CN114560693B - 一种氟化锂改性的钛酸钡基介质薄膜及其制备方法 - Google Patents

一种氟化锂改性的钛酸钡基介质薄膜及其制备方法 Download PDF

Info

Publication number
CN114560693B
CN114560693B CN202210326578.0A CN202210326578A CN114560693B CN 114560693 B CN114560693 B CN 114560693B CN 202210326578 A CN202210326578 A CN 202210326578A CN 114560693 B CN114560693 B CN 114560693B
Authority
CN
China
Prior art keywords
lif
temperature
precursor solution
annealing
tio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210326578.0A
Other languages
English (en)
Other versions
CN114560693A (zh
Inventor
李欣芮
何秋蔚
罗宇舟
刘来君
彭彪林
陈雪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Kabaka Electronic Technology Co ltd
Original Assignee
Nanjing Kabaka Electronic Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Kabaka Electronic Technology Co ltd filed Critical Nanjing Kabaka Electronic Technology Co ltd
Priority to CN202210326578.0A priority Critical patent/CN114560693B/zh
Publication of CN114560693A publication Critical patent/CN114560693A/zh
Application granted granted Critical
Publication of CN114560693B publication Critical patent/CN114560693B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62218Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic films, e.g. by using temporary supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • C04B2235/445Fluoride containing anions, e.g. fluosilicate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering

Abstract

本发明提供一种氟化锂改性的钛酸钡基介质薄膜及其制备方法,属于电子材料与元器件领域。该介质薄膜化学组成的化学通式为(1‑y)Ba1‑xRexTiO3‑yLiF,其中0.005≤x≤0.02,0.0025≤y≤0.03,y为质量分数,Re为La、Ce、Pr中的一种或两种元素。采用溶胶凝胶法制备,分别配制Ba1‑xRexTiO3和LiF前驱体溶液;通过分别旋涂、干燥、热解、退火、扩散,最终形成(1‑y)Ba1‑xRexTiO3‑yLiF固溶体。本发明通过掺杂,并在制备时调节退火温度、退火时间控制氟的挥发,从而获得温度稳定性好、耐击穿强度高的介电薄膜。

Description

一种氟化锂改性的钛酸钡基介质薄膜及其制备方法
技术领域
本发明涉及电子材料与元器件领域,具体涉及一种稀土和氟化锂改性的钛酸钡基介质薄膜及其制备方法。
背景技术
为了满足电子器件微型化和苛刻使用条件的需求,电子元器件、尤其是电容器的微型化、高可靠性、高的介电常数和宽的温度稳定性成为开发的重点。在多层陶瓷电容器领域,开始考虑巨介电材料,他们通常是指掺杂的BaTiO3、TiO2、CaCu3Ti4O12、NiO2、SrTiO3等。但是这些体系在制作成超薄介质薄膜的时候面临巨大的技术难题。钛酸锶和钛酸钡晶化温度较高,需要加入助溶剂和合适的工艺才有可能制备成超薄介质薄膜,与半导体工艺兼容。钙铜钛氧和氧化镍主要是晶界层效应,晶粒通常比较大,做成超薄介质薄膜以后,介电常数急剧降低;二氧化钛主要是采用缺陷调控和界面效应产生巨介电常数,因此对退火工艺非常敏感,难以得到大批量的稳定工艺。
考虑到工艺的稳定性和产品的可靠性,将钛酸钡材料进行改性并采用溶胶凝胶工艺是一个可靠的途径。本发明的第一发明人刘来君早在2004年就开始用溶胶凝胶工艺制备钛酸钡纳米粉体和电子陶瓷[刘来君,马占红,孙乐民,樊慧庆,纳米BaTiO3粉末的制备及烧结工艺的优化,材料导报,18:49-51(2004)],但是仍然无法将其制备成介质薄膜。Randall等人将氟化锂引入BaTiO3陶瓷[C.A.Randall,S.F.Wang,D.Laubscher,J.P.Dougherty,andW.Huebner,Structure property relationships in core-shell BaTiO3-LiF ceramics,J.Mater.Res.,8(4):871-879(1993)],不仅降低了其烧结温度,而且还能形成核壳结构,从而大大提高了其温度稳定性,可用于X7R的陶瓷电容器。但是由于当烧结温度为850℃时,出现第二相LiTiO2,以及在核壳结构中,核心和壳层之间的应变不匹配会给核心区域带来压缩应力,进而影响介电性能,因此仍然无法应用于超薄介质薄膜。为了进一步提高BaTiO3的介电常数,本发明的第一发明人刘来君采用稀土改性的方法[Yingzhi Meng,Kang Liu,Xiuyun Zhang,Xuerui Qiang,Xiuyun Lei,Jun由于Chen,Chunchun Li,Zhao Yang,LaijunLiu,Compositional modulation and annealing treatment in BaTiO3 tosimultaneously achieve colossal permittivity,low dielectric loss,and highthermal stability,Ceramics International,47(23):33912-33916(2021)],获得了温度稳定性极好(25-400℃)的改性钛酸钡陶瓷电容器材料,但是把它的厚度减小到数百纳米的时候,其击穿场强无法达到要求。因此,将钛酸钡陶瓷电容器材料制备成超薄介质薄膜,保持高的介电常数和温度稳定性,同时提高其击穿场强,是目前需要解决的问题。
发明内容
本发明的目的在于提供一种氟化锂改性的钛酸钡基介质薄膜及其制备方法,本发明通过采用溶胶-凝胶法制备沉积在不同底电极上的具有较高击穿场强的BRT薄膜材料,通过退火温度和退火时间,控制氟的挥发,从而获得满足X8R的超薄介质薄膜。在改变底电极种类的基础上挑选出综合储能性能优异的薄膜掺杂一定量的LiF,并通过掺杂一种或两种不同的稀土元素进一步调控薄膜的击穿场强。
本发明的目的通过如下技术方案实现:
一种氟化锂改性的钛酸钡基介质薄膜,其化学组成的化学通式为(1-y)Ba1- xRexTiO3-yLiF,其中0.005≤x≤0.02,0.0025≤y≤0.03,y为质量分数,Re为La、Ce、Pr中的一种或两种元素。
本发明上述氟化锂改性的钛酸钡基介质薄膜的制备方法,包括以下步骤:
(1)配制LiF前驱体溶液,LiF前驱体溶液的浓度为Ba1-xRexTiO3前驱体溶液浓度的0.5%-3%;
(2)将步骤(1)得到的LiF前驱体溶液用匀胶机旋涂在Pt(111)/TiO2/SiO2/Si(100)衬底上或者ITO衬底上,得到第一湿膜;
(3)将步骤(2)所得第一湿膜干燥、热解、退火制得一层LiF薄膜;
(4)重复步骤(2)和步骤(3)1~3次,得到含LiF的薄膜;
(5)配制浓度为0.1~0.4M的Ba1-xRexTiO3前驱体溶液;
(6)将步骤(5)所得Ba1-xRexTiO3前驱体溶液旋涂于LiF薄膜之上,滴加的体积与步骤(2)所用LiF前驱体溶液体积保持一致,得到第二湿膜;
(7)将步骤(6)所得第二湿膜干燥、热解、退火、扩散,形成(1-y)Ba1-xRexTiO3-yLiF固溶体薄膜;
(8)重复步骤(6)和步骤(7)1-5次,且用于旋涂的Ba1-xRexTiO3前驱体溶液总用量与用于旋涂的LiF前驱体溶液总用量体积比为1:1,制得多层含(1-y)Ba1-xRexTiO3-yLiF固溶体的X8R超薄介质薄膜。
优选地,步骤(1)中LiF前驱体溶液的配制方法为,将原料LiF溶解在在80-105℃冰醋酸和去离子水体积比为1:1的混合溶液中,溶液放置20-30h,得到LiF前驱体溶液。
优选地,步骤(5)中Ba1-xRexTiO3前驱体溶液的配制方法为:按摩尔比为(1-x):x:1准备钡源、Re源和钛酸丁酯,将钡源、Re源溶解在80-105℃、且冰醋酸和去离子水体积比为1:1的混合液体I中;然后在室温下将钛酸丁酯溶解在冰醋酸和CH3COCH2COCH3体积比为1:1的混合液体II中,将混合液体I混合液体II按照体积比为1:1再次混合,于70-90℃搅拌20-40min,并放置20-30h,得到浓度为0.1-0.4M的Ba1-xRexTiO3前驱体溶液。
优选地,步骤(2)所述旋涂是以转速为500-700rpm,旋涂10-20s。
优选地,步骤(2)所述旋涂是以转速为2000-3000rpm,旋涂10-20s。
优选地,步骤(3)所述的干燥温度为350-450℃,干燥时间5-15min,热解温度为500-650℃,热解时间为5-8min,退火温度为700-1000℃,于空气氛围中退火2-7min优选地,步骤(3)所述的干燥温度为350-450℃,干燥时间5-15min,热解温度为500-650℃,热解时间为5-8min,退火温度为700-1000℃,于空气氛围中退火2-7min。
由于采用上述技术方案,本发明的有益效果是:
1、本发明通过稀土元素的掺杂和调控一定量的LiF含量,控制薄膜的显微结构和电学性能,获得具有纯度高(~99.9%)、致密性好(~99.95%)、高介电常数(>103)、以及击穿场强高的介电薄膜,成功获得满足X8R的超薄介质薄膜。
2、本发明采用溶胶-凝胶法制备具有较高击穿场强的BRT薄膜材料,通过退火温度和退火时间控制氟的挥发,从而获得满足X8R的超薄介质薄膜,本发明的制备方法相对简单,是一种方便快捷的制备技术。
附图说明
图1为实施例1制备所得产品的XRD衍射图。
图2为实施例1-3制备所得产品利用扫描电子显微镜拍摄薄膜的二次电子像图。
图3为实施例1-3和对比例6制备所得产品的介电常数与温度的关系图谱。
图4为实施例1-3和对比例6制备所得产品的介电损耗与温度的关系图谱。
图5为对比例1-2制备所得产品的介电常数与温度的关系图谱。
图6为对比例3-5制备所得产品的介电常数与温度的关系图谱。
图7为对比例7制备所得产品的介电常数与温度的关系图谱。
图8为实施例2制备所得产品的电滞回线图。
图9为对比例1制备所得产品的电滞回线图。
图10为对比例3制备所得产品的电滞回线图。
图11为对比例2制备所得产品的电滞回线图。
图12为对比例4制备所得产品的电滞回线图。
图13为对比例5制备所得产品的电滞回线图。
图14为对比例6制备所得产品的电滞回线图。
图15为对比例7制备所得产品的电滞回线图。
具体实施方式
下面结合具体实施例,对本发明作进一步详细的阐述,但本发明的实施方式并不局限于实施例表示的范围。这些实施例仅用于说明本发明,而非用于限制本发明的范围。此外,在阅读本发明的内容后,本领域的技术人员可以对本发明作各种修改,这些等价变化同样落于本发明所附权利要求书所限定的范围。
实施例1
一种氟化锂改性的钛酸钡基介质薄膜,其化学组成的化学通式为0.9975Ba0.995La0.005TiO3-0.0025LiF。
上述氟化锂改性的钛酸钡基介质薄膜的制备方法,包括以下步骤:
(1)配制LiF前驱体溶液,将原料LiF溶解在在80℃冰醋酸和去离子水体积比为1:1的混合溶液中,溶液放置20h,得到LiF前驱体溶液,LiF前驱体溶液的浓度为Ba0.995La0.005TiO3前驱体溶液浓度的0.25%;
(2)将步骤(1)得到的LiF前驱体溶液用匀胶机旋涂在Pt(111)/TiO2/SiO2/Si(100)衬底上,以转速为500rpm旋涂20s,得到第一湿膜;
(3)将步骤(2)所得第一湿膜干燥、热解、退火;干燥温度为350℃,干燥时间15min,热解温度为500℃,热解时间为8min,退火温度为700℃,于空气氛围中退火7min,制得一层LiF薄膜;
(4)重复步骤(2)和步骤(3)2次,得到含LiF的薄膜;
(5)配制浓度为0.1M的Ba0.995La0.005TiO3前驱体溶液,按摩尔比为0.995:0.005:1准备C4H6BaO4、硝酸镧和钛酸丁酯,将C4H6BaO4、硝酸镧溶解在95℃、且冰醋酸和去离子水体积比为1:1的混合液体I中;然后在室温下将钛酸丁酯溶解在冰醋酸和CH3COCH2COCH3体积比为1:1的混合液体II中,将混合液体I混合液体II按照体积比为1:1再次混合,于80℃搅拌20min,并放置20h,得到浓度为0.1M的Ba0.995La0.005TiO3前驱体溶液;
(6)将步骤(5)所得Ba0.995La0.005TiO3前驱体溶液旋涂于LiF薄膜之上,滴加的体积与步骤(2)所用LiF前驱体溶液体积保持一致,以转速为2000rpm旋涂20s,得到第二湿膜;
(7)将步骤(6)所得第二湿膜干燥、热解、退火、扩散,干燥温度为350℃,干燥时间15min,热解温度为500℃,热解时间为8min,退火温度为700℃,于空气氛围中退火7min,形成0.9975Ba0.995La0.005TiO3-0.0025LiF固溶体薄膜;
(8)重复步骤(6)和步骤(7)1次,且旋涂所用Ba0.995La0.005TiO3前驱体溶液总用量与旋涂所用LiF前驱体溶液总用量体积比为1:1,制得含0.9975Ba0.995La0.005TiO3-0.0025LiF固溶体的介质薄膜。
实施例2
一种氟化锂改性的钛酸钡基介质薄膜,其化学组成的化学通式为0.99Ba0.99Ce0.01TiO3-0.01LiF。
上述氟化锂改性的钛酸钡基介质薄膜的制备方法,包括以下步骤:
(1)配制LiF前驱体溶液,将原料LiF溶解在在100℃冰醋酸和去离子水体积比为1:1的混合溶液中,溶液放置25h,得到LiF前驱体溶液,LiF前驱体溶液的浓度为Ba0.99Ce0.01TiO3前驱体溶液浓度的1%;
(2)将步骤(1)得到的LiF前驱体溶液用匀胶机旋涂在Pt(111)/TiO2/SiO2/Si(100)衬底上,以转速为600rpm旋涂15s,得到第一湿膜;
(3)将步骤(2)所得第一湿膜干燥、热解、退火;干燥温度为400℃,干燥时间10min,热解温度为600℃,热解时间为6min,退火温度为850℃,于空气氛围中退火5min,制得一层LiF薄膜;
(4)重复步骤(2)和步骤(3)2次,得到含LiF的薄膜;
(5)配制浓度为0.2M的Ba0.99Ce0.01TiO3前驱体溶液,按摩尔比为0.99:0.01:1准备C4H6BaO4、硝酸铈和钛酸丁酯,将钡源、硝酸铈溶解在95℃、且冰醋酸和去离子水体积比为1:1的混合液体I中;然后在室温下将钛酸丁酯溶解在冰醋酸和CH3COCH2COCH3体积比为1:1的混合液体II中,将混合液体I混合液体II按照体积比为1:1再次混合,于80℃搅拌30min,并放置25h,得到浓度为0.2M的Ba0.99Ce0.01TiO3前驱体溶液;
(6)将步骤(5)所得Ba0.99Ce0.01TiO3前驱体溶液旋涂于LiF薄膜之上,滴加的体积与步骤(2)所用LiF前驱体溶液体积保持一致,以转速为2500rpm旋涂15s,得到第二湿膜;
(7)将步骤(6)所得第二湿膜干燥、热解、退火、扩散,干燥温度为400℃,干燥时间10min,热解温度为600℃,热解时间为6min,退火温度为850℃,于空气氛围中退火5min,形成0.99Ba0.99Ce0.01TiO3-0.01LiF固溶体薄膜;
(8)重复步骤(6)和步骤(7)2次,且用于旋涂的Ba0.99Ce0.01TiO3前驱体溶液总用量与用于旋涂的LiF前驱体溶液总用量体积比为1:1,制得含0.99Ba0.99Ce0.01TiO3-0.01LiF固溶体的介质薄膜。
实施例3
一种氟化锂改性的钛酸钡基介质薄膜,其化学组成的化学通式为0.97Ba0.98Pr0.02TiO3-0.03LiF。
上述氟化锂改性的钛酸钡基介质薄膜的制备方法,包括以下步骤:
(1)配制LiF前驱体溶液,将原料LiF溶解在在105℃冰醋酸和去离子水体积比为1:1的混合溶液中,溶液放置30h,得到LiF前驱体溶液,LiF前驱体溶液的浓度为Ba1-xRexTiO3前驱体溶液浓度的3%;
(2)将步骤(1)得到的LiF前驱体溶液用匀胶机旋涂在Pt(111)/TiO2/SiO2/Si(100)衬底上,以转速为700rpm旋涂10s,得到第一湿膜;
(3)将步骤(2)所得第一湿膜干燥、热解、退火;干燥温度为450℃,干燥时间5min,热解温度为650℃,热解时间为5min,退火温度为1000℃,于空气氛围中退火2min,制得一层LiF薄膜;
(4)重复步骤(2)和步骤(3)1次,得到含LiF的薄膜;
(5)配制浓度为0.3M的Ba1-xRexTiO3前驱体溶液,按摩尔比为0.98:0.02:1准备钡源、Re源和钛酸丁酯,将钡源、Re源溶解在105℃、且冰醋酸和去离子水体积比为1:1的混合液体I中;然后在室温下将钛酸丁酯溶解在冰醋酸和CH3COCH2COCH3体积比为1:1的混合液体II中,将混合液体I混合液体II按照体积比为1:1再次混合,于90℃搅拌20min,并放置30h,得到浓度为0.3M的Ba0.98Pr0.02TiO3前驱体溶液;
(6)将步骤(5)所得Ba1-xRexTiO3前驱体溶液旋涂于LiF薄膜之上,滴加的体积与步骤(2)所用LiF前驱体溶液体积保持一致,以转速为3000rpm旋涂10s,得到第二湿膜;
(7)将步骤(6)所得第二湿膜干燥、热解、退火、扩散,干燥温度为450℃,干燥时间5min,热解温度为650℃,热解时间为5min,退火温度为1000℃,于空气氛围中退火2min,形成0.97Ba0.98Pr0.02TiO3-0.03LiF固溶体薄膜;
(8)重复步骤(6)和步骤(7)4次,且Ba0.98Pr0.02TiO3前驱体溶液用量与LiF前驱体溶液用量体积比为1:1,制得含0.97Ba0.98Pr0.02TiO3-0.03LiF固溶体的介质薄膜。
对比例1(不掺杂LiF)
一种钛酸钡基介质薄膜,其化学组成的化学通式为Ba0.99Ce0.01TiO3
(1)将原料C4H6BaO4和硝酸镧溶解在80℃冰醋酸和去离子水体积比为1:1的混合溶液中得到溶液A;再接着室温下将钛酸丁酯溶解在冰醋酸和CH3COCH2COCH3体积比为1:1的混合液体中得到溶液B,最后所得的两种混合液再次混合于70℃,搅拌30min,并放置20h,得到浓度为0.2M的前驱体溶液;
(2)将步骤(1)得到的Ba0.99Ce0.01TiO3前驱体溶液使用匀胶机以2000rpm的转速旋涂10s在Pt(111)基片上面,得到湿膜;
(3)将步骤(2)制得的湿膜首先在400℃干燥5min,然后在600℃热解5min,最后在850℃于空气氛围中退火2min,得到一层钛酸钡铁电薄膜;
(4)重复步骤(3)7次,得到钛酸钡铁电薄膜。
对比例2
重复实施例2,但y的取值为0.06。
对比例3
重复实施例2,但采用Ba1-xTiO3代替Ba1-xRexTiO3,即不掺杂La、Ce或Pr金属。
对比例4-5
重复实施例2,但x的取值为0.001和0.05。
对比例6
重复实施例2,但Ba1-xRexTiO3前驱体溶液的浓度为0.4M。
对比例7
重复实施例2,但退火温度为600℃,退火时间为10min。
性能测试:
一、关于薄膜本身的测试
图1为实施例1制备所得产品的XRD衍射图,通过比对PDF卡片,利用三强峰原则,鉴别到材料为纯相。实施例2和3的XRD衍射图与图1一致。
图2从左到右分别为实施例1-3利用扫描电子显微镜拍摄薄膜的二次电子像图,通过观察表面形貌,可以观察到材料表面致密,无孔洞,晶粒分布均匀。
二、介电性能:
为实施例1-3和对比例6制备所得样品,通过磁控溅射法镀上铝电极,在1kHz测试频率下,不同浓度的薄膜的介电常数和介电损耗与温度的关系图谱,参见图3和4。由图可知当所配置的浓度为0.2M时,薄膜的介电性能较好,并且损耗也较小。各材料虽然性能存在一些差异,但均能保持在介电常数大于1000。当配置的浓度小于0.2M时,虽然材料的介电损耗较小,但是介电常数小于1500。通过介电温谱测试发现,当浓度配置在0.2M时,薄膜的介电常数是配置浓度为0.1M时的4倍,并且拥有较小的介电损耗。然而并不是配置浓度越高越好,当配置浓度高于0.3M时,超过了材料的固溶度,影响其介电性能。
参见图5,可以看出LiF的含量不同,材料的介电响应也有所不同。相比与实施例1-3,可以看出,当未掺杂LiF和掺杂的LiF过多时,材料的介电常数均降低。
参见图6,通过对比例3,对比例4以及对比例5发现,La、Ce或Pr金属的掺杂可以改变材料内部的结构,细化晶粒,提高材料的介电常数,但掺杂量过高或过低,对材料的介电常数也有较大影响,当x的取值为0.001和0.05时,介电性能均不如本发明实施例1-3。
参见图7,是对比例8所得材料的介电常数与温度的曲线关系图,该材料的退火温度较低,由图8可以看到材料的介电常数并不高,说明材料的性能与退火温度有较大关系。.
三、关于击穿场强的测试
为实施例2和对比例1-8制备所得样品通过磁控溅射的方法镀上铝电极,进行电学性能的相关测试。实施例2所得电滞回线参见图8,通过测试材料的电滞回线发现,添加LiF的材料的击穿场强高于未掺杂改性的。原因在于掺杂破坏了材料的长程有序结构,使得内部结构无序,更多的极化微区出现,从而对电场做出响应。
图9-10分别为对比例1和3的电滞回线图,与实施例2相比,可以发现同时掺杂了LiF和稀土元素的材料铁电性能更好。参见图11,为对比例2电滞回线图,可以发现添加了LiF材料的铁电性能显著提高,但LiF掺杂量过高,击穿场强随之下降。参见图12-13,为对比例4和5的电滞回线图,可以发现稀土元素的掺杂量对性能也有很重要的影响,相比之下,对比例4的储能效果更佳,而对比例5的耐疲劳性更佳,但两者的电场强度均不如实施例2。。图14-15分别为对比例6-7的电滞回线图,可以发现退火之后曲线变细,极化强度提高,但剩余极化强度均不如实施例2。
上述说明是针对本发明较佳可行实施例的详细说明,但实施例并非用以限定本发明的专利申请范围,凡本发明所提示的技术精神下所完成的同等变化或修饰变更,均应属于本发明所涵盖专利范围。

Claims (4)

1.一种氟化锂改性的钛酸钡基介质薄膜的制备方法,其特征在于,所述氟化锂改性的钛酸钡基介质薄膜的化学组成的化学通式为(1-y)Ba1-x Re x TiO3-yLiF,其中0.005≤x≤0.02,0.0025≤y≤0.03,x代表的是物质的量分数,y为质量分数,Re为La、Ce或Pr,所述制备方法包括以下步骤:
(1)配制LiF前驱体溶液,LiF前驱体溶液的浓度为Ba1-x Re x TiO3前驱体溶液浓度的0.5%-3%;LiF前驱体溶液的配制方法为,将原料LiF溶解在80-105 ℃冰醋酸和去离子水体积比为1:1的混合溶液中,溶液放置20-30 h,得到LiF前驱体溶液;
(2)将步骤(1)得到的LiF前驱体溶液用匀胶机旋涂在Pt(111)/TiO2/SiO2/Si(100)衬底上或者ITO衬底上,得到第一湿膜;所述旋涂是以转速为500-700 rpm,旋涂10-20s;
(3)将步骤(2)所得第一湿膜干燥、热解、退火制得一层LiF薄膜;所述的干燥温度为350-450℃,干燥时间5-15 min,热解温度为500-650℃,热解时间为5-8 min,退火温度为700-1000℃,于空气氛围中退火2-7 min;
(4)重复步骤(2)和步骤(3) 1~2次,得到含LiF的薄膜;
(5)配制浓度为0.1~0.4 M的Ba1-x Re x TiO3前驱体溶液;Ba1-x Re x TiO3前驱体溶液的配制方法为:按摩尔比为(1-x):x:1准备钡源、Re源和钛酸丁酯,将钡源、Re源溶解在80-105℃、且冰醋酸和去离子水体积比为1:1的混合液体Ⅰ中;然后在室温下将钛酸丁酯溶解在冰醋酸和CH3COCH2COCH3体积比为1:1的混合液体Ⅱ中,将混合液体Ⅰ和混合液体Ⅱ按照体积比为1:1再次混合,于70-90℃搅拌20-40min,并放置20-30 h,得到浓度为0.1-0.4 M的Ba1-x Re x TiO3前驱体溶液;
(6)将步骤(5)所得Ba1-x Re x TiO3前驱体溶液旋涂于LiF薄膜之上,滴加的体积与步骤(2)所用LiF前驱体溶液体积保持一致,得到第二湿膜;所述旋涂是以转速为2000 rpm,旋涂20s;
(7)将步骤(6)所得第二湿膜干燥、热解、退火、扩散,形成(1-y)Ba1-x Re x TiO3-yLiF固溶体薄膜;所述的干燥温度为350℃,干燥时间15 min,热解温度为500℃,热解时间为8 min,退火温度为700℃,于空气氛围中退火7 min;
(8)重复步骤(6)和步骤(7)1-5次,且用于旋涂的Ba1-x Re x TiO3前驱体溶液总用量与用于旋涂的LiF前驱体溶液总用量体积比为1:1,制得多层含(1-y)Ba1-x Re x TiO3-yLiF固溶体的介质薄膜。
2.根据权利要求1所述的制备方法,其特征在于,步骤(6)中,使用所述旋涂是以转速为2500 rpm,旋涂15s代替所述旋涂是以转速为2000rpm,旋涂20s;步骤(7)中,使用所述的干燥温度为400℃,干燥时间10 min,热解温度为600℃,热解时间为6 min,退火温度为850℃,于空气氛围中退火5 min代替所述的干燥温度为350℃,干燥时间15 min,热解温度为500℃,热解时间为8 min,退火温度为700℃,于空气氛围中退火7 min。
3.根据权利要求1所述的制备方法,其特征在于,步骤(6)中,使用所述旋涂是以转速为3000 rpm,旋涂10s代替所述旋涂是以转速为2000rpm,旋涂20s;步骤(7)中,使用所述的干燥温度为450℃,干燥时间5min,热解温度为650℃,热解时间为5 min,退火温度为1000℃,于空气氛围中退火2 min代替所述的干燥温度为350℃,干燥时间15 min,热解温度为500℃,热解时间为8 min,退火温度为700℃,于空气氛围中退火7 min。
4.权利要求1-3中任一项所述的制备方法制备得到的氟化锂改性的钛酸钡基介质薄膜。
CN202210326578.0A 2022-03-30 2022-03-30 一种氟化锂改性的钛酸钡基介质薄膜及其制备方法 Active CN114560693B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210326578.0A CN114560693B (zh) 2022-03-30 2022-03-30 一种氟化锂改性的钛酸钡基介质薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210326578.0A CN114560693B (zh) 2022-03-30 2022-03-30 一种氟化锂改性的钛酸钡基介质薄膜及其制备方法

Publications (2)

Publication Number Publication Date
CN114560693A CN114560693A (zh) 2022-05-31
CN114560693B true CN114560693B (zh) 2023-04-25

Family

ID=81719944

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210326578.0A Active CN114560693B (zh) 2022-03-30 2022-03-30 一种氟化锂改性的钛酸钡基介质薄膜及其制备方法

Country Status (1)

Country Link
CN (1) CN114560693B (zh)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7795663B2 (en) * 2005-06-21 2010-09-14 E. I. Du Pont De Nemours And Company Acceptor doped barium titanate based thin film capacitors on metal foils and methods of making thereof
TW201119974A (en) * 2009-10-16 2011-06-16 Nippon Chemical Ind Composition for forming dielectric ceramic and dielectric ceramic material
CN101805181B (zh) * 2010-03-16 2012-12-05 同济大学 一种钛酸铋钠基铁电薄膜的制备方法
CN111128682A (zh) * 2019-12-27 2020-05-08 广西大学 一种通过衬底调控电卡性能薄膜的制备方法
CN112062578A (zh) * 2020-09-17 2020-12-11 广西大学 一种提高介电材料电场击穿强度的方法
CN112062562B (zh) * 2020-09-17 2022-04-19 广西大学 一种knn基超高击穿电场单晶薄膜材料的制备方法

Also Published As

Publication number Publication date
CN114560693A (zh) 2022-05-31

Similar Documents

Publication Publication Date Title
Diao et al. Enhanced energy storage properties of BaTiO3 thin films by Ba0. 4Sr0. 6TiO3 layers modulation
KR100274512B1 (ko) 집적회로커패시터 및 그 제조방법
Wang et al. Enhanced energy storage density and high efficiency of lead-free Ca1-xSrxTi1-yZryO3 linear dielectric ceramics
Huang et al. Tailoring energy-storage performance in antiferroelectric PbHfO3 thin films
WO2020232961A1 (zh) 一种具有超高介电常数有机/无机铁电复合材料、其制备方法及应用
Li et al. High breakdown strength and energy density in antiferroelectric PLZST ceramics with Al2O3 buffer
Xie et al. The energy-storage performance and dielectric properties of (0.94-x) BNT-0.06 BT-xST thin films prepared by sol–gel method
CN113963951A (zh) 介电材料、其制备方法、包括其的器件、和存储器单元
CN114538917B (zh) 一种高容量陶瓷介电材料、陶瓷电容器及其制备方法
Huang et al. Evolution of polarization crystallites in 0.92 BaTiO3-0.08 Bi (Ni0. 5Zr0. 5) O3 microcrystal-amorphous composite thin film with high energy storage capability and thermal stability
Xu et al. Microstructural, ferroelectric and photoluminescence properties of Er3+-doped Ba0. 85Ca0. 15Ti0. 9Zr0. 1O3 thin films
Wang et al. Improvement of the energy storage performance in Pb0. 88La0. 12ZrO3 thin films by inserting ZrO2 layer
Wang et al. Defect evolution and effect on structure and electric properties of A/B site Sm doped BaTiO3 sintered in different atmospheres
Ni et al. Effects of annealing temperatures on energy storage performance of sol-gel derived (Ba0. 95, Sr0. 05)(Zr0. 2, Ti0. 8) O3 thin films
CN100376506C (zh) 一种具有成份梯度分布的非铅系铁电薄膜及其制备方法
CN114560693B (zh) 一种氟化锂改性的钛酸钡基介质薄膜及其制备方法
CN114388693A (zh) 电介质材料以及包括其的器件和存储设备
Yang et al. Energy Storage Performance of PZT/PZ Composite Films Obtained by Sol–Gel Method
Yang et al. Enhanced ferroelectric and dielectric properties of Nb5+-doped Na0. 5Bi0. 5TiO3 thin film deposited under nitrogen annealing atmosphere
Dewi et al. The effect of heating rate on BaZrxTi1-xO3 thin film for x= 0.4 and x= 0.6 as capacitors
CN114671680B (zh) 一种钪酸铋-钛酸钡基核壳结构铁电薄膜及其制备方法
CN100572317C (zh) 一种介电常数可调的锌掺杂pst薄膜的制备方法
Jain et al. Effects of Bi4Ti3O12 addition on the microstructure and dielectric properties of modified BaTiO3 under a reducing atmosphere
Basu et al. Effect of uniform and periodic doping by Ce on the properties of barium strontium titanate thin films
CN101333684B (zh) 铈钇共掺钛酸锶钡纳米材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant