol%Y2O3后进行二次球磨,造粒成型后在1300~1400℃保温1~3h条件下完成空气烧结,碾碎磨粉为粒径0.5~1μm的陶瓷粉体;
(2)MnZn铁氧体预烧料制备
以Fe2O3、ZnO和MnO作为原料,按照主成分54.6~55.6mol%Fe2O3和 8~10mol%ZnO,其余为MnO的比例称取原料,一次球磨,烘干、过筛后,在 860~920℃的温度下预烧1~3h,获得MnZn功率铁氧体预烧料;
(3)掺杂处理
以MnZn功率铁氧体预烧料为重量参照基准,按预烧料重量百分比加入以下添加剂:0.01~0.03wt%V2O5、0.05~0.15wt%TiO2、0.01~0.03wt%Bi2O3、 0.1~0.3wt%Co2O3、0.01~0.03wt%NiO和0.02~0.08wt%BTO基PTC介电陶瓷粉体,二次球磨;
(4)样品成型
将二次球磨后得到的球磨料烘干,然后按重量百分比加入8~15wt%的PVA 有机粘合剂进行造粒,成型;
(5)烧结
将成型的生坯件进行高温烧结。
进一步的,所述步骤1)中,预烧温度为1100~1200℃,保温时间0.5~2h。
所述步骤(5)的烧结温度为1120~1200℃,保温时间6~10h,烧结氧分压控制为2~5%。
所述步骤(1)中,x=35,y=15,z=50,预烧后加入0.25mol%Al2O3、1.2mol%SiO2、0.25mol%Y2O3
所述步骤(3)中,各添加剂的加入量为:
0.03wt%V2O5、0.06wt%TiO2、0.015wt%Bi2O3、0.3wt%Co2O3、0.03wt%NiO和0.03wt%~0.06wt%BTO基PTC介电陶瓷粉体。
本发明用“~”表示的数值范围包括范围的端值。
采用本发明技术制备得到的铁氧体材料在高频、高温下具有低损耗的性能: 3MHz10mT、120℃下,损耗可低至214kW/m3。本发明能够有效降低开关损耗,满足开关电源高频化、小型化、高效化的发展要求。
附图说明
图1为为普通BTO基介电陶瓷(左)的电阻率温度特性图。
图2为本发明所采用的BTO基介电陶瓷(右)的电阻率温度特性图。
图3为对比例和实施例1、实施例2、实施例3的MnZn功率铁氧体材料SEM 显微结构图。
图4为加入Bi2O3后样品晶粒尺寸变化图。
图5为对比例和实施例1、实施例2、实施例3制备所得MnZn功率铁氧体样品高频总损耗PL(3MHz 10mT)的温度特性曲线图。
图6为对比例和实施例1、实施例2、实施例3制备所得MnZn功率铁氧体样品高频涡流损耗Pe(3MHz 10mT)的温度特性曲线图。
图7为对比例和实施例1、实施例2、实施例3制备所得MnZn功率铁氧体样品高频涡流损耗占比(3MHz 10mT)的温度曲线图。
图8为对比例和实施例1、实施例2、实施例3制备所得MnZn功率铁氧体样品高频剩余损耗Pr(3MHz 10mT)的温度特性曲线图。
图9为对比例和实施例1、实施例2、实施例3制备所得MnZn功率铁氧体样品高频剩余损耗占比(3MHz 10mT)的温度曲线图。
图10为对比例和实施例1、实施例2、实施例3制备所得MnZn功率铁氧体样品抗弯强度图。
具体实施方式
本发明中,按预烧料重量百分比加入添加剂是指以预烧料的重量作为分母,添加剂为分子计算,例如,预烧料的重量为100g,TiO2的重量为0.06g,以预烧料的重量为计算基准,TiO2的比例为0.06wt%。
本发明的核心思想是:3MHz下铁氧体损耗主要来源于涡流损耗(Pe)和剩余损耗(Pr)。MnZn铁氧体涡流损耗与电阻率关系密切,而MnZn铁氧体电阻率具有负温度系数(Negitive Temperature Coefficient,NTC)特性,其电阻率随着温度上升而迅速下降,进而导致涡流损耗在高温时显著增大。因此本发明采用BTO 基PTC介电陶瓷进行掺杂,利用BTO基PTC介电陶瓷在高温时电阻率急剧增大来改善铁氧体的电阻率温度特性。在MnZn铁氧体中采用BTO基PTC介电陶瓷进行掺杂有以下优点。一是BTO基PTC介电陶瓷是钙钛矿结构,不能进入尖晶石结构的MnZn铁氧体晶格中,只能聚集在晶界处,且其具有高熔点,能阻碍晶粒生长,起到细化晶粒的作用;二是具有PTC效应的BTO介电陶瓷电阻率高达 104Ω·m,当其富集在晶界处时能提高电阻率;三是完美利用BTO基PTC介电陶瓷的PTC效应,当温度超过其居里温度时,BTO基PTC介电陶瓷的介电常数ε变小,势垒高度变高,电阻率ρ急剧增大,其电阻随着温度的上升而增大,能减缓 MnZn铁氧体电阻率随温度增高而下降的速率。而剩余损耗与显微结构关系密切,采用BTO基PTC介电陶瓷进行掺杂会阻碍晶粒生长,晶粒尺寸减小且不均匀。因此,在此基础上,本发明采用Bi2O3共同掺杂,调控材料的显微结构,控制晶粒尺寸与均匀性,降低材料剩余损耗,同时改善力学性能。
本发明采用的原料包括主成分和添加剂,所述主成分包括 54.6~55.6mol%Fe2O3和8~10mol%ZnO,其余为MnO;所述添加剂以主成分的重量为计算基准,包括:0.01~0.03wt%V2O5、0.05~0.15wt%TiO2、0.1~0.3wt%Co2O3、 0.01~0.03wt%NiO、0.02~0.08wt%BTO基PTC介电陶瓷粉体。
本发明的制备方法包括以下步骤:
(1)BTO基PTC介电陶瓷粉体制备
采用传统陶瓷制备工艺制备具有PTC效应的BTO基介电陶瓷。 xmol%BaCO3:ymol%SrCO3:zmol%TiO2的比例称取原料,其中x=30~40, y=10~20,z=45~55。一磨后在1100~1200℃保温0.5~2h条件下完成预烧。在预烧料中加入0.2~0.4mol%Al2O3、1~2mol%SiO2、0.2~0.4mol%Y2O3后进行二磨。经造粒成型后在1300~1400℃保温1~3h条件下完成空气烧结,得到BTO基PTC介电陶瓷。将得到的样品放入刚玉研钵中碾碎,磨成粉末,获得粒径为0.5~1μm的陶瓷粉体。
(2)MnZn铁氧体预烧料制备
a)以Fe2O3、ZnO和MnO作为原料,按照主成分54.6~55.6mol%Fe2O3和 8~10mol%ZnO,其余为MnO的比例称取原料;
b)将以上粉料在行星式球磨机中进行一次球磨1~3h;
c)所得的球磨料烘干、过筛后,在860~920℃的温度下预烧1~3h,获得 MnZn功率铁氧体预烧料。
(3)掺杂处理
a)以步骤2)获得的MnZn功率铁氧体预烧料为参照基准,同时准备好步骤1)所制备得到的BTO基PTC介电陶瓷粉体,按预烧料重量百分比加入以下添加剂:0.01~0.03wt%V2O5、0.05~0.15wt%TiO2、 0.01~0.03wt%Bi2O3、0.1~0.3wt%Co2O3、0.01~0.03wt%NiO、 0.02~0.08wt%BTO基PTC介电陶瓷粉体;
b)将以上粉料在行星式球磨机中进行二次球磨3~5h;
(4)样品成型
a)将二次球磨后得到的球磨料烘干,然后按重量百分比加入8~15wt%的 PVA有机粘合剂进行造粒;
b)根据所需要的样品形状,将获得的造粒料压制成所需的样品生坯,成型压力为5~10MPa。
(5)样品烧结
a)将成型的生坯件置于气氛烧结装置中进行高温烧结。烧结温度为 1120~1200℃,保温时间6~10h;烧结氧分压控制为2~5%。
实施例
实施例包括以下制备步骤:
(1)BTO介电陶瓷粉体制备
采用传统陶瓷制备工艺制备具有PTC效应的BTO基介电陶瓷。按主成分 35mol%BaCO3:15mol%SrCO3:50mol%TiO2进行称取原料。一磨后在1150℃保温 1h条件下完成预烧。在预烧料中加入0.25mol%Al2O3、1.2mol%SiO2、0.25mol%Y2O3后进行二磨。经造粒成型后在1350℃保温2h条件下完成空气烧结,得到BTO基 PTC介电陶瓷。将得到的样品放入刚玉研钵中碾碎,磨成粉末,获得粒径为 0.5~1μm的陶瓷粉体。
(2)MnZn铁氧体预烧料制备
以Fe2O3、ZnO和MnO作为原料,按照主成分55.3mol%Fe2O3和9.8mol%ZnO,其余为MnO的比例称取原料;将以上粉料在行星式球磨机中进行一次球磨2h;所得的球磨料烘干、过筛后,在900℃的温度下预烧2h,获得MnZn功率铁氧体预烧料。
(3)掺杂处理
以步骤2)获得的MnZn功率铁氧体预烧料为参照基准,进行实施例,添加剂含量如下表所示:
Figure BDA0003573520280000081
将预烧料和各组添加剂在行星式球磨机中进行二次球磨3h;
(4)样品成型
将二次球磨后得到的球磨料烘干,然后按重量百分比加入12wt%的PVA有机粘合剂进行手工造粒;根据所需要的样品形状,将获得的造粒料压制成所需的样品生坯,成型压力为6MPa。
(5)样品烧结
将成型的生坯件置于气氛烧结装置中进行高温烧结。烧结温度为1180℃,保温时间6h;烧结氧分压控制为4%。
(6)测试
采用同惠TH2826精密LCR测试仪测试样品的电感L,换算成起始磁导率。采用阿基米德排水法测密度,磁性能采用岩崎SY8232 B-H分析仪进行测试。抗弯强度采用MODEL SH-2K机械强度自动试验测试机进行测试。
实验与数据
实施例1-3和对比例的样品基本性能见下表:
Figure BDA0003573520280000091
图1和图2可见具有PTC效应的BTO介电陶瓷的居里温度约为80℃,超过居里温度后其电阻率以数量级的形式急剧增大,而普通BTO陶瓷的电阻率随温度升高保持同一数量级,超过80℃后逐渐下降。
图3~图4可见实施例1较对比例晶粒更小,BTO基PTC介电陶瓷具有阻晶作用。
实施例2较对比例更加均匀,Bi2O3可以改善显微结构,减少材料高频下的磁损耗并提高材料机械性能。
图5可见实施例较对比例MnZn功率铁氧体高频损耗明显降低。
图6~图7可见实施例较对比例MnZn功率铁氧体涡流损耗明显降低,涡流损耗比重显著下降,BTO的高电阻特性可以降低涡流损耗。
图8~图9可见实施例较对比例MnZn功率铁氧体剩余损耗明显降低,Bi2O3可以改善显微结构,进一步降低材料剩余损耗及其比重。
图10可见实施例较对比例MnZn功率铁氧体抗弯强度得到提高。

