CN114685163A - 一种介电陶瓷的制备方法及其产品 - Google Patents

一种介电陶瓷的制备方法及其产品 Download PDF

Info

Publication number
CN114685163A
CN114685163A CN202210425278.8A CN202210425278A CN114685163A CN 114685163 A CN114685163 A CN 114685163A CN 202210425278 A CN202210425278 A CN 202210425278A CN 114685163 A CN114685163 A CN 114685163A
Authority
CN
China
Prior art keywords
ball milling
dielectric
dielectric ceramic
addition amount
drying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210425278.8A
Other languages
English (en)
Other versions
CN114685163B (zh
Inventor
李金凤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Chaojing Photoelectric New Material Technology Research Institute Co ltd
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN202210425278.8A priority Critical patent/CN114685163B/zh
Publication of CN114685163A publication Critical patent/CN114685163A/zh
Application granted granted Critical
Publication of CN114685163B publication Critical patent/CN114685163B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1236Ceramic dielectrics characterised by the ceramic dielectric material based on zirconium oxides or zirconates
    • H01G4/1245Ceramic dielectrics characterised by the ceramic dielectric material based on zirconium oxides or zirconates containing also titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

本发明属于陶瓷技术领域,具体涉及一种介电陶瓷的制备方法及其产品。所述制备方法包括以下步骤:(1)将BaCO3、ZrO2和TiO2按照一定摩尔比称取,然后进行球磨,然后干燥,煅烧,自然冷却至室温,研磨,得到锆钛酸钡;(2)将步骤(1)得到的锆钛酸钡粉体中加入CuO、ZnO、Pr2O3和Er2O3,球磨,然后干燥,加入质量分数为5%的聚乙烯醇水溶液造粒,将造粒的粉体通过压片机预成型后再下压制成胚体,将所得的胚体在马弗炉中排胶,然后烧结,然后随炉冷却至室温得到介电陶瓷,得到的介电陶瓷具有较高的室温介电常数,较低的介电损耗,具有较大的应用潜力。

Description

一种介电陶瓷的制备方法及其产品
技术领域
本发明属于陶瓷技术领域。更具体地,涉及一种介电陶瓷的制备方法及其产品。
背景技术
随着电子产品的更新换代速度日益加快,对于电子元器件的性能标准越发严格。电容器作为最常见的电子元器件之一,传统的电容器材料难以满足日益严格的高集成度、高电容、良好的温度稳定性等要求。
锆钛酸钡(BZT)陶瓷晶体结构为ABO3型钙钛矿结构,锆钛酸钡[Ba(ZrxTi1-x)O3]作为钛酸钡(BaTiO3)与锆酸钡(BaZrO3)形成的固溶体,兼顾了高介电性与居里温度可调等特点,逐渐成为陶瓷电介质材料的研究热点之一。BZT陶瓷的掺杂改性根据取代位置可以分为A位掺杂和B位掺杂。A位掺杂元素包括Dy、Eu、Ce、Y、La等稀土元素和Pb、Zn、Bi、Ca等;B位掺杂元素包括Mn、Nb、Mg等。稀土元素因其对陶瓷的晶粒生长有一定抑制效果,并且一定程度上提高介电性能而在BZT陶瓷体系中得到广泛应用。
罗家威等人研究了Yb2O3和Sm2O3复合掺杂对锆钛酸钡陶瓷介电性能的影响,发现掺杂后的陶瓷样品主晶相不变,均为钙钛矿结构,掺杂能起到改善介电常数与介电损耗的作用,样品的介电常数最高达6623.49,而介电损耗最低至0.0145。
CN114315350A公开了一种钛酸铋钠-锆钛酸钡无铅宽温储能陶瓷及其制备方法。该陶瓷材料的分子式为(1-x)Bi0.51Na0.47TiO3-xBaZryTi1-yO3-zSm,其中,x、y、z分别表示锆钛酸钡、锆离子、钐离子的摩尔分数;其中,0.45≤x≤0.55,0.3≤y≤0.45,0≤z≤0.08。本发明通过向钛酸铋钠陶瓷体系引入锆钛酸钡来提高其储能性能的同时,对高温方向的温度稳定性有所提高,进一步引入钐离子对其低温方向温度稳定性进行提高,从而得到具有良好温度稳定性的钛酸铋钠基无铅储能陶瓷。
CN109437894B公开了一种宽介电温度稳定性细晶锆钛酸钡陶瓷介质材料的制备方法,该方法将Ti源与Zr滴加至碱中,再加入Ba源,将混合液升温反应后进行陈化处理,得到空心球形的纳米级BaZrxTiyO3粉体,再依次经造粒、成型、烧结,得到宽介电温度稳定性的细晶陶瓷电容器介质材料。该方法过程简单、可大规模生产,得到的锆钛酸钡陶瓷介质材料具有宽介电温度稳定性,同时介电性能良好。
虽然对锆钛酸钡介电陶瓷的改性介电常数和介电损耗作了大量的研究,但是上述方法复杂或者得到的介电常数较低,介电损耗较大,如何开发一种新的锆钛酸钡介电陶瓷使其具有较大的室温介电常数,较低的介电损耗仍是亟待解决的问题。
发明内容
本发明要解决的技术问题是克服现有技术中存在的缺陷和不足,提供一种介电陶瓷的制备方法及其产品。
本发明的目的是提供一种介电陶瓷的制备方法。所述制备方法包括以下步骤:(1)将BaCO3、ZrO2和TiO2按照一定摩尔比称取,然后进行球磨,然后干燥,煅烧,自然冷却至室温,研磨,得到锆钛酸钡;(2)将步骤(1)得到的锆钛酸钡粉体中加入CuO、ZnO、Pr2O3和Er2O3,球磨,然后干燥,加入质量分数为5%的聚乙烯醇水溶液造粒,将造粒的粉体通过压片机预成型后再下压制成胚体,将所得的胚体在马弗炉中排胶,然后烧结,然后随炉冷却至室温得到介电陶瓷,得到的介电陶瓷具有较高的室温介电常数,较低的介电损耗,具有较大的应用潜力。
本发明另一目的是提供一种介电陶瓷。所述介电陶瓷的室温介电常数为8531~8963;介电损耗0.002~0.006。
本发明上述目的通过以下技术方案实现:
一种介电陶瓷的制备方法,所述制备方法包括以下步骤:
(1)将BaCO3、ZrO2和TiO2按照一定摩尔比称取,然后进行球磨,然后干燥,煅烧,自然冷却至室温,研磨,得到锆钛酸钡;
(2)将步骤(1)得到的锆钛酸钡粉体中加入CuO、ZnO、Pr2O3和Er2O3,球磨,然后干燥,加入质量分数为5%的聚乙烯醇水溶液造粒,将造粒的粉体通过压片机预成型后再下压制成胚体,将所得的胚体在马弗炉中排胶,然后烧结,然后随炉冷却至室温得到陶瓷。
优选的,在步骤(1)中,所述BaCO3、ZrO2和TiO2的质量纯度均大于99.0%;所述BaCO3、ZrO2和TiO2的摩尔比为1:0.1:0.9。
优选的,在步骤(1)中,所述球磨转速为200~300r/min,球磨时间为0.5~3h,所述球磨介质为无水乙醇。
优选的,在步骤(1)中,所述干燥为于90~110℃干燥8~12h;所述煅烧为于1000~1200℃条件下煅烧2~4h。
优选的,在步骤(2)中,所述CuO、ZnO、Pr2O3和Er2O3的质量纯度均大于99.0%;所述CuO的添加量为0.2~0.4wt%;ZnO的添加量为0.2~0.4wt%,Pr2O3添加量为0.5~1.5wt%;Er2O3的添加量为0.5~1.5wt%。
优选的,在步骤(2)中,所述球磨转速为150~250r/min,球磨时间为2~4h,球磨介质为无水乙醇。
优选的,在步骤(2)中,所述干燥为于90~110℃干燥8~12h,所述压制胚体的压力为10MPa~15MPa。
优选的,在步骤(2)中,所述排胶过程为在200~300℃排胶1~2h,在500℃~600℃排胶1~2h,所述焙烧为于1300~1400℃下烧结3~6h;所述排胶过程的升温速率为2~5℃/min,烧结过程的升温速率为5~10℃/min。
基于上述所述的一种介电陶瓷的制备方法制备的介电陶瓷。
优选的,所述介电陶瓷的室温介电常数为8531~8963;介电损耗0.002~0.009。
本发明具有以下有益效果:
(1)本发明先通过制备锆钛酸钡,然后通过与CuO、ZnO、Pr2O3和Er2O3结合,通过利用组分之间的协同作用,来细化晶粒,使晶粒分布均匀,进而得到介电陶瓷具有较高的介电常数,较低的介电损耗;
(2)本发明通过采用梯度排胶,避免了大孔隙的产生,进而使得陶瓷致密,进而改善了介电常数和介电损耗。
(3)本发明的制备方法简单,节省能源、降低能耗,制备的介电陶瓷具有较大的应用潜力。
具体实施方式
以下结合具体实施例来进一步说明本发明,但实施例并不对本发明做任何形式的限定。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。
除非特别说明,以下实施例所用试剂和材料均为市购。
实施例1
一种介电陶瓷的制备方法,所述制备方法包括以下步骤:
(1)将纯度均大于99.0%的BaCO3、ZrO2、TiO2按照摩尔比为1:0.1:0.9称取,然后进行球磨,所述球磨转速为250r/min,球磨时间为2h;球磨介质为无水乙醇,然后于100℃干燥10h,并于1100℃条件下煅烧3h,自然冷却至室温,研磨,得到Ba(Zr0.1Ti0.9)O3
(2)将步骤(1)得到的Ba(Zr0.1Ti0.9)O3粉体中加入纯度均大于99.0%的CuO、ZnO、Pr2O3和Er2O3,其中,所述CuO的添加量为0.3wt%;ZnO的添加量为0.3wt%,Pr2O3添加量为1wt%;Er2O3的添加量为1.0wt%,球磨、所述球磨转速为200r/min,球磨时间为3h,球磨介质为无水乙醇,然后于1100℃干燥10h;加入质量分数为5%的聚乙烯醇水溶液造粒,将造粒的粉体通过压片机预成型后再经13MPa下压制成胚体,将所得的胚体在马弗炉中在250℃排胶1.5h,在550℃排胶1.5h,然后于1350℃下烧结5h,然后随炉冷却至室温得到介电陶瓷;排胶过程的升温速率为3℃/min,烧结过程的升温速率为8℃/min。
实施例2
一种介电陶瓷的制备方法,所述制备方法包括以下步骤:
(1)将纯度均大于99.0%的BaCO3、ZrO2、TiO2按照摩尔比为1:0.1:0.9称取,然后进行球磨,所述球磨转速为300r/min,球磨时间为0.5h;球磨介质为无水乙醇,然后于110℃干燥8h,并于1200℃条件下煅烧2h,自然冷却至室温,研磨,得到Ba(Zr0.1Ti0.9)O3
(2)将步骤(1)得到的Ba(Zr0.1Ti0.9)O3粉体中加入纯度均大于99.0%的CuO、ZnO、Pr2O3和Er2O3,其中,所述CuO的添加量为0.4wt%;ZnO的添加量为0.2wt%,Pr2O3添加量为1.5wt%;Er2O3的添加量为0.5wt%,球磨、所述球磨转速为250r/min,球磨时间为2h,球磨介质为无水乙醇,然后于110℃干燥8h;加入质量分数为5%的聚乙烯醇水溶液造粒,将造粒的粉体通过压片机预成型后再经15MPa下压制成胚体,将所得的胚体在马弗炉中在200℃排胶1h,在600℃排胶1h,然后于1400℃下烧结3h,然后随炉冷却至室温得到介电陶瓷;排胶过程的升温速率为5℃/min,烧结过程的升温速率为10℃/min。
实施例3
一种介电陶瓷的制备方法,所述制备方法包括以下步骤:
(1)将纯度均大于99.0%的BaCO3、ZrO2、TiO2按照摩尔比为1:0.1:0.9称取,然后进行球磨,所述球磨转速为200r/min,球磨时间为3h;球磨介质为无水乙醇,然后于90℃干燥12h,并于1000℃条件下煅烧4h,自然冷却至室温,研磨,得到Ba(Zr0.1Ti0.9)O3
(2)将步骤(1)得到的Ba(Zr0.1Ti0.9)O3粉体中加入纯度均大于99.0%的CuO、ZnO、Pr2O3和Er2O3,其中,所述CuO的添加量为0.2wt%;ZnO的添加量为0.4wt%,Pr2O3添加量为0.5wt%;Er2O3的添加量为1.5wt%,球磨、所述球磨转速为150r/min,球磨时间为4h,球磨介质为无水乙醇,然后于90℃干燥12h;加入质量分数为5%的聚乙烯醇水溶液造粒,将造粒的粉体通过压片机预成型后再经10MPa下压制成胚体,将所得的胚体在马弗炉中在200℃排胶2h,在500℃排胶2h,然后于1300℃下烧结6h,然后随炉冷却至室温得到介电陶瓷;排胶过程的升温速率为2℃/min,烧结过程的升温速率为5℃/min。
实施例4
一种介电陶瓷的制备方法,所述制备方法包括以下步骤:
(1)将纯度均大于99.0%的BaCO3、ZrO2、TiO2按照摩尔比为1:0.1:0.9称取,然后进行球磨,所述球磨转速为280r/min,球磨时间为2.5h;球磨介质为无水乙醇,然后于105℃干燥11h,并于1150℃条件下煅烧3.5h,自然冷却至室温,研磨,得到Ba(Zr0.1Ti0.9)O3
(2)将步骤(1)得到的Ba(Zr0.1Ti0.9)O3粉体中加入纯度均大于99.0%的CuO、ZnO、Pr2O3和Er2O3,其中,所述CuO的添加量为0.2wt%;ZnO的添加量为0.2wt%,Pr2O3添加量为1.5wt%;Er2O3的添加量为1.5wt%,球磨、所述球磨转速为220r/min,球磨时间为3.5h,球磨介质为无水乙醇,然后于105℃干燥11h;加入质量分数为5%的聚乙烯醇水溶液造粒,将造粒的粉体通过压片机预成型后再经14MPa下压制成胚体,将所得的胚体在马弗炉中在280℃排胶1.5h,在580℃排胶1.5h,然后于1380℃下烧结5h,然后随炉冷却至室温得到介电陶瓷;排胶过程的升温速率为3℃/min,烧结过程的升温速率为7℃/min。
对比例1
一种介电陶瓷的制备方法,所述制备方法包括以下步骤:
(1)将纯度均大于99.0%的BaCO3、ZrO2、TiO2按照摩尔比为1:0.1:0.9称取,然后进行球磨,所述球磨转速为250r/min,球磨时间为2h;球磨介质为无水乙醇,然后于100℃干燥10h,并于1100℃条件下煅烧3h,自然冷却至室温,研磨,得到Ba(Zr0.1Ti0.9)O3
(2)将步骤(1)得到的Ba(Zr0.1Ti0.9)O3粉体中加入纯度均大于99.0%的CuO、Pr2O3和Er2O3,其中,所述CuO的添加量为0.6wt%,Pr2O3添加量为1wt%;Er2O3的添加量为1.0wt%,球磨、所述球磨转速为200r/min,球磨时间为3h,球磨介质为无水乙醇,然后于1100℃干燥10h;加入质量分数为5%的聚乙烯醇水溶液造粒,将造粒的粉体通过压片机预成型后再经13MPa下压制成胚体,将所得的胚体在马弗炉中在250℃排胶1.5h,在550℃排胶1.5h,然后于1350℃下烧结5h,然后随炉冷却至室温得到介电陶瓷;排胶过程的升温速率为3℃/min,烧结过程的升温速率为8℃/min。
对比例2
一种介电陶瓷的制备方法,所述制备方法包括以下步骤:
(1)将纯度均大于99.0%的BaCO3、ZrO2、TiO2按照摩尔比为1:0.1:0.9称取,然后进行球磨,所述球磨转速为250r/min,球磨时间为2h;球磨介质为无水乙醇,然后于100℃干燥10h,并于1100℃条件下煅烧3h,自然冷却至室温,研磨,得到Ba(Zr0.1Ti0.9)O3
(2)将步骤(1)得到的Ba(Zr0.1Ti0.9)O3粉体中加入纯度均大于99.0%的ZnO、Pr2O3和Er2O3,其中,所述ZnO的添加量为0.6wt%,Pr2O3添加量为1wt%;Er2O3的添加量为1.0wt%,球磨、所述球磨转速为200r/min,球磨时间为3h,球磨介质为无水乙醇,然后于1100℃干燥10h;加入质量分数为5%的聚乙烯醇水溶液造粒,将造粒的粉体通过压片机预成型后再经13MPa下压制成胚体,将所得的胚体在马弗炉中在250℃排胶1.5h,在550℃排胶1.5h,然后于1350℃下烧结5h,然后随炉冷却至室温得到介电陶瓷;排胶过程的升温速率为3℃/min,烧结过程的升温速率为8℃/min。
对比例3
一种介电陶瓷的制备方法,所述制备方法包括以下步骤:
(1)将纯度均大于99.0%的BaCO3、ZrO2、TiO2按照摩尔比为1:0.1:0.9称取,然后进行球磨,所述球磨转速为250r/min,球磨时间为2h;球磨介质为无水乙醇,然后于100℃干燥10h,并于1100℃条件下煅烧3h,自然冷却至室温,研磨,得到Ba(Zr0.1Ti0.9)O3
(2)将步骤(1)得到的Ba(Zr0.1Ti0.9)O3粉体中加入纯度均大于99.0%的CuO、ZnO和Er2O3,其中,所述CuO的添加量为1.3wt%;ZnO的添加量为0.3wt%,Er2O3的添加量为1.0wt%,球磨、所述球磨转速为200r/min,球磨时间为3h,球磨介质为无水乙醇,然后于1100℃干燥10h;加入质量分数为5%的聚乙烯醇水溶液造粒,将造粒的粉体通过压片机预成型后再经13MPa下压制成胚体,将所得的胚体在马弗炉中在250℃排胶1.5h,在550℃排胶1.5h,然后于1350℃下烧结5h,然后随炉冷却至室温得到介电陶瓷;排胶过程的升温速率为3℃/min,烧结过程的升温速率为8℃/min。
对比例4
一种介电陶瓷的制备方法,所述制备方法包括以下步骤:
(1)将纯度均大于99.0%的BaCO3、ZrO2、TiO2按照摩尔比为1:0.1:0.9称取,然后进行球磨,所述球磨转速为250r/min,球磨时间为2h;球磨介质为无水乙醇,然后于100℃干燥10h,并于1100℃条件下煅烧3h,自然冷却至室温,研磨,得到Ba(Zr0.1Ti0.9)O3
(2)将步骤(1)得到的Ba(Zr0.1Ti0.9)O3粉体中加入纯度均大于99.0%的ZnO、Pr2O3和Er2O3,其中,所述ZnO的添加量为0.3wt%,Pr2O3添加量为1.3wt%;Er2O3的添加量为1.0wt%,球磨、所述球磨转速为200r/min,球磨时间为3h,球磨介质为无水乙醇,然后于1100℃干燥10h;加入质量分数为5%的聚乙烯醇水溶液造粒,将造粒的粉体通过压片机预成型后再经13MPa下压制成胚体,将所得的胚体在马弗炉中在250℃排胶1.5h,在550℃排胶1.5h,然后于1350℃下烧结5h,然后随炉冷却至室温得到介电陶瓷;排胶过程的升温速率为3℃/min,烧结过程的升温速率为8℃/min。
对比例5
一种介电陶瓷的制备方法,所述制备方法包括以下步骤:
(1)将纯度均大于99.0%的BaCO3、ZrO2、TiO2按照摩尔比为1:0.1:0.9称取,然后进行球磨,所述球磨转速为250r/min,球磨时间为2h;球磨介质为无水乙醇,然后于100℃干燥10h,并于1100℃条件下煅烧3h,自然冷却至室温,研磨,得到Ba(Zr0.1Ti0.9)O3
(2)将步骤(1)得到的Ba(Zr0.1Ti0.9)O3粉体中加入纯度均大于99.0%的CuO、ZnO和Pr2O3,其中,所述CuO的添加量为0.3wt%;ZnO的添加量为1.3wt%,Pr2O3添加量为1wt%,球磨、所述球磨转速为200r/min,球磨时间为3h,球磨介质为无水乙醇,然后于1100℃干燥10h;加入质量分数为5%的聚乙烯醇水溶液造粒,将造粒的粉体通过压片机预成型后再经13MPa下压制成胚体,将所得的胚体在马弗炉中在250℃排胶1.5h,在550℃排胶1.5h,然后于1350℃下烧结5h,然后随炉冷却至室温得到介电陶瓷;排胶过程的升温速率为3℃/min,烧结过程的升温速率为8℃/min。
对比例6
一种介电陶瓷的制备方法,所述制备方法包括以下步骤:
(1)将纯度均大于99.0%的BaCO3、ZrO2、TiO2按照摩尔比为1:0.1:0.9称取,然后进行球磨,所述球磨转速为250r/min,球磨时间为2h;球磨介质为无水乙醇,然后于100℃干燥10h,并于1100℃条件下煅烧3h,自然冷却至室温,研磨,得到Ba(Zr0.1Ti0.9)O3
(2)将步骤(1)得到的Ba(Zr0.1Ti0.9)O3粉体中加入纯度均大于99.0%的CuO、Pr2O3和Er2O3,其中,所述CuO的添加量为0.3wt%;Pr2O3添加量为1wt%;Er2O3的添加量为1.3wt%,球磨、所述球磨转速为200r/min,球磨时间为3h,球磨介质为无水乙醇,然后于1100℃干燥10h;加入质量分数为5%的聚乙烯醇水溶液造粒,将造粒的粉体通过压片机预成型后再经13MPa下压制成胚体,将所得的胚体在马弗炉中在250℃排胶1.5h,在550℃排胶1.5h,然后于1350℃下烧结5h,然后随炉冷却至室温得到介电陶瓷;排胶过程的升温速率为3℃/min,烧结过程的升温速率为8℃/min。
对比例7
一种介电陶瓷的制备方法,所述制备方法包括以下步骤:
(1)将纯度均大于99.0%的BaCO3、ZrO2、TiO2按照摩尔比为1:0.1:0.9称取,然后进行球磨,所述球磨转速为250r/min,球磨时间为2h;球磨介质为无水乙醇,然后于100℃干燥10h,并于1100℃条件下煅烧3h,自然冷却至室温,研磨,得到Ba(Zr0.1Ti0.9)O3
(2)将步骤(1)得到的Ba(Zr0.1Ti0.9)O3粉体中加入纯度均大于99.0%的CuO、ZnO和Pr2O3,其中,所述CuO的添加量为1.3wt%;ZnO的添加量为0.3wt%,Pr2O3添加量为1wt%;,球磨、所述球磨转速为200r/min,球磨时间为3h,球磨介质为无水乙醇,然后于1100℃干燥10h;加入质量分数为5%的聚乙烯醇水溶液造粒,将造粒的粉体通过压片机预成型后再经13MPa下压制成胚体,将所得的胚体在马弗炉中在250℃排胶1.5h,在550℃排胶1.5h,然后于1350℃下烧结5h,然后随炉冷却至室温得到介电陶瓷;排胶过程的升温速率为3℃/min,烧结过程的升温速率为8℃/min。
对比例8
一种介电陶瓷的制备方法,所述制备方法包括以下步骤:
(1)将纯度均大于99.0%的BaCO3、ZrO2、TiO2按照摩尔比为1:0.1:0.9称取,然后进行球磨,所述球磨转速为250r/min,球磨时间为2h;球磨介质为无水乙醇,然后于100℃干燥10h,并于1100℃条件下煅烧3h,自然冷却至室温,研磨,得到Ba(Zr0.1Ti0.9)O3
(2)将步骤(1)得到的Ba(Zr0.1Ti0.9)O3粉体中加入纯度均大于99.0%的ZnO、Pr2O3和Er2O3,其中,所述ZnO的添加量为0.3wt%,Pr2O3添加量为1wt%;Er2O3的添加量为1.3wt%,球磨、所述球磨转速为200r/min,球磨时间为3h,球磨介质为无水乙醇,然后于1100℃干燥10h;加入质量分数为5%的聚乙烯醇水溶液造粒,将造粒的粉体通过压片机预成型后再经13MPa下压制成胚体,将所得的胚体在马弗炉中在250℃排胶1.5h,在550℃排胶1.5h,然后于1350℃下烧结5h,然后随炉冷却至室温得到介电陶瓷;排胶过程的升温速率为3℃/min,烧结过程的升温速率为8℃/min。
实施例1-3和对照例1-8,在20℃,频率1kHz时介电常数和介电损耗如表1所示。
表1:实施例1-3和对照例1-8的介电常数和介电损耗
Figure BDA0003609407810000091
Figure BDA0003609407810000101
由表1可知,通过实施例1-3与对比例1-8的对比,可以看出,本发明制备的介电陶瓷具有较高的介电常数和较低的介电损耗,即可以看出,本申请的组分之间具有协调作用,对介电陶瓷具有优异的促进作用。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.一种介电陶瓷的制备方法,其特征在于:所述制备方法包括以下步骤:
(1)将BaCO3、ZrO2和TiO2按照一定摩尔比称取,然后进行球磨,然后干燥,煅烧,自然冷却至室温,研磨,得到锆钛酸钡;
(2)将步骤(1)得到的锆钛酸钡粉体中加入CuO、ZnO、Pr2O3和Er2O3,球磨,然后干燥,加入质量分数为5%的聚乙烯醇水溶液造粒,将造粒的粉体通过压片机预成型后再下压制成胚体,将所得的胚体在马弗炉中排胶,然后烧结,然后随炉冷却至室温得到介电陶瓷。
2.根据权利要求1所述的一种介电陶瓷的制备方法,其特征在于:在步骤(1)中,所述BaCO3、ZrO2和TiO2的质量纯度均大于99.0%;所述BaCO3、ZrO2和TiO2的摩尔比为1:0.1:0.9。
3.根据权利要求1所述的一种介电陶瓷的制备方法,其特征在于:在步骤(1)中,所述球磨转速为200~300r/min,球磨时间为0.5~3h,所述球磨介质为无水乙醇。
4.根据权利要求1所述的一种介电陶瓷的制备方法,其特征在于:在步骤(1)中,所述干燥为于90~110℃干燥8~12h;所述煅烧为于1000~1200℃条件下煅烧2~4h。
5.根据权利要求1所述的一种介电陶瓷的制备方法,其特征在于:在步骤(2)中,所述CuO、ZnO、Pr2O3和Er2O3的质量纯度均大于99.0%;所述CuO的添加量为0.2~0.4wt%;ZnO的添加量为0.2~0.4wt%,Pr2O3添加量为0.5~1.5wt%;Er2O3的添加量为0.5~1.5wt%。
6.根据权利要求1所述的一种介电陶瓷的制备方法,其特征在于:在步骤(2)中,所述球磨转速为150~250r/min,球磨时间为2~4h,球磨介质为无水乙醇。
7.根据权利要求1所述的一种介电陶瓷的制备方法,其特征在于:在步骤(2)中,所述干燥为于90~110℃干燥8~12h,所述压制胚体的压力为10MPa~15MPa。
8.根据权利要求1所述的一种介电陶瓷的制备方法,其特征在于:在步骤(2)中,所述排胶过程为在200~300℃排胶1~2h,在500℃~600℃排胶1~2h,所述焙烧为于1300~1400℃下烧结3~6h;所述排胶过程的升温速率为2~5℃/min,烧结过程的升温速率为5~10℃/min。
9.根据权利要求1-8任一项所述的一种介电陶瓷的制备方法制备的介电陶瓷。
10.根据权利要求9所述的介电陶瓷,其特征在于:所述介电陶瓷的室温介电常数为8531~8963;介电损耗0.002~0.009。
CN202210425278.8A 2022-04-22 2022-04-22 一种介电陶瓷的制备方法及其产品 Active CN114685163B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210425278.8A CN114685163B (zh) 2022-04-22 2022-04-22 一种介电陶瓷的制备方法及其产品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210425278.8A CN114685163B (zh) 2022-04-22 2022-04-22 一种介电陶瓷的制备方法及其产品

Publications (2)

Publication Number Publication Date
CN114685163A true CN114685163A (zh) 2022-07-01
CN114685163B CN114685163B (zh) 2023-11-10

Family

ID=82145620

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210425278.8A Active CN114685163B (zh) 2022-04-22 2022-04-22 一种介电陶瓷的制备方法及其产品

Country Status (1)

Country Link
CN (1) CN114685163B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002226263A (ja) * 2001-01-30 2002-08-14 Kyocera Corp 誘電体磁器および積層セラミックコンデンサ
CN101580389A (zh) * 2009-06-10 2009-11-18 广东风华高新科技股份有限公司 一种低频高介电抗还原瓷料及其制备方法
CN102656127A (zh) * 2009-10-16 2012-09-05 日本化学工业株式会社 电介质陶瓷形成用组合物以及电介质陶瓷材料
CN105174942A (zh) * 2015-09-15 2015-12-23 奈申(上海)智能科技有限公司 提高钛酸钡基电卡陶瓷制冷器件性能的方法
CN105272218A (zh) * 2015-10-30 2016-01-27 天津大学 一种中温烧结高介电常数陶瓷电容器用介质材料
CN106518067A (zh) * 2016-10-27 2017-03-22 盐城工学院 一种陶瓷组合物、陶瓷及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002226263A (ja) * 2001-01-30 2002-08-14 Kyocera Corp 誘電体磁器および積層セラミックコンデンサ
CN101580389A (zh) * 2009-06-10 2009-11-18 广东风华高新科技股份有限公司 一种低频高介电抗还原瓷料及其制备方法
CN102656127A (zh) * 2009-10-16 2012-09-05 日本化学工业株式会社 电介质陶瓷形成用组合物以及电介质陶瓷材料
CN105174942A (zh) * 2015-09-15 2015-12-23 奈申(上海)智能科技有限公司 提高钛酸钡基电卡陶瓷制冷器件性能的方法
CN105272218A (zh) * 2015-10-30 2016-01-27 天津大学 一种中温烧结高介电常数陶瓷电容器用介质材料
CN106518067A (zh) * 2016-10-27 2017-03-22 盐城工学院 一种陶瓷组合物、陶瓷及其制备方法和应用

Also Published As

Publication number Publication date
CN114685163B (zh) 2023-11-10

Similar Documents

Publication Publication Date Title
CN101462875A (zh) 一种钛酸铋钠基无铅压电陶瓷及其制备工艺
CN101423391B (zh) 一种铌酸钾钠基无铅压电陶瓷及其制备方法
CN107721411B (zh) 一种大电致应变的无铅bnt-bt基体系陶瓷
KR20090087818A (ko) 유전체 분말의 제조 방법
CN105272233A (zh) 一种陶瓷电容器用介质材料及其制备方法
CN112279632B (zh) 一种微波介电陶瓷及其制备方法
CN108640676B (zh) 固相反应法制备焦绿石结构Bi2Ti2O7陶瓷的方法
CN111004030B (zh) 一种MgTiO3基微波介质陶瓷及其制备方法
CN105461311A (zh) Sol-gel法制备NaNbO3粉体及烧结获得单晶的方法
CN109704762A (zh) 一种铌酸锶基类反铁电陶瓷及其制备方法和应用
CN114702303A (zh) 一种微波介质材料Ca3B2O6及其制备方法
CN114031396A (zh) 一种有效降低反铁电陶瓷材料烧结温度的制备方法
CN112876229B (zh) 一种微波陶瓷及其制备方法
CN112645709A (zh) 一种pzt基压电陶瓷及其制备方法
CN114685163A (zh) 一种介电陶瓷的制备方法及其产品
CN111807838A (zh) 一种Na0.25K0.25Bi2.5Nb2O9陶瓷的制备方法及其产品
CN102070333A (zh) 一种制备钛酸铜钙陶瓷的方法
CN109456058B (zh) 一种锆钛酸钡和铌锌酸钡的复合电容器瓷料及其制备方法
CN115304367B (zh) 一种微波介电陶瓷的制备方法和产品
CN102531572A (zh) 一种温度补偿高频微波电容器介质材料
CN102531573A (zh) 一种掺杂改性过的温度补偿高频微波电容器介质材料
CN103172365B (zh) 一种微波介质陶瓷材料的制备方法
US5139689A (en) Method for preparing plzt transparent ceramic
CN112062559B (zh) 一种反铁电陶瓷材料及其低温烧结方法
US6592805B1 (en) Method for producing sintered electroceramic materials from hydroxide and oxalate precursors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240808

Address after: 210000 No. 96, Shidai Avenue, Liuhe Economic Development Zone, Nanjing, Jiangsu

Patentee after: Nanjing Chaojing photoelectric New Material Technology Research Institute Co.,Ltd.

Country or region after: China

Address before: 621000 floor 12, unit 1, building 1, Zhongda Fortune Plaza, No. 99, middle section of Linyuan Road, Fucheng District, Mianyang City, Sichuan Province

Patentee before: Li Jinfeng

Country or region before: China

TR01 Transfer of patent right