CN112062564B - 一种pmn-psn超高击穿电场薄膜材料的制备方法 - Google Patents

一种pmn-psn超高击穿电场薄膜材料的制备方法 Download PDF

Info

Publication number
CN112062564B
CN112062564B CN202010981820.9A CN202010981820A CN112062564B CN 112062564 B CN112062564 B CN 112062564B CN 202010981820 A CN202010981820 A CN 202010981820A CN 112062564 B CN112062564 B CN 112062564B
Authority
CN
China
Prior art keywords
psn
pmn
film
liquid
film material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010981820.9A
Other languages
English (en)
Other versions
CN112062564A (zh
Inventor
彭彪林
陆秋萍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Kabaka Electronic Technology Co ltd
Original Assignee
Guangxi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangxi University filed Critical Guangxi University
Priority to CN202010981820.9A priority Critical patent/CN112062564B/zh
Publication of CN112062564A publication Critical patent/CN112062564A/zh
Application granted granted Critical
Publication of CN112062564B publication Critical patent/CN112062564B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • C04B35/497Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates based on solid solutions with lead oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62218Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic films, e.g. by using temporary supports
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3296Lead oxides, plumbates or oxide forming salts thereof, e.g. silver plumbate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/606Drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • C04B2235/663Oxidative annealing

Abstract

本发明涉及一种PMN‑PSN超高击穿电场薄膜材料的制备方法,属于化学工程技术领域。一种PMN‑PSN超高击穿电场薄膜材料的制备方法,是将PMN‑PSN前驱体溶液旋涂于衬底上制得湿膜,干燥、热解,制得单层PMN‑PSN薄膜;重复以上,制得多层PMN‑PSN薄膜,将所得产品进行退火,即得所需薄膜材料。本发明的有益效果是:获得具有高的纯度、好的致密性、小的平均晶粒尺寸、超高的电场击穿强度等优点的薄膜;本发明制备方法相对简单,可以通过不同的晶化方式、不同的退火时长控制薄膜的结构和性能,是一种方便快捷的制备技术。

Description

一种PMN-PSN超高击穿电场薄膜材料的制备方法
技术领域
本发明涉及一种PMN-PSN超高击穿电场薄膜材料的制备方法,属于化学工程技术领域。
背景技术
随着时代的进步,电子科技、信息技术和控制技术得到了快速的发展,即不断朝着微型化、高集成化方向的发展,以及高科技领域对于快速制冷和高储能密度高效率的需求,基于铁电/反铁电薄膜/厚膜的研究越来越多。电卡制冷在过去很长一段时间里几乎没有进展,因为只能观察到较小的△T和△S,这是由于在块体陶瓷中低介电击穿强度的限制;传统的体相陶瓷材料因自身相材料微观结构和性能的影响,难以承受高的击穿电场,因而储能密度值比较低,基于以上的种种限制,紧迫需要寻找一种具有超高电场击穿强度的材料。
发明内容
本发明的目的是提供一种PMN-PSN超高击穿电场薄膜材料的制备方法。
本发明通过利用具有超高电场击穿强度的铁电体材料nPb(MgxNb(1-x))O3-(1-n)Pb(ScyNb(1-y))O3(PMN-PSN),通过溶胶凝胶法在Pt(111)衬底上面制备出有超高电场击穿强度的PMN-PSN薄膜材料具,通过不同的晶化方式、不同的退火时长控制薄膜的结构和性能。
本发明的目的通过如下技术方案实现:
一种PMN-PSN超高击穿电场薄膜材料的制备方法,所述方法包括以下步骤:
1)将PMN-PSN前驱体溶液旋涂于衬底上制得湿膜;
2)将步骤1)所得的湿膜按照如下任一步骤进行处理制备一层PMN-PSN薄膜,
2-1)、将湿膜干燥、热解、晶化制得一层PMN-PSN薄膜,
2-2)、将湿膜干燥、热解制得一层PMN-PSN薄膜;
3)按照如下任一步骤进行处理制备多层PMN-PSN薄膜,
3-1)、重复步骤1)和步骤2-1)制得多层PMN-PSN薄膜,
3-2)、重复步骤1)和步骤2-2)制得未完全晶化的PMN-PSN薄膜、晶化制得完全晶化的多层PMN-PSN薄膜;
4)将步骤3)所得的产品进行退火,即得所需薄膜材料。
优选的是,PMN-PSN通式为nPb(MgxNb(1-x))O3-(1-n)Pb(ScyNb(1-y))O3,其中0<n<1、0<X<1、0<Y<1。
优选的是,所述PMN-PSN前驱体溶液浓度为0.2-0.3M。
优选的是,步骤1)所述旋涂包括第一次旋涂和第二次旋涂,第一次旋涂转速为500-1000rpm,旋涂时间为10-30s;第二次旋涂转速为4000-6000rpm,旋涂时间为30-60s。
优选的是,步骤2-1)所述干燥温度为300-400℃,干燥时间为3-5min,热解温度为500-600℃,热解时间为3-5min,晶化温度为700-800℃,晶化时间为3-5min,晶化环境为空气氛围。
优选的是,步骤2-2)所述干燥温度为300-400℃,干燥时间为3-5min,热解温度为500-600℃,热解时间为3-5min。
优选的是,步骤3-1)和步骤3-2)重复次数为12次。
优选的是,步骤3-2)所述晶化温度为700-800℃,晶化时间为30-60min,晶化环境为空气氛围。
优选的是,步骤4)所述退火温度为600-700℃,退火时间为3-5h、8-10h、13-15h、18-20h和23-25h中的任一一个时间。
本发明的有益效果是:获得具有高的纯度、好的致密性、小的平均晶粒尺寸、超高的电场击穿强度等优点的薄膜;本发明制备方法相对简单,可以通过不同的晶化方式、不同的退火时长控制薄膜的结构和性能,是一种方便快捷的制备技术。
附图说明
图1为本发明实施例1(退火0h)、2(退火3-5h)、3(退火8-10h)、4(退火13-15h)、5(退火18-20h)、和6(退火23-25h)得到的PMN-PSN薄膜的P-E对比图谱;
图2为本发明实施例7(退火0h)、8(退火3-5h)、9(退火8-10h)、10(退火13-15h)、11(退火18-20h)、和12(退火23-25h)得到的PMN-PSN薄膜的拉曼对比图谱。
具体实施方式
下面结合具体实施例,对本发明作进一步详细的阐述,但本发明的实施方式并不局限于实施例表示的范围。这些实施例仅用于说明本发明,而非用于限制本发明的范围。此外,在阅读本发明的内容后,本领域的技术人员可以对本发明作各种修改,这些等价变化同样落于本发明所附权利要求书所限定的范围。
实施例1
(1)按照摩尔比(1.05×0.5):(1.05×0.25):0.25分别称取5%过量Pb的Pb(CH3COO)2·3H2O、5%过量Mg的Mg(OC2H5)2和C10H25O5Nb于100℃溶解在冰醋酸和去离子水组成的混合液体中形成第一液体,然后按照摩尔比(1.05×0.5):0.25:0.25分别称取5%过量Pb的Pb(CH3COO)2·3H2O、N3O9Sc·H2O和C10H25O5Nb于室温溶解在冰醋酸和CH3COCH2COCH3组成的混合液体中形成第二液体,最后将前面的第一液体和第二液体再次混合于100℃搅拌30min,并放置20h,得到浓度为0.2M的0.5Pb(Mg0.5Nb0.5)O3-0.5Pb(Sc0.5Nb0.5)O3前驱体溶液;
(2)将步骤(1)得到的PMN-PSN前驱体溶液使用匀胶机先以500rpm的转速旋涂10s,再以4000rpm的转速旋涂30s在Pt(111)衬底上面,得到湿膜;
(3)将步骤(2)制得的湿膜首先在300℃干燥3min,然后在500℃热解3min,最后在700℃于空气氛围中晶化3min,得到一层PMN-PSN薄膜;
(4)重复步骤(2)和步骤(3)12次,得到12层的PMN-PSN薄膜。
实施例2
(1)按照摩尔比(1.05×0.5):(1.05×0.25):0.25分别称取5%过量Pb的Pb(CH3COO)2·3H2O、5%过量Mg的Mg(OC2H5)2和C10H25O5Nb于100℃溶解在冰醋酸和去离子水组成的混合液体中形成第一液体,然后按照摩尔比(1.05×0.5):0.25:0.25分别称取5%过量Pb的Pb(CH3COO)2·3H2O、N3O9Sc·H2O和C10H25O5Nb于室温溶解在冰醋酸和CH3COCH2COCH3组成的混合液体中形成第二液体,最后将前面的第一液体和第二液体再次混合于100℃搅拌30min,并放置20h,得到浓度为0.2M的0.5Pb(Mg0.5Nb0.5)O3-0.5Pb(Sc0.5Nb0.5)O3前驱体溶液;
(2)将步骤(1)得到的PMN-PSN前驱体溶液使用匀胶机先以500rpm的转速旋涂10s,再以4000rpm的转速旋涂30s在Pt(111)衬底上面,得到湿膜;
(3)将步骤(2)制得的湿膜首先在300℃干燥3min,然后在500℃热解3min,最后在700℃于空气氛围中晶化3min,得到一层PMN-PSN薄膜;
(4)重复步骤(2)和步骤(3)12次,得到12层的PMN-PSN薄膜;
(5)将步骤(4)得到的12层PMN-PSN薄膜置于600℃的管式炉中退火3-5h,即得所需薄膜。
实施例3
(1)按照摩尔比(1.05×0.5):(1.05×0.25):0.25分别称取5%过量Pb的Pb(CH3COO)2·3H2O、5%过量Mg的Mg(OC2H5)2和C10H25O5Nb于110℃溶解在冰醋酸和去离子水组成的混合液体中形成第一液体,然后按照摩尔比(1.05×0.5):0.25:0.25分别称取5%过量Pb的Pb(CH3COO)2·3H2O、N3O9Sc·H2O和C10H25O5Nb于室温溶解在冰醋酸和CH3COCH2COCH3组成的混合液体中形成第二液体,最后将前面的第一液体和第二液体再次混合于120℃搅拌40min,并放置25h,得到浓度为0.25M的0.5Pb(Mg0.5Nb0.5)O3-0.5Pb(Sc0.5Nb0.5)O3前驱体溶液;
(2)将步骤(1)得到的PMN-PSN前驱体溶液使用匀胶机先以600rpm的转速旋涂20s,再以5000rpm的转速旋涂40s在Pt(111)衬底上面,得到湿膜;
(3)将步骤(2)制得的湿膜首先在350℃干燥4min,然后在550℃热解4min,最后在750℃于空气氛围中晶化4min,得到一层PMN-PSN薄膜;
(4)重复步骤(2)和步骤(3)12次,得到12层的PMN-PSN薄膜;
(5)将步骤(4)得到的12层PMN-PSN薄膜置于650℃的管式炉中退火8-10h,即得所需薄膜。
实施例4
(1)按照摩尔比(1.05×0.5):(1.05×0.25):0.25分别称取5%过量Pb的Pb(CH3COO)2·3H2O、5%过量Mg的Mg(OC2H5)2和C10H25O5Nb于120℃溶解在冰醋酸和去离子水组成的混合液体中形成第一液体,然后按照摩尔比(1.05×0.5):0.25:0.25分别称取5%过量Pb的Pb(CH3COO)2·3H2O、N3O9Sc·H2O和C10H25O5Nb于室温溶解在冰醋酸和CH3COCH2COCH3组成的混合液体中形成第二液体,最后将前面的第一液体和第二液体再次混合于150℃搅拌60min,并放置30h,得到浓度为0.3M的0.5Pb(Mg0.5Nb0.5)O3-0.5Pb(Sc0.5Nb0.5)O3前驱体溶液;
(2)将步骤(1)得到的PMN-PSN前驱体溶液使用匀胶机先以1000rpm的转速旋涂30s,再以6000rpm的转速旋涂60s在Pt(111)衬底上面,得到湿膜;
(3)将步骤(2)制得的湿膜首先在400℃干燥5min,然后在600℃热解5min,最后在800℃于空气氛围中晶化5min,得到一层PMN-PSN薄膜;
(4)重复步骤(2)和步骤(3)12次,得到12层的PMN-PSN薄膜;
(5)将步骤(4)得到的12层PMN-PSN薄膜置于700℃的管式炉中退火13-15h,即得所需薄膜。
实施例5
(1)按照摩尔比(1.05×0.5):(1.05×0.25):0.25分别称取5%过量Pb的Pb(CH3COO)2·3H2O、5%过量Mg的Mg(OC2H5)2和C10H25O5Nb于105℃溶解在冰醋酸和去离子水组成的混合液体中形成第一液体,然后按照摩尔比(1.05×0.5):0.25:0.25分别称取5%过量Pb的Pb(CH3COO)2·3H2O、N3O9Sc·H2O和C10H25O5Nb于室温溶解在冰醋酸和CH3COCH2COCH3组成的混合液体中形成第二液体,最后将前面的第一液体和第二液体再次混合于110℃搅拌50min,并放置22h,得到浓度为0.22M的0.5Pb(Mg0.5Nb0.5)O3-0.5Pb(Sc0.5Nb0.5)O3前驱体溶液;
(2)将步骤(1)得到的PMN-PSN前驱体溶液使用匀胶机先以700rpm的转速旋涂20s,再以4500rpm的转速旋涂50s在Pt(111)衬底上面,得到湿膜;
(3)将步骤(2)制得的湿膜首先在320℃干燥4min,然后在520℃热解4min,最后在720℃于空气氛围中晶化4min,得到一层PMN-PSN薄膜;
(4)重复步骤(2)和步骤(3)12次,得到12层的PMN-PSN薄膜;
(5)将步骤(4)得到的12层PMN-PSN薄膜置于620℃的管式炉中退火18-20h,即得所需薄膜。
实施例6
(1)按照摩尔比(1.05×0.5):(1.05×0.25):0.25分别称取5%过量Pb的Pb(CH3COO)2·3H2O、5%过量Mg的Mg(OC2H5)2和C10H25O5Nb于115℃溶解在冰醋酸和去离子水组成的混合液体中形成第一液体,然后按照摩尔比(1.05×0.5):0.25:0.25分别称取5%过量Pb的Pb(CH3COO)2·3H2O、N3O9Sc·H2O和C10H25O5Nb于室温溶解在冰醋酸和CH3COCH2COCH3组成的混合液体中形成第二液体,最后将前面的第一液体和第二液体再次混合于140℃搅拌55min,并放置28h,得到浓度为0.28M的0.5Pb(Mg0.5Nb0.5)O3-0.5Pb(Sc0.5Nb0.5)O3前驱体溶液;
(2)将步骤(1)得到的PMN-PSN前驱体溶液使用匀胶机先以800rpm的转速旋涂20s,再以5500rpm的转速旋涂50s在Pt(111)衬底上面,得到湿膜;
(3)将步骤(2)制得的湿膜首先在380℃干燥4min,然后在580℃热解4min,最后在780℃于空气氛围中晶化4min,得到一层PMN-PSN薄膜;
(4)重复步骤(2)和步骤(3)12次,得到12层的PMN-PSN薄膜;
(5)将步骤(4)得到的12层PMN-PSN薄膜置于680℃的管式炉中退火23-25h,即得所需薄膜。
实施例7
(1)按照摩尔比(1.05×0.2):(1.05×0.04):0.16分别称取5%过量Pb的Pb(CH3COO)2·3H2O、5%过量Mg(OC2H5)2和C10H25O5Nb于100℃溶解在冰醋酸和去离子水组成的混合液体中形成第一液体,然后按照摩尔比(1.05×0.8):0.24:0.56分别称取5%过量Pb的Pb(CH3COO)2·3H2O、N3O9Sc·H2O和C10H25O5Nb于室温溶解在冰醋酸和CH3COCH2COCH3组成的混合液体中形成第二液体,最后将第一液体和第二液体再次混合于100℃搅拌30min,并放置20h,得到浓度为0.2M的0.2Pb(Mg0.2Nb0.8)O3-0.8Pb(Sc0.3Nb0.7)O3前驱体溶液;
(2)将步骤(1)得到的PMN-PSN前驱体溶液使用匀胶机先以500rpm的转速旋涂30s,再以4000rpm的转速旋涂30s在Pt(111)衬底上面,得到湿膜;
(3)将步骤(2)制得的湿膜首先在300℃干燥3min,然后在500℃热解3min,得到一层PMN-PSN薄膜;
(4)重复步骤(2)和步骤(3)12次,得到12层未晶化的PMN-PSN薄膜;
(5)将步骤(4)得到的未晶化的PMN-PSN薄膜在700℃于空气氛围中晶化30min,得到完全晶化的PMN-PSN薄膜,即得薄膜。
实施例8
(1)按照摩尔比(1.05×0.2):(1.05×0.04):0.16分别称取5%过量Pb的Pb(CH3COO)2·3H2O、5%过量Mg(OC2H5)2和C10H25O5Nb于100℃溶解在冰醋酸和去离子水组成的混合液体中形成第一液体,然后按照摩尔比(1.05×0.8):0.24:0.56分别称取5%过量Pb的Pb(CH3COO)2·3H2O、N3O9Sc·H2O和C10H25O5Nb于室温溶解在冰醋酸和CH3COCH2COCH3组成的混合液体中形成第二液体,最后将第一液体和第二液体再次混合于100℃搅拌30min,并放置20h,得到浓度为0.2M的0.2Pb(Mg0.2Nb0.8)O3-0.8Pb(Sc0.3Nb0.7)O3前驱体溶液;
(2)将步骤(1)得到的PMN-PSN前驱体溶液使用匀胶机先以500rpm的转速旋涂30s,再以4000rpm的转速旋涂30s在Pt(111)衬底上面,得到湿膜;
(3)将步骤(2)制得的湿膜首先在300℃干燥3min,然后在500℃热解3min,得到一层PMN-PSN薄膜;
(4)重复步骤(2)和步骤(3)12次,得到12层未晶化的PMN-PSN薄膜;
(5)将步骤(4)得到的未晶化的PMN-PSN薄膜在700℃于空气氛围中晶化30min,得到完全晶化的PMN-PSN薄膜。
(6)将步骤(5)得到的完全晶化的PMN-PSN薄膜置于600℃的管式炉中退火3-5h,即得所需薄膜。
实施例9
(1)按照摩尔比(1.05×0.2):(1.05×0.04):0.16分别称取5%过量Pb的Pb(CH3COO)2·3H2O、5%过量Mg(OC2H5)2和C10H25O5Nb于110℃溶解在冰醋酸和去离子水组成的混合液体中形成第一液体,然后按照摩尔比(1.05×0.8):0.24:0.56分别称取5%过量Pb的Pb(CH3COO)2·3H2O、N3O9Sc·H2O和C10H25O5Nb于室温溶解在冰醋酸和CH3COCH2COCH3组成的混合液体中形成第二液体,最后将第一液体和第二液体再次混合于120℃搅拌40min,并放置25h,得到浓度为0.25M的0.2Pb(Mg0.2Nb0.8)O3-0.8Pb(Sc0.3Nb0.7)O3前驱体溶液;
(2)将步骤(1)得到的PMN-PSN前驱体溶液使用匀胶机先以600rpm的转速旋涂20s,再以5000rpm的转速旋涂40s在Pt(111)衬底上面,得到湿膜;
(3)将步骤(2)制得的湿膜首先在350℃干燥4min,然后在550℃热解4min,得到一层PMN-PSN薄膜;
(4)重复步骤(2)和步骤(3)12次,得到12层未晶化的PMN-PSN薄膜;
(5)将步骤(4)得到的未晶化的PMN-PSN薄膜在750℃于空气氛围中晶化40min,得到完全晶化的PMN-PSN薄膜。
(6)将步骤(5)得到的完全晶化的PMN-PSN薄膜置于650℃的管式炉中退火8-10h,即得所需薄膜。
实施例10
(1)按照摩尔比(1.05×0.2):(1.05×0.04):0.16分别称取5%过量Pb的Pb(CH3COO)2·3H2O、5%过量Mg(OC2H5)2和C10H25O5Nb于120℃溶解在冰醋酸和去离子水组成的混合液体中形成第一液体,然后按照摩尔比(1.05×0.8):0.24:0.56分别称取5%过量Pb的Pb(CH3COO)2·3H2O、N3O9Sc·H2O和C10H25O5Nb于室温溶解在冰醋酸和CH3COCH2COCH3组成的混合液体中形成第二液体,最后将第一液体和第二液体再次混合于150℃搅拌60min,并放置30h,得到浓度为0.3M的0.2Pb(Mg0.2Nb0.8)O3-0.8Pb(Sc0.3Nb0.7)O3前驱体溶液;
(2)将步骤(1)得到的PMN-PSN前驱体溶液使用匀胶机先以1000rpm的转速旋涂30s,再以6000rpm的转速旋涂60s在Pt(111)衬底上面,得到湿膜;
(3)将步骤(2)制得的湿膜首先在400℃干燥5min,然后在600℃热解5min,得到一层PMN-PSN薄膜;
(4)重复步骤(2)和步骤(3)12次,得到12层未晶化的PMN-PSN薄膜;
(5)将步骤(4)得到的未晶化的PMN-PSN薄膜在800℃于空气氛围中晶化60min,得到完全晶化的PMN-PSN薄膜。
(6)将步骤(5)得到的完全晶化的PMN-PSN薄膜置于700℃的管式炉中退火13-15h,即得所需薄膜。
实施例11
(1)按照摩尔比(1.05×0.2):(1.05×0.04):0.16分别称取5%过量Pb的Pb(CH3COO)2·3H2O、5%过量Mg(OC2H5)2和C10H25O5Nb于120℃溶解在冰醋酸和去离子水组成的混合液体中形成第一液体,然后按照摩尔比(1.05×0.8):0.24:0.56分别称取5%过量Pb的Pb(CH3COO)2·3H2O、N3O9Sc·H2O和C10H25O5Nb于室温溶解在冰醋酸和CH3COCH2COCH3组成的混合液体中形成第二液体,最后将第一液体和第二液体再次混合于110℃搅拌50min,并放置22h,得到浓度为0.22M的0.2Pb(Mg0.2Nb0.8)O3-0.8Pb(Sc0.3Nb0.7)O3前驱体溶液;
(2)将步骤(1)得到的PMN-PSN前驱体溶液使用匀胶机先以700rpm的转速旋涂20s,再以4500rpm的转速旋涂50s在Pt(111)衬底上面,得到湿膜;
(3)将步骤(2)制得的湿膜首先在320℃干燥4min,然后在520℃热解4min,得到一层PMN-PSN薄膜;
(4)重复步骤(2)和步骤(3)12次,得到12层未晶化的PMN-PSN薄膜;
(5)将步骤(4)得到的未晶化的PMN-PSN薄膜在720℃于空气氛围中晶化50min,得到完全晶化的PMN-PSN薄膜。
(6)将步骤(5)得到的完全晶化的PMN-PSN薄膜置于620℃的管式炉中退火18-20h,即得所需薄膜。
实施例12
(1)按照摩尔比(1.05×0.2):(1.05×0.04):0.16分别称取5%过量Pb的Pb(CH3COO)2·3H2O、5%过量Mg(OC2H5)2和C10H25O5Nb于115℃溶解在冰醋酸和去离子水组成的混合液体中形成第一液体,然后按照摩尔比(1.05×0.8):0.24:0.56分别称取5%过量Pb的Pb(CH3COO)2·3H2O、N3O9Sc·H2O和C10H25O5Nb于室温溶解在冰醋酸和CH3COCH2COCH3组成的混合液体中形成第二液体,最后将第一液体和第二液体再次混合于140℃搅拌55min,并放置28h,得到浓度为0.28M的0.2Pb(Mg0.2Nb0.8)O3-0.8Pb(Sc0.3Nb0.7)O3前驱体溶液;
(2)将步骤(1)得到的PMN-PSN前驱体溶液使用匀胶机先以800rpm的转速旋涂20s,再以5500rpm的转速旋涂50s在Pt(111)衬底上面,得到湿膜;
(3)将步骤(2)制得的湿膜首先在380℃干燥4min,然后在580℃热解4min,得到一层PMN-PSN薄膜;
(4)重复步骤(2)和步骤(3)12次,得到12层未晶化的PMN-PSN薄膜;
(5)将步骤(4)得到的未晶化的PMN-PSN薄膜在780℃于空气氛围中晶化55min,得到完全晶化的PMN-PSN薄膜。
(6)将步骤(5)得到的完全晶化的PMN-PSN薄膜置于680℃的管式炉中退火23-25h,即得所需薄膜。

Claims (8)

1.一种PMN-PSN超高击穿电场薄膜材料的制备方法,其特征在于,所述方法包括以下步骤:
1)将PMN-PSN前驱体溶液旋涂于衬底上制得湿膜;
2)将步骤1)所得的湿膜按照如下任一步骤进行处理制备一层PMN-PSN薄膜,
2-1)、将湿膜干燥、热解、晶化制得一层PMN-PSN薄膜,
2-2)、将湿膜干燥、热解制得一层PMN-PSN薄膜;
3)按照如下任一步骤进行处理制备多层PMN-PSN薄膜,
3-1)、重复步骤1)和步骤2-1)制得多层PMN-PSN薄膜,
3-2)、重复步骤1)和步骤2-2)制得未完全晶化的PMN-PSN薄膜、晶化制得完全晶化的多层PMN-PSN薄膜;
4)将步骤3)所得的产品进行退火,即得所需薄膜材料,所述退火温度为600-700℃,退火时间为3-5h、8-10h、13-15h、18-20h和23-25h中的任一一个时间。
2.根据权利要求1所述的PMN-PSN超高击穿电场薄膜材料的制备方法,其特征在于,所述PMN-PSN通式为nPb(MgxNb(1-x))O3-(1-n)Pb(ScyNb(1-y))O3,其中0<n<1、0<x <1、0<y <1。
3.根据权利要求1所述的PMN-PSN超高击穿电场薄膜材料的制备方法,其特征在于,所述PMN-PSN前驱体溶液浓度为0.2-0.3M。
4.根据权利要求1所述的PMN-PSN超高击穿电场薄膜材料的制备方法,其特征在于,步骤1)所述旋涂包括第一次旋涂和第二次旋涂,第一次旋涂转速为500-1000rpm,旋涂时间为10-30s;第二次旋涂转速为4000-6000rpm,旋涂时间为30-60s。
5.根据权利要求1所述的PMN-PSN超高击穿电场薄膜材料的制备方法,其特征在于,步骤2-1)所述干燥温度为300-400℃,干燥时间为3-5min,热解温度为500-600℃,热解时间为3-5min,晶化温度为700-800℃,晶化时间为3-5min,晶化环境为空气氛围。
6.根据权利要求1所述的PMN-PSN超高击穿电场薄膜材料的制备方法,其特征在于,步骤2-2)所述干燥温度为300-400℃,干燥时间为3-5min,热解温度为500-600℃,热解时间为3-5min。
7.根据权利要求1所述的PMN-PSN超高击穿电场薄膜材料的制备方法,其特征在于,步骤3-1)和步骤3-2)重复次数为12次。
8.根据权利要求1所述的PMN-PSN超高击穿电场薄膜材料的制备方法,其特征在于,步骤3-2)所述晶化温度为700-800℃,晶化时间为30-60min,晶化环境为空气氛围。
CN202010981820.9A 2020-09-17 2020-09-17 一种pmn-psn超高击穿电场薄膜材料的制备方法 Active CN112062564B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010981820.9A CN112062564B (zh) 2020-09-17 2020-09-17 一种pmn-psn超高击穿电场薄膜材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010981820.9A CN112062564B (zh) 2020-09-17 2020-09-17 一种pmn-psn超高击穿电场薄膜材料的制备方法

Publications (2)

Publication Number Publication Date
CN112062564A CN112062564A (zh) 2020-12-11
CN112062564B true CN112062564B (zh) 2022-05-17

Family

ID=73682042

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010981820.9A Active CN112062564B (zh) 2020-09-17 2020-09-17 一种pmn-psn超高击穿电场薄膜材料的制备方法

Country Status (1)

Country Link
CN (1) CN112062564B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1231061A1 (en) * 2001-02-09 2002-08-14 Canon Kabushiki Kaisha Piezoelectric structure, liquid ejecting head and manufacturing method therefor
CN102757232A (zh) * 2012-07-17 2012-10-31 西北工业大学 铌镁酸铅-钛酸铅陶瓷的制备方法
CN106064944A (zh) * 2016-05-30 2016-11-02 西北工业大学 锆酸铅钡薄膜的制备方法
CN106637405A (zh) * 2015-10-30 2017-05-10 中国科学院福建物质结构研究所 无限混熔的铁电固溶体单晶铌钪酸铅-铌镁酸铅-钛酸铅及其制备方法
CN110697771A (zh) * 2019-11-07 2020-01-17 广西大学 一种高性能储能薄膜的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1231061A1 (en) * 2001-02-09 2002-08-14 Canon Kabushiki Kaisha Piezoelectric structure, liquid ejecting head and manufacturing method therefor
CN102757232A (zh) * 2012-07-17 2012-10-31 西北工业大学 铌镁酸铅-钛酸铅陶瓷的制备方法
CN106637405A (zh) * 2015-10-30 2017-05-10 中国科学院福建物质结构研究所 无限混熔的铁电固溶体单晶铌钪酸铅-铌镁酸铅-钛酸铅及其制备方法
CN106064944A (zh) * 2016-05-30 2016-11-02 西北工业大学 锆酸铅钡薄膜的制备方法
CN110697771A (zh) * 2019-11-07 2020-01-17 广西大学 一种高性能储能薄膜的制备方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
Cation Ordering and Dielectric Properties of;P. K. Davies等;《Journal of the American Ceramic Society》;20020930;第2319-2324页 *
Dielectric Spectroscopy of Mixed PMN-PSN Ceramics;J.BANYS等;《EMF-2007 Programme and Book of Abstracts》;20070930;第1页 *
Effects of thermal anneal temperature on electrical properties and energy-storage density of Bi(Ni1/2Ti1/2)O-3-PbTiO3 thin films;Xie, Zhenku等;《CERAMICS INTERNATIONAL》;20151130;第S206-S212页 *
Soft mode in PMN-PSN ceramics;J. Macutkevic等;《PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS》;20080630;第1206页第1节 *
Thermal strain induced large electrocaloric effect of relaxor thin film on LaNiO3/Pt composite electrode with the coexistence of nanoscale antiferroelectric and ferroelectric phases in a broad temperature range;Peng, Biaolin等;《NANO ENERGY》;20180308;第286页第2.1节和图S1 *
非醇盐前驱物制备铌酸盐基功能陶瓷和薄膜;钟涛;《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》;20071215;第34页第4.2.1节 *

Also Published As

Publication number Publication date
CN112062564A (zh) 2020-12-11

Similar Documents

Publication Publication Date Title
CN112062562B (zh) 一种knn基超高击穿电场单晶薄膜材料的制备方法
CN111128682A (zh) 一种通过衬底调控电卡性能薄膜的制备方法
CN111180579B (zh) 一种基于苯乙基氯化胺制备纯相高指数垂直取向的锡基钙钛矿薄膜的方法
CN112062563B (zh) 一种psint基高熵铁电薄膜材料的制备方法
CN106803601B (zh) 一种固态电解质锂镧钛氧化合物薄膜的制备方法
CN108892503B (zh) 一种高电卡效应薄膜材料及其制备方法
CN101271956A (zh) 一种高分子辅助沉积高温超导涂层导体超导层的方法
CN112062564B (zh) 一种pmn-psn超高击穿电场薄膜材料的制备方法
US20040121492A1 (en) Ferroelectric thin film and method for forming the same
CN109354057B (zh) 一种氧化锡纳米晶及其制备方法及太阳能电池制备方法
CN101211764A (zh) 一种铬掺杂二氧化钛室温铁磁薄膜的制备方法
CN114671680B (zh) 一种钪酸铋-钛酸钡基核壳结构铁电薄膜及其制备方法
CN115295311B (zh) 一种高储能密度叠层薄膜及其制备方法
CN114914087B (zh) 一种高储能特性的钛酸铋钠-锆钛酸钡电介质薄膜及其制备方法与应用
CN105200404A (zh) 外延生长的具有垂直相界的铌酸钾钠-锆酸钡-钛酸铋钠无铅压电薄膜的制备方法
JP2000332209A (ja) Bi系強誘電体素子の製造方法
CN102992757B (zh) 一种高储能密度的铁电膜材料及其制备方法
CN106887331B (zh) 高储能密度电容器用氧化铝基电介质薄膜及其制备方法
CN101333684B (zh) 铈钇共掺钛酸锶钡纳米材料及其制备方法
CN112062568A (zh) 一种利用热应变诱导宽温区电卡效应plzst基薄膜的制备方法
CN113774485A (zh) 铌铟酸铅-铌镁酸铅-钛酸铅铁电薄膜材料及制备与应用
CN112142464A (zh) 一种通过频率调控Nb掺杂的PZST基驰豫反铁电薄膜制备方法
CN112062578A (zh) 一种提高介电材料电场击穿强度的方法
CN115057701B (zh) 一种具有室温大电卡效应的复合薄膜材料及其制备方法
CN115465890B (zh) 一种镧掺杂铪酸铅电介质薄膜的制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20231122

Address after: Room B1103 and 1104, Huihu Building, No.10 Yueliangwan Road, Suzhou Area, China (Jiangsu) Pilot Free Trade Zone, Suzhou City, Jiangsu Province, 215124 (Cluster Registration)

Patentee after: Suzhou Kabaka Electronic Technology Co.,Ltd.

Address before: 530004, 100 East University Road, the Guangxi Zhuang Autonomous Region, Nanning

Patentee before: GUANGXI University