Claims (4)

1.高力学性能低损耗MnZn功率铁氧体材料制备方法,其特征在于,包括以下步骤:
(1)BTO基PTC介电陶瓷粉体制备:
按照主成分xmol%BaCO3:ymol%SrCO3:zmol%TiO2的比例称取原料,其中x=30~40,y=10~20,z=45~55;一次球磨,预烧后加入0.2~0.4mol%Al2O3、1~2mol%SiO2、0.2~0.4mol%Y2O3后进行二次球磨,造粒成型后在1300~1400℃保温1~3h条件下完成空气烧结,碾碎磨粉为粒径0.5~1μm的陶瓷粉体;
(2)MnZn铁氧体预烧料制备
以Fe2O3、ZnO和MnO作为原料,按照主成分54.6~55.6mol%Fe2O3和8~10mol%ZnO,其余为MnO的比例称取原料,一次球磨,烘干、过筛后,在860~920℃的温度下预烧1~3h,获得MnZn功率铁氧体预烧料;
(3)掺杂处理
以MnZn功率铁氧体预烧料为重量参照基准,按预烧料重量百分比加入以下添加剂:0.01~0.03wt%V2O5、0.05~0.15wt%TiO2、0.01~0.03wt%Bi2O3、0.1~0.3wt%Co2O3、0.01~0.03wt%NiO和0.02~0.08wt%BTO基PTC介电陶瓷粉体,二次球磨;
(4)样品成型
将二次球磨后得到的球磨料烘干,然后按重量百分比加入8~15wt%的PVA有机粘合剂进行造粒,成型;
(5)烧结
将成型的生坯件进行高温烧结。
2.如权利要求1所述的高力学性能低损耗MnZn功率铁氧体材料制备方法,其特征在于,所述步骤1)中,预烧温度为1100~1200℃,保温时间0.5~2h。
3.如权利要求1所述的高力学性能低损耗MnZn功率铁氧体材料制备方法,其特征在于,所述步骤(5)的烧结温度为1120~1200℃,保温时间6~10h,烧结氧分压控制为2~5%。
4.如权利要求1所述的高力学性能低损耗MnZn功率铁氧体材料制备方法,其特征在于,所述步骤(1)中,x=35,y=15,z=50,预烧后加入0.25mol%Al2O3、1.2mol%SiO2、0.25mol%Y2O3
所述步骤(3)中,各添加剂的加入量为:
0.03wt%V2O5、0.06wt%TiO2、0.015wt%Bi2O3、0.3wt%Co2O3、0.03wt%NiO和0.03wt%~0.06wt%BTO基PTC介电陶瓷粉体。
CN202210326156.3A 2022-03-30 2022-03-30 高力学性能低损耗MnZn功率铁氧体材料制备方法 Active CN114716240B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210326156.3A CN114716240B (zh) 2022-03-30 2022-03-30 高力学性能低损耗MnZn功率铁氧体材料制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210326156.3A CN114716240B (zh) 2022-03-30 2022-03-30 高力学性能低损耗MnZn功率铁氧体材料制备方法

Publications (2)

Publication Number Publication Date
CN114716240A true CN114716240A (zh) 2022-07-08
CN114716240B CN114716240B (zh) 2023-01-03

Family

ID=82238910

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210326156.3A Active CN114716240B (zh) 2022-03-30 2022-03-30 高力学性能低损耗MnZn功率铁氧体材料制备方法

Country Status (1)

Country Link
CN (1) CN114716240B (zh)

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4316228A (en) * 1979-03-23 1982-02-16 Hitachi, Ltd. Magnetic head
EP0072437A2 (de) * 1981-08-19 1983-02-23 BASF Aktiengesellschaft Verfahren zur Herstellung feinteiliger Ferritpulver
JPS59121168A (ja) * 1982-12-28 1984-07-13 住友特殊金属株式会社 酸化物の熱間静水圧プレス方法
JPH05319896A (ja) * 1992-05-21 1993-12-03 Kyocera Corp 非磁性セラミックス
JP2005268736A (ja) * 2004-03-16 2005-09-29 Kagawa Prefecture 酸化鉄含有廃棄物を用いた高周波帯域用電磁波吸収材料
US20060188755A1 (en) * 2005-02-23 2006-08-24 Meiji University Legal Person Spinel-type ferrimagnetic particles process for producing the same, and magnetic recording medium using the same
CN101215151A (zh) * 2008-01-15 2008-07-09 中国科学院物理研究所 具有巨大介电调谐效应的铁电材料
CN101486567A (zh) * 2008-01-14 2009-07-22 王永安 一种高频高温低损耗MnNiZn铁氧体材料的制备方法
CN101981631A (zh) * 2008-04-04 2011-02-23 国立大学法人东北大学 复合材料及其制造方法
CN102751065A (zh) * 2012-06-29 2012-10-24 电子科技大学 宽温宽频低损耗MnZn功率铁氧体材料及其制备方法
US20130228716A1 (en) * 2011-08-31 2013-09-05 Kabushiki Kaisha Toshiba Magnetic material, method for producing magnetic material, and inductor element
CN107056269A (zh) * 2017-05-04 2017-08-18 李聪 一种高频高电阻率铁氧体软磁材料的制备方法
CN108530050A (zh) * 2018-03-27 2018-09-14 电子科技大学 宽温低损耗高阻抗MnZn软磁铁氧体材料及制备方法
CN112142456A (zh) * 2020-09-04 2020-12-29 湖南航天磁电有限责任公司 一种铁氧体吸波材料及其制备方法
CN112538254A (zh) * 2020-12-07 2021-03-23 陕西生益科技有限公司 一种磁介电树脂组合物、包含其的层压板及其印刷电路板
CN112979301A (zh) * 2021-02-25 2021-06-18 电子科技大学 高频高温低损耗MnZn功率铁氧体材料及其制备方法

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4316228A (en) * 1979-03-23 1982-02-16 Hitachi, Ltd. Magnetic head
EP0072437A2 (de) * 1981-08-19 1983-02-23 BASF Aktiengesellschaft Verfahren zur Herstellung feinteiliger Ferritpulver
JPS59121168A (ja) * 1982-12-28 1984-07-13 住友特殊金属株式会社 酸化物の熱間静水圧プレス方法
JPH05319896A (ja) * 1992-05-21 1993-12-03 Kyocera Corp 非磁性セラミックス
JP2005268736A (ja) * 2004-03-16 2005-09-29 Kagawa Prefecture 酸化鉄含有廃棄物を用いた高周波帯域用電磁波吸収材料
US20060188755A1 (en) * 2005-02-23 2006-08-24 Meiji University Legal Person Spinel-type ferrimagnetic particles process for producing the same, and magnetic recording medium using the same
CN101486567A (zh) * 2008-01-14 2009-07-22 王永安 一种高频高温低损耗MnNiZn铁氧体材料的制备方法
CN101215151A (zh) * 2008-01-15 2008-07-09 中国科学院物理研究所 具有巨大介电调谐效应的铁电材料
CN101981631A (zh) * 2008-04-04 2011-02-23 国立大学法人东北大学 复合材料及其制造方法
US20130228716A1 (en) * 2011-08-31 2013-09-05 Kabushiki Kaisha Toshiba Magnetic material, method for producing magnetic material, and inductor element
CN102751065A (zh) * 2012-06-29 2012-10-24 电子科技大学 宽温宽频低损耗MnZn功率铁氧体材料及其制备方法
CN107056269A (zh) * 2017-05-04 2017-08-18 李聪 一种高频高电阻率铁氧体软磁材料的制备方法
CN108530050A (zh) * 2018-03-27 2018-09-14 电子科技大学 宽温低损耗高阻抗MnZn软磁铁氧体材料及制备方法
CN112142456A (zh) * 2020-09-04 2020-12-29 湖南航天磁电有限责任公司 一种铁氧体吸波材料及其制备方法
CN112538254A (zh) * 2020-12-07 2021-03-23 陕西生益科技有限公司 一种磁介电树脂组合物、包含其的层压板及其印刷电路板
CN112979301A (zh) * 2021-02-25 2021-06-18 电子科技大学 高频高温低损耗MnZn功率铁氧体材料及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GUO YU: "Self-Assembled BaTiO3-MnZnFe2O4 Nanocomposite Films", 《ADVANCES IN MATERIALS SCIENCE AND ENGINEERING》 *
GUOHUA WU: "Ultra-low core losses at high frequencies and temperatures in MnZn ferrites with nano-BaTiO3 additives", 《JOURNAL OF ALLOYS AND COMPOUNDS》 *
吴国华: "高频MnZn功率铁氧体关键制备技术及损耗机理研究", 《中国博士学位论文全文数据库 工程科技Ⅱ辑》 *

Also Published As

Publication number Publication date
CN114716240B (zh) 2023-01-03

Similar Documents

Publication Publication Date Title
JP5332254B2 (ja) フェライト焼結体
JP5578766B2 (ja) MnZn系フェライトおよびトランス用磁心
CN112979301B (zh) 高频高温低损耗MnZn功率铁氧体材料及其制备方法
JP2007070209A (ja) MnZn系フェライトの製造方法
KR100522222B1 (ko) 망간-아연계 페라이트, 트랜스용 자심 및 트랜스
JP2007204349A (ja) 低損失酸化物磁性材料の製造方法
JPH05335132A (ja) 酸化物磁性体材料
JP3907642B2 (ja) フェライト材料及びフェライト材料の製造方法
JP2008127230A (ja) MnZnNiフェライト
JP2005132715A (ja) Ni−Cu−Zn系フェライト材料及びその製造方法
JP3924272B2 (ja) Mn−Zn系フェライト、トランス用磁心およびトランス
JP2002134312A (ja) 磁性材料とその磁性材料を用いたコイル部品
JP3597673B2 (ja) フェライト材料
CN114716240B (zh) 高力学性能低损耗MnZn功率铁氧体材料制备方法
JPH06310320A (ja) 酸化物磁性体材料
JP5828308B2 (ja) フェライトコア及びトランス
CN114835481B (zh) 高温高频MnZn功率铁氧体材料的制备方法
CN114685153B (zh) 宽温宽频MnZn功率铁氧体材料及制备方法
JP3790606B2 (ja) Mn−Coフェライト材料
CN114907106B (zh) 高机械强度宽温宽频MnZn功率铁氧体的制备方法
KR101990781B1 (ko) 페라이트 및 트랜스
JP5458298B2 (ja) Mn−Zn系フェライト材料
JPH07130527A (ja) 酸化物磁性材料
JPH10270231A (ja) Mn−Niフェライト材料
JP6079172B2 (ja) フェライトコア及びトランス

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant