CN114671680B - 一种钪酸铋-钛酸钡基核壳结构铁电薄膜及其制备方法 - Google Patents

一种钪酸铋-钛酸钡基核壳结构铁电薄膜及其制备方法 Download PDF

Info

Publication number
CN114671680B
CN114671680B CN202210302399.3A CN202210302399A CN114671680B CN 114671680 B CN114671680 B CN 114671680B CN 202210302399 A CN202210302399 A CN 202210302399A CN 114671680 B CN114671680 B CN 114671680B
Authority
CN
China
Prior art keywords
bismuth
precursor
film
acetate
barium titanate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210302399.3A
Other languages
English (en)
Other versions
CN114671680A (zh
Inventor
李欣芮
强雪蕊
刘来君
罗宇舟
彭彪林
陈雪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Kabaka Electronic Technology Co ltd
Original Assignee
Nanjing Kabaka Electronic Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Kabaka Electronic Technology Co ltd filed Critical Nanjing Kabaka Electronic Technology Co ltd
Priority to CN202210302399.3A priority Critical patent/CN114671680B/zh
Publication of CN114671680A publication Critical patent/CN114671680A/zh
Application granted granted Critical
Publication of CN114671680B publication Critical patent/CN114671680B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62218Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic films, e.g. by using temporary supports
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate

Abstract

本发明提供一种钪酸铋‑钛酸钡基核壳结构铁电薄膜及其制备方法,属于电子材料与元器件领域。本发明采用溶胶‑凝胶制备工艺,将(1‑x)BaTiO3‑xBiScO3前驱体溶液旋涂在衬底材料上面,得到湿膜;制得的湿膜经干燥、热解、退火制得一层未完全晶化的(1‑x)BaTiO3‑xBiScO3薄膜;将等体积的BiReO3前驱体溶液旋涂在该未晶化的薄膜上面,干燥、热解、退火得(1‑x‑y)BaTiO3‑xBiScO3‑yBiReO3铁电薄膜;本发明可以通过掺杂和控制旋涂时间、旋涂速度、退火时间、退火温度,可以获得展宽的介电峰的同时还保持相对较高的介电常数。

Description

一种钪酸铋-钛酸钡基核壳结构铁电薄膜及其制备方法
技术领域
本发明涉及电子材料与器件领域,具体涉及一种钪酸铋-钛酸钡基核壳结构铁电薄膜及其制备方法。
背景技术
具有铁电性且厚度在数十纳米至数微米的薄膜材料,称为铁电薄膜。近年来,铁电薄膜被广泛应用于数字存储领域,这种存贮器的优点是其不易失性,即断电后所存储的数据不会丢失,以及低功率损耗,强的抗幅射能力,坚固,高速等。目前,主要以钙钛矿铁电体研究为主,如PbTiO3和PZT体系,但高度活动Pb的扩散难以控制在一定范围内,从而在这些膜中引起严重的疲劳问题。近来研究重心转移到非Pb基钙钛矿铁电体如BaTiO3和BST等。事实上,很多铁电材料如BaTiO3等能满足不易失性存储器低操作电压(3~5V)和转换极化的需求。BaTiO3-BiScO3体系具有弱耦合弛豫特性,近似线性的极化响应,以及在-10℃~150℃具有十分优异的温度稳定性,室温介电常数1500左右等,因而用途广泛。在居里温度下,BaTiO3-BiScO3体系相对介电常数较高,但是与温度稳定性的依赖较强,通过掺杂改性的方法可以获得展宽的介电峰,同时还保持相对较高的介电常数,更符合工业规范的要求。
薄膜制备技术是现代材料科学与工程技术中制备新型和高性能材料的一种重要技术,也是铁电薄膜基础研究的一项重要内容。如何制备性能良好的优质铁电薄膜,满足集成铁电器件的要求,成为制约铁电薄膜应用的关键环节。目前,制备铁电体薄膜的方法有:溶胶-凝胶法(sol-gel)、金属有机物分解法(MOD)、射频磁控溅射(RF-magnetronsputtering)、金属有机化学气相沉积(MOCVD)和脉冲激光沉积(PLD)等。由于溶胶-凝胶法具有组分计量比可精确控制,易于掺杂,退火温度较低,设备简单,操作方便,不需要真空条件,适用于不同形状的材料,特别是大面积成膜等诸多优点,是一种很有发展潜力的制备高质量铁电薄膜的工艺方法。目前还没有采用溶胶-凝胶法制备钪酸铋-钛酸钡基核壳结构铁电薄膜的相关报道。
发明内容
本发明的目的在于:针对上述存在的问题,提供一种钪酸铋-钛酸钡基核壳结构铁电薄膜及其制备方法,本发明通过对BaTiO3-BiScO3体系掺杂改性,并通过溶胶-凝胶法成功制备铁电薄膜,可以获得展宽的介电峰的同时还保持相对较高的介电常数。
为了实现上述目的,本发明采用的技术方案如下:
一种钪酸铋-钛酸钡基核壳结构铁电薄膜,其特征在于,所述铁电薄膜的化学组成的化学通式为(1-x-y)BaTiO3-xBiScO3-yBiReO3,其中0.03≤x≤0.1,0.005≤y≤0.03,Re为In、Y、Al、Ga、V、Fe、Ni、Mn、(Zn1/2Ti1/2)中的一种或两种组合。
本发明还提供上述钪酸铋-钛酸钡基核壳结构铁电薄膜的制备方法,所述制备方法包括以下步骤:
(1)制备化学通式为(1-x)BaTiO3-xBiScO3的前驱体A溶胶液和化学通式为BiReO3的前驱体B溶胶液;Re为In、Y、Al、Ga、V、Fe、Ni、Mn、(Zn1/2Ti1/2)中的一种或两种组合;前驱体B溶胶液中金属阳离子的浓度是前驱体A溶胶液中金属阳离子浓度的0.5%-3%;
(2)取一定量步骤(1)所得前驱体A溶胶液,旋涂于衬底上,得到湿膜;
(3)将步骤(2)所得湿膜干燥、热解、退火制得一层未完全晶化的(1-x)BaTiO3-xBiScO3薄膜;
(4)将与步骤(2)前驱体A溶胶液等体积的前驱体B溶胶液旋涂在步骤(3)未完全晶化的薄膜上面,得到湿膜;
(5)将步骤(4)所得湿膜干燥、热解、退火制得完全晶化的(1-x-y)BaTiO3-xBiScO3-yBiReO3铁电薄膜,其中0.03≤x≤0.1,0.005≤y≤0.03。
(6)重复多次步骤(2)-(5)制得厚度为300纳米~3微米的铁电薄膜;即获得钪酸铋-钛酸钡基核壳结构铁电薄膜。
本发明中,进一步地,步骤(1)中,前驱体A溶胶液的制备方法为,按摩尔比为(1-x):x:x:(1-x)准备钡源、铋源、钪源和钛酸丁酯,将钡源C4H6BaO4或Ba(NO3)2,铋源硝酸铋或者醋酸铋,钪源硝酸钪或者钪,溶解在80-105℃、冰醋酸和去离子水体积比为1:1的混合液体中,得混合液Ⅰ;然后室温下将钛酸丁酯溶解在冰醋酸和CH3COCH2COCH3体积比为1:1的混合液体中,得混合液II;将混合液Ⅰ和混合液II按体积比为1:1混合,并于70-90℃搅拌均匀,然后放置20-30h,得到浓度为0.1-0.4M的BaTiO3-xBiScO3前驱体A溶胶液。
本发明中,进一步地,步骤(1)中,前驱体B溶胶液的制备方法为,按摩尔比为1:1准备铋源、Re源,将铋源硝酸铋或者醋酸铋溶解在80-105℃、冰醋酸和去离子水体积比为1:1的混合液体中,得到混合液Ⅲ;然后室温下将Re源溶解在冰醋酸和CH3COCH2COCH3体积比为1:1的混合液体中,得到混合液Ⅳ;将混合液Ⅲ和混合液Ⅳ按体积比为1:1混合,并于70-90℃搅拌均匀,然后放置20-30h,得到BiReO3前驱体B溶胶液,前驱体B溶胶液中金属阳离子的浓度是前驱体A溶胶液中金属阳离子浓度的0.5%-3%,Re源为醋酸铝、醋酸铟、醋酸钇、醋酸铝、醋酸镓、醋酸钒、醋酸铁、醋酸镍、醋酸锰、钛酸丁酯或醋酸锌中的一种或两种。
本发明中,进一步地,步骤(2)和步骤(4)所述旋涂均包括第一次旋涂和第二次旋涂,第一次旋涂转速为400-600rpm,旋涂时间为8-15s,第二次旋涂转速为2000-4000rpm,旋涂时间为15-25s。
本发明中,进一步地,步骤(3)所述的干燥温度为380-480℃,干燥时间6-10min;热解温度为450-650℃,热解时间为6-10min;退火温度为700-1000℃,于空气氛围中退火2-7min,得到未完全晶化的(1-x)BaTiO3-xBiScO3薄膜。
本发明中,进一步地,步骤(5)所述的干燥温度为350-450℃干燥时间为6-10min;热解温度为480-660℃,热解时间为5-8min;退火温度为750-900℃,于空气氛围中退火5-9min,最终获得(1-x-y)BaTiO3-xBiScO3-yBiReO3铁电薄膜,其中0.03≤x≤0.1,0.005≤y≤0.03。
本发明中,进一步地,所述衬底为Pt(111)/TiO2/SiO2/Si(100)衬底上或者ITO衬底。
由于采用上述技术方案,本发明的有益效果为:
本申请通过掺杂改性来改善薄膜的高温介电性能,采用溶胶-凝胶法,通过控制旋涂时间、旋涂速度、退火时间、退火温度成功合成了在较宽泛的温度范围内,能保持较高介电常数的钪酸铋-钛酸钡基核壳结构薄膜。
附图说明
图1为本发明制备得到的材料的XRD图。
图2为本发明制备得到的材料的SEM图。
图3为实施例1-11制备得到的材料介电温谱图对比图,其中a-k分别对应实施例1-11。
具体实施方式
下面结合具体实施例,对本发明作进一步详细的阐述,但本发明的实施方式并不局限于实施例表示的范围。这些实施例仅用于说明本发明,而非用于限制本发明的范围。此外,在阅读本发明的内容后,本领域的技术人员可以对本发明作各种修改,这些等价变化同样落于本发明所附权利要求书所限定的范围。
实施例1
一种用于形成铁电薄膜的组合物,是指钪酸铋-钛酸钡基组合物,该组合物的通式为0.965BaTiO3-0.03BiScO3-0.005BiInO3
上述钪酸铋-钛酸钡基核壳结构铁电薄膜的制备方法,包括以下步骤:
(1)制备化学通式为0.97BaTiO3-0.03BiScO3的前驱体A溶胶液,按摩尔比为0.97:0.03:0.03:0.97准备C4H6BaO4、硝酸铋、硝酸钪和钛酸丁酯,将C4H6BaO4、硝酸铋、硝酸钪溶解在80-105℃、冰醋酸和去离子水体积比为1:1的混合液体中,得混合液Ⅰ;然后室温下将钛酸丁酯溶解在冰醋酸和CH3COCH2COCH3体积比为1:1的混合液体中,得混合液II;将混合液Ⅰ和混合液II按体积比为1:1混合,并于70℃搅拌均匀,然后放置20h,得到浓度为0.1mol/L的0.97BaTiO3-xBiScO3前驱体A溶胶液。
制备化学通式为BiInO3的前驱体B溶胶液;取摩尔比为1:1的硝酸铋和醋酸铟,将硝酸铋溶解在80℃、冰醋酸和去离子水体积比为1:1的混合液体中,得到混合液Ⅲ;然后室温下将醋酸铟溶解在冰醋酸和CH3COCH2COCH3体积比为1:1的20ml混合液体中,得到混合液Ⅳ;将混合液Ⅲ和混合液Ⅳ按体积比为1:1混合,并于70℃搅拌均匀,然后放置20h,得到BiInO3前驱体B溶胶液,前驱体B溶胶液中金属阳离子的浓度是前驱体A溶胶液中金属阳离子浓度的0.5%。
(2)取一定量步骤(1)所得前驱体A溶胶液,使用匀胶机以400rpm的转速第一次旋涂15s,且以2000rpm的转速第二次旋涂25s在Si(100)衬底上,得到湿膜;
(3)将步骤(2)所得湿膜首先在380℃下干燥10min;再在450℃温度下热解10min;最后在700℃于空气氛围中退火7min,制得一层未完全晶化的(1-x)BaTiO3-xBiScO3薄膜;
(4)将与步骤(2)前驱体A溶胶液等体积的前驱体B溶胶液旋涂在步骤(3)未完全晶化的薄膜上面,得到湿膜;
(5)将步骤(4)所得湿膜,首先在350℃下干燥10min;再在480℃温度下热解8min;最后在750℃于空气氛围中退火9min,制得完全晶化的0.965BaTiO3-0.03BiScO3-0.005BiInO3铁电薄膜。
(6)重复多次步骤(2)-(5),通过调节旋涂时间、旋涂速度、退火温度和退火时间,控制元素的扩散程度,获得介电常数大、压电常数大、温度稳定性好、厚度为300纳米的铁电薄膜。
实施例2
一种用于形成铁电薄膜的组合物,是指钪酸铋-钛酸钡基组合物,该组合物的通式为0.96BaTiO3-0.03BiScO3-0.01BiYO3
上述钪酸铋-钛酸钡基核壳结构铁电薄膜的制备方法,包括以下步骤:
(1)制备化学通式为0.97BaTiO3-0.03BiScO3的前驱体A溶胶液,按摩尔比为0.97:0.03:0.03:0.97取Ba(NO3)2、醋酸铋、硝酸钪和钛酸丁酯,将Ba(NO3)2、醋酸铋、硝酸钪溶解在90℃、冰醋酸和去离子水体积比为1:1的混合液体中,得混合液Ⅰ;然后室温下将钛酸丁酯溶解在冰醋酸和CH3COCH2COCH3体积比为1:1的混合液体中,得混合液II;将混合液Ⅰ和混合液II按体积比为1:1混合,并于75℃搅拌均匀,然后放置22h,得到浓度为0.2M的0.97BaTiO3-0.03BiScO3前驱体A溶胶液。
制备化学通式为BiYO3的前驱体B溶胶液;取摩尔比为1:1的醋酸铋和醋酸钇,将醋酸铋溶解在80-105℃、冰醋酸和去离子水体积比为1:1的混合液体中,得到混合液Ⅲ;然后室温下将醋酸钇溶解在冰醋酸和CH3COCH2COCH3体积比为1:1的混合液体中,得到混合液Ⅳ;将混合液Ⅲ和混合液Ⅳ按体积比为1:1混合,并于75℃搅拌均匀,然后放置22h,得到BiYO3前驱体B溶胶液,前驱体B溶胶液中金属阳离子的浓度是前驱体B溶胶液中金属阳离子浓度的1%。
(2)取一定量步骤(1)所得前驱体A溶胶液,使用匀胶机以500rpm的转速第一次旋涂12s,且以3000rpm的转速第二次旋涂20s在Si(100)衬底上,得到湿膜;
(3)将步骤(2)所得湿膜首先在400℃下干燥9min;再在500℃温度下热解8min;最后在850℃于空气氛围中退火5min,制得一层未完全晶化的0.97BaTiO3-0.03BiScO3薄膜;
(4)将与步骤(2)前驱体A溶胶液等体积的前驱体B溶胶液旋涂在步骤(3)未完全晶化的薄膜上面,得到湿膜;
(5)将步骤(4)所得湿膜,首先在400℃下干燥8min;再在550℃温度下热解6min;最后在820℃于空气氛围中退火7min,制得完全晶化的0.96BaTiO3-0.03BiScO3-0.01BiYO3铁电薄膜。
(6)重复多次步骤(2)-(5),通过调节旋涂时间、旋涂速度、退火温度和退火时间,控制元素的扩散程度,获得介电常数大、压电常数大、温度稳定性好、厚度为500纳米的铁电薄膜。
实施例3
一种用于形成铁电薄膜的组合物,是指钪酸铋-钛酸钡基组合物,该组合物的通式为0.95BaTiO3-0.03BiScO3-0.02BiAlO3
上述钪酸铋-钛酸钡基核壳结构铁电薄膜的制备方法,包括以下步骤:
(1)制备化学通式为0.97BaTiO3-0.03BiScO3的前驱体A溶胶液,按摩尔比为0.97:0.03:0.03:0.97取钡源C4H6BaO4、硝酸铋、硝酸钪和钛酸丁酯,将C4H6BaO4、硝酸铋溶解在105℃、冰醋酸和去离子水体积比为1:1的混合液体中,得混合液Ⅰ;然后室温下将钛酸丁酯溶解在冰醋酸和CH3COCH2COCH3体积比为1:1的混合液体中,得混合液II;将混合液Ⅰ和混合液II按体积比为1:1混合,并于90℃搅拌均匀,然后放置30h,得到浓度为0.4M的0.97BaTiO3-0.03BiScO3前驱体A溶胶液。
制备化学通式为BiReO3的前驱体B溶胶液;按摩尔比为1:1取硝酸铋和醋酸铝,将铋源硝酸铋溶解在80-105℃、冰醋酸和去离子水体积比为1:1的混合液体中,得到混合液Ⅲ;然后室温下将醋酸铝溶解在冰醋酸和CH3COCH2COCH3体积比为1:1的混合液体中,得到混合液Ⅳ;将混合液Ⅲ和混合液Ⅳ按体积比为1:1混合,并于90℃搅拌均匀,然后放置30h,得到BiReO3前驱体B溶胶液,前驱体B溶胶液中金属阳离子的浓度是前驱体A溶胶液中金属阳离子浓度的2%。
(2)取一定量步骤(1)所得前驱体A溶胶液,使用匀胶机以600rpm的转速第一次旋涂8s,且以4000rpm的转速第二次旋涂15s在Si(100)衬底上,得到湿膜;
(3)将步骤(2)所得湿膜首先在480℃下干燥6min;再在650℃温度下热解6min;最后在1000℃于空气氛围中退火2min,制得一层未完全晶化的0.97BaTiO3-0.03BiScO3薄膜;
(4)将与步骤(2)前驱体A溶胶液等体积的前驱体B溶胶液旋涂在步骤(3)未完全晶化的薄膜上面,得到湿膜;
(5)将步骤(4)所得湿膜,首先在450℃下干燥6min;再在660℃温度下热解5min;最后在900℃于空气氛围中退火5min,制得完全晶化的0.95BaTiO3-0.03BiScO3-0.02BiInO3
(6)重复多次步骤(2)-(5),通过调节旋涂时间、旋涂速度、退火温度和退火时间,控制元素的扩散程度,获得介电常数大、压电常数大、温度稳定性好、厚度为800纳米的铁电薄膜。
实施例4
一种用于形成铁电薄膜的组合物,是指钪酸铋-钛酸钡基组合物,该组合物的通式为0.94BaTiO3-0.03BiScO3-0.03BiGaO3。采用与实施例2等同的方法制备,Ga源采用醋酸镓,前驱体B溶胶液中金属阳离子的浓度是前驱体A溶胶液中金属阳离子浓度的3%,步骤(5)中的退火温度为800℃,退火时间为8min。
实施例5
一种用于形成铁电薄膜的组合物,是指钪酸铋-钛酸钡基组合物,该组合物的通式为0.94BaTiO3-0.05BiScO3-0.01BiVO3。采用与实施例2等同的方法制备,步骤(1)中按摩尔比为0.95:0.05:0.05取Ba(NO3)2、醋酸铋、硝酸钪,V源采用醋酸钒。
实施例6
一种用于形成铁电薄膜的组合物,是指钪酸铋-钛酸钡基组合物,该组合物的通式为0.93BaTiO3-0.05BiScO3-0.02BiFeO3。采用与实施例3等同的方法制备,步骤(1)中按摩尔比为0.95:0.05:0.05取钡源C4H6BaO4、硝酸铋、硝酸钪,Fe源采用醋酸铁。
实施例7
一种用于形成铁电薄膜的组合物,是指钪酸铋-钛酸钡基组合物,该组合物的通式为0.92BaTiO3-0.05BiScO3-0.03BiNiO3。采用与实施例2等同的方法制备,步骤(1)中按摩尔比为0.95:0.05:0.05取钡源C4H6BaO4、硝酸铋、硝酸钪,Ni源采用醋酸镍,前驱体B溶胶液中金属阳离子的浓度是前驱体A溶胶液中金属阳离子浓度的3%。
实施例8
一种用于形成铁电薄膜的组合物,是指钪酸铋-钛酸钡基组合物,该组合物的通式为0.88BaTiO3-0.1BiScO3-0.02BiMnO3。采用与实施例3等同的方法制备,步骤(1)中按摩尔比为0.90:0.1:0.1取钡源C4H6BaO4、硝酸铋、硝酸钪,Mn源采用醋酸锰。
实施例9
一种用于形成铁电薄膜的组合物,是指钪酸铋-钛酸钡基组合物,该组合物的通式为0.87BaTiO3-0.1BiScO3-0.03Bi(Zn1/2Ti1/2)O3。采用与实施例2等同的方法制备,步骤(1)中按摩尔比为0.90:0.1:0.1取钡源C4H6BaO4、硝酸铋、硝酸钪,Zn源采用醋酸镍,Ti源采用钛酸丁酯,前驱体B溶胶液中金属阳离子的浓度是前驱体A溶胶液中金属阳离子浓度的1.5%。
实施例10
一种用于形成铁电薄膜的组合物,是指钪酸铋-钛酸钡基组合物,该组合物的通式为0.97BaTiO3-0.03BiScO3
上述钪酸铋-钛酸钡基核壳结构铁电薄膜的制备方法,包括以下步骤:
(1)制备化学通式为0.97BaTiO3-0.03BiScO3的前驱体A溶胶液,按摩尔比为0.97:0.03:0.03:0.97取Ba(NO3)2、醋酸铋、硝酸钪和钛酸丁酯,将Ba(NO3)2、醋酸铋、硝酸钪溶解在90℃、冰醋酸和去离子水体积比为1:1的混合液体中,得混合液Ⅰ;然后室温下将钛酸丁酯溶解在冰醋酸和CH3COCH2COCH3体积比为1:1的混合液体中,得混合液II;将混合液Ⅰ和混合液II按体积比为1:1混合,并于75℃搅拌均匀,然后放置22h,得到浓度为0.2M的0.97BaTiO3-0.03BiScO3前驱体A溶胶液。
(2)取一定量步骤(1)所得前驱体A溶胶液,使用匀胶机以500rpm的转速第一次旋涂12s,且以3000rpm的转速第二次旋涂20s在Si(100)衬底上,得到湿膜;
(3)将步骤(2)所得湿膜首先在400℃下干燥8min;再在550℃温度下热解6min;最后在820℃于空气氛围中退火7min,制得一层完全晶化的0.97BaTiO3-0.03BiScO3薄膜;
(6)重复多次步骤(2)-(3),得到厚度为500纳米的0.97BaTiO3-0.03BiScO3铁电薄膜。
实施例11
一种用于形成铁电薄膜的组合物,是指钪酸铋-钛酸钡基组合物,该组合物的通式为0.95BaTiO3-0.05BiScO3
上述钪酸铋-钛酸钡基核壳结构铁电薄膜的制备方法,包括以下步骤:
(1)制备化学通式为0.95BaTiO3-0.05BiScO3的前驱体A溶胶液,按摩尔比为0.95:0.05:0.05:0.95取Ba(NO3)2、醋酸铋、硝酸钪和钛酸丁酯,将Ba(NO3)2、醋酸铋、硝酸钪溶解在90℃、冰醋酸和去离子水体积比为1:1的混合液体中,得混合液Ⅰ;然后室温下将钛酸丁酯溶解在冰醋酸和CH3COCH2COCH3体积比为1:1的混合液体中,得混合液II;将混合液Ⅰ和混合液II按体积比为1:1混合,并于75℃搅拌均匀,然后放置22h,得到浓度为0.2M的0.95BaTiO3-0.05BiScO3前驱体A溶胶液。
(2)取一定量步骤(1)所得前驱体A溶胶液,使用匀胶机以500rpm的转速第一次旋涂12s,且以3000rpm的转速第二次旋涂20s在Si(100)衬底上,得到湿膜;
(3)将步骤(2)所得湿膜首先在400℃下干燥9min;再在500℃温度下热解8min;最后在850℃于空气氛围中退火5min,制得一层完全晶化的0.95BaTiO3-0.05BiScO3薄膜;
(6)重复多次步骤(2)-(3),得到厚度为500纳米的0.95BaTiO3-0.05BiScO3铁电薄膜。
二、产品测试
1、产品的确认
通过XRD发现实施例1-11制备的陶瓷材料均为纯的钙钛矿结构,成功获得了对应的产品,其中,实施例1的XRD图谱见图1,实施2-9的XRD图谱与实施例1一致。通过SEM发现所制得薄膜的大多数晶粒的电畴连成一片,许多电畴穿越晶界,形成片状畴。表面致密、平整,没有出现裂缝孔洞等缺陷。其中实施例1的SEM图见图2。
2、产品的性能
通过高温介电温谱测试系统,测试频率为40Hz~1MHz,升温速率为3℃/min。测试前测量样品的直径厚度。通过测试数据画出图谱,见图3所示,可以看出,介电温谱出现双峰,是由核壳结构引起的,在0-400℃这一较宽的温度范围内,本发明制备得到的铁电薄膜材料表现出较高的介电常数(>1500)以及较低的介电损耗,实施例10和11中并未添加进行BiScO3掺杂改性,与温度稳定性的依赖较强,且介电常数小于实施例1-10,证明掺杂改性可以改善薄膜的介电性能。

Claims (7)

1.一种钪酸铋-钛酸钡基核壳结构铁电薄膜,其特征在于,所述铁电薄膜的化学组成的化学通式为(1-x-y)BaTiO3xBiScO3yBiReO3,其中0.03≤x≤0.1,0.005≤y≤0.03,Re为In、Y、Al、Ga、V、Fe、Ni、Mn、(Zn1/2Ti1/2)中的一种或两种组合;所述钪酸铋-钛酸钡基核壳结构铁电薄膜的制备方法,包括以下步骤:
(1)制备化学通式为(1-x)BaTiO3-xBiScO3的前驱体A溶胶液和化学通式为BiReO3的前驱体B溶胶液;Re为In、Y、Al、Ga、V、Fe、Ni、Mn、(Zn1/2Ti1/2)中的一种或两种组合;前驱体B溶胶液中金属阳离子的浓度是前驱体A溶胶液中金属阳离子浓度的0.5%-3%;
(2)取一定量步骤(1)所得前驱体A溶胶液,旋涂于衬底上,得到湿膜;
(3)将步骤(2)所得湿膜干燥、热解、退火制得一层未完全晶化的(1-x)BaTiO3-xBiScO3薄膜;
(4)将与步骤(2)前驱体A溶胶液等体积的前驱体B溶胶液旋涂在步骤(3)未完全晶化的薄膜上面,得到湿膜;
(5)将步骤(4)所得湿膜干燥、热解、退火制得完全晶化的(1-x-y)BaTiO3xBiScO3-yBiReO3铁电薄膜,其中0.03≤x≤0.1,0.005≤y≤0.03;
(6)重复多次步骤(2)-(5)制得厚度为300纳米~3微米的铁电薄膜;即获得钪酸铋-钛酸钡基核壳结构铁电薄膜。
2.根据权利要求1所述的钪酸铋-钛酸钡基核壳结构铁电薄膜,其特征在于:步骤(1)中,前驱体A溶胶液的制备方法为,按摩尔比为(1-x):x:x:(1-x)准备钡源、铋源、钪源和钛酸丁酯,将钡源C4H6BaO4或Ba(NO3)2,铋源硝酸铋或者醋酸铋,钪源硝酸钪,溶解在80-105℃、冰醋酸和去离子水体积比为1:1的混合液体中,得混合液Ⅰ;然后室温下将钛酸丁酯溶解在冰醋酸和CH3COCH2COCH3体积比为1:1的混合液体中,得混合液Ⅱ;将混合液Ⅰ和混合液Ⅱ按体积比为1:1混合,并于70-90℃搅拌均匀,然后放置20-30 h,得到浓度为0.1-0.4 M的(1-x)BaTiO3-xBiScO3前驱体A溶胶液。
3.根据权利要求1所述的钪酸铋-钛酸钡基核壳结构铁电薄膜,其特征在于:步骤(1)中,前驱体B溶胶液的制备方法为,按摩尔比为1:1准备铋源、Re源,将铋源硝酸铋或者醋酸铋溶解在80-105℃、冰醋酸和去离子水体积比为1:1的混合液体中,得到混合液Ⅲ;然后室温下将Re源溶解在冰醋酸和CH3COCH2COCH3体积比为1:1的混合液体中,得到混合液Ⅳ;将混合液Ⅲ和混合液Ⅳ按体积比为1:1混合,并于70-90℃搅拌均匀,然后放置20-30 h,得到BiReO3前驱体B溶胶液,前驱体B溶胶液中金属阳离子的浓度是前驱体A溶胶液中金属阳离子浓度的0.5%-3%,Re源为钛酸丁酯+醋酸锌、醋酸铟、醋酸钇、醋酸铝、醋酸镓、醋酸钒、醋酸铁、醋酸镍、醋酸锰中的一种或两种。
4.根据权利要求1所述的钪酸铋-钛酸钡基核壳结构铁电薄膜,其特征在于:步骤(2)和步骤(4)所述旋涂均包括第一次旋涂和第二次旋涂,第一次旋涂转速为400-600 rpm,旋涂时间为8-15 s,第二次旋涂转速为2000-4000 rpm,旋涂时间为15-25 s。
5.根据权利要求1所述的钪酸铋-钛酸钡基核壳结构铁电薄膜,其特征在于:步骤(3)所述的干燥温度为380-480℃,干燥时间6-10 min;热解温度为450-650℃,热解时间为6-10min;退火温度为700-1000℃,于空气氛围中退火2-7 min,得到未完全晶化的(1-x)BaTiO3-xBiScO3薄膜。
6.根据权利要求1所述的钪酸铋-钛酸钡基核壳结构铁电薄膜,其特征在于:步骤(5)所述的干燥温度为350-450℃干燥时间为6-10 min;热解温度为480-660℃,热解时间为5-8min;退火温度为750-900℃,于空气氛围中退火5-9 min,最终获得(1-x-y)BaTiO3-xBiScO3-yBiReO3铁电薄膜,其中0.03≤x≤0.1,0.005≤y≤0.03。
7.根据权利要求1所述的钪酸铋-钛酸钡基核壳结构铁电薄膜,其特征在于:所述衬底为Pt(111)/TiO2/SiO2/Si(100)衬底或者ITO衬底。
CN202210302399.3A 2022-03-25 2022-03-25 一种钪酸铋-钛酸钡基核壳结构铁电薄膜及其制备方法 Active CN114671680B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210302399.3A CN114671680B (zh) 2022-03-25 2022-03-25 一种钪酸铋-钛酸钡基核壳结构铁电薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210302399.3A CN114671680B (zh) 2022-03-25 2022-03-25 一种钪酸铋-钛酸钡基核壳结构铁电薄膜及其制备方法

Publications (2)

Publication Number Publication Date
CN114671680A CN114671680A (zh) 2022-06-28
CN114671680B true CN114671680B (zh) 2023-04-25

Family

ID=82076704

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210302399.3A Active CN114671680B (zh) 2022-03-25 2022-03-25 一种钪酸铋-钛酸钡基核壳结构铁电薄膜及其制备方法

Country Status (1)

Country Link
CN (1) CN114671680B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114716157B (zh) * 2022-05-11 2023-10-31 南京卡巴卡电子科技有限公司 一种用于高温加速度传感器的铁电薄膜及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110634871A (zh) * 2019-10-15 2019-12-31 淮阴工学院 一种铁电薄膜的周期性条带畴结构及其表征方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014077176A2 (ja) * 2012-11-13 2014-05-22 関東電化工業株式会社 被覆チタン酸バリウム微粒子及びその製造方法
KR20140100218A (ko) * 2013-02-06 2014-08-14 삼성전기주식회사 유전체 조성물 및 이를 이용한 적층 세라믹 전자부품
CN103273704A (zh) * 2013-04-27 2013-09-04 湘潭大学 一种具有高储能密度的复合薄膜及其制备方法
JP6919237B2 (ja) * 2017-03-09 2021-08-18 Tdk株式会社 圧電組成物及び圧電素子
CN110015894B (zh) * 2019-05-06 2020-04-07 广州光鼎科技集团有限公司 一种高温下介电稳定的钛酸铋钠基陶瓷及其制备方法和应用
CN111302789B (zh) * 2020-03-17 2021-01-19 华南理工大学 一种具有三明治结构的脉冲储能介质材料及其制备方法与应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110634871A (zh) * 2019-10-15 2019-12-31 淮阴工学院 一种铁电薄膜的周期性条带畴结构及其表征方法

Also Published As

Publication number Publication date
CN114671680A (zh) 2022-06-28

Similar Documents

Publication Publication Date Title
JP3162717B2 (ja) 集積回路の製造方法
Chen et al. The effect of excess bismuth on the ferroelectric properties of SrBi2Ta2O9 thin films
Kang et al. Characteristics of (Pb1-xSrx) TiO3 thin film prepared by a chemical solution processing
JP2010239132A (ja) 圧電薄膜、圧電素子および圧電素子の製造方法
JPWO2002032809A1 (ja) 酸化物材料、酸化物薄膜の製造方法及び該材料を用いた素子
JP2013251490A (ja) 強誘電体結晶膜、電子部品、強誘電体結晶膜の製造方法及び強誘電体結晶膜の製造装置
CN114671680B (zh) 一种钪酸铋-钛酸钡基核壳结构铁电薄膜及其制备方法
KR100513724B1 (ko) 강유전성 박막 및 그 제조방법
Kumar et al. Effect of sol–gel synthesis method on the structural, electrical, and ferroelectric properties of lead-free K 0.5 Na 0.5 NbO 3 ceramic
Kim et al. The effects of PbTiO3 thin template layer and Pt/RuO2 hybrid electrode on the ferroelectric properties of sol-gel derived PZT thin film
CN101262040B (zh) 氧化物稀磁半导体/铁电体异质结构及其制备方法
EP2760029A1 (en) Dielectric thin film-forming composition and method of forming dielectric thin film using the same
JP2002047011A (ja) 緻密質ペロブスカイト型金属酸化物薄膜の形成方法及び緻密質ペロブスカイト型金属酸化物薄膜
Kim et al. Preparation of Pb (Zr0. 52Ti0. 48) O3 thin films on Pt/RuO2 double electrode by a new sol-gel route
JP2000332209A (ja) Bi系強誘電体素子の製造方法
Yang et al. Energy Storage Performance of PZT/PZ Composite Films Obtained by Sol–Gel Method
Calzada Sol–gel electroceramic thin films
JP4042276B2 (ja) Pb系ペロブスカイト型金属酸化物薄膜の形成方法
JPH0891841A (ja) 強誘電体膜の製造方法
JPH0585704A (ja) 強誘電体薄膜の製造方法
JP2003160313A (ja) 金属酸化物薄膜形成用組成物、金属酸化物の製造方法および金属酸化物薄膜
KR100362169B1 (ko) 비파괴독출형 전계효과트랜지스터 및 그 제조방법
CN114560693B (zh) 一种氟化锂改性的钛酸钡基介质薄膜及其制备方法
CN114716157B (zh) 一种用于高温加速度传感器的铁电薄膜及其制备方法
CN112062564B (zh) 一种pmn-psn超高击穿电场薄膜材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